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Transcriptional activation during cell
reprogramming correlates with the formation
of 3D open chromatin hubs
Marco Di Stefano 1,2✉, Ralph Stadhouders 2,5, Irene Farabella 1,2, David Castillo 1,2, François Serra 1,2,6,

Thomas Graf 2✉ & Marc A. Marti-Renom 1,2,3,4✉

Chromosome structure is a crucial regulatory factor for a wide range of nuclear processes.

Chromosome conformation capture (3C)-based experiments combined with computational

modelling are pivotal for unveiling 3D chromosome structure. Here, we introduce TADdyn, a

tool that integrates time-course 3C data, restraint-based modelling, and molecular dynamics

to simulate the structural rearrangements of genomic loci in a completely data-driven way.

We apply TADdyn on in situ Hi-C time-course experiments studying the reprogramming of

murine B cells to pluripotent cells, and characterize the structural rearrangements that take

place upon changes in the transcriptional state of 21 genomic loci of diverse expression

dynamics. By measuring various structural and dynamical properties, we find that during gene

activation, the transcription starting site contacts with open and active regions in 3D chro-

matin domains. We propose that these 3D hubs of open and active chromatin may constitute

a general feature to trigger and maintain gene transcription.
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T he three-dimensional (3D) structure of the genome has
been shown to modulate transcriptional regulation1–3 and
to play a role in cancer and developmental abnormalities4.

In the effort of characterizing 3D genome structures, chromo-
some conformation capture (3C)-based experiments5 allow to
capture a single snapshot of the genome conformation at a given
time. A plethora of theoretical approaches have been developed to
take advantage of 3C-based experimental data and model genome
spatial organization. Restraint-based modelling approaches6 take
3C-based contact frequencies as input and employ ad hoc con-
versions to spatial distances for determining 3D genome struc-
ture7–12. This approach has provided valuable insights into the
structural organization of chromosomal regions in various
organisms13. Complementary, thermodynamics-based approa-
ches14–22 use physics-based principles to test specific interactions
or interaction mechanisms to explain the molecular origins of the
contact patterns obtained in 3C-based experiments. Together,
these theoretical strategies provide insights into chromatin
conformation16,17,23,24 and the possible mechanisms that form
chromosome territories18, compartments19 and topologically
associating domains (TADs)20,22,25,26.

Decreased sequencing costs, together with more refined
experimental protocols, has permitted performing 3C-based time-
resolved experiments to monitor genome conformation dynamics
of biological processes at high resolution. For example, High-
throughput chromosome conformation capture (Hi–C) experi-
ments have been applied to study the dynamics of nuclear
organization during mitosis27,28 or meiosis29–31, during hormone
treatment32 and during induced neural or adipose cells
differentiations33,34 or cell reprogramming35. However, none of
the computational strategies developed so far can take full
advantage of these time-series datasets. Hence, approaches spe-
cifically designed for the simulation of time-dependent con-
formational changes (4D) are urgently needed.

To fill this gap, we introduce TADdyn, a computational
method allowing to model 3D structural transitions of chromatin
using time-resolved Hi–C datasets. We combine in TADdyn a
physics-based model of chromatin fiber18,36 with dynamic
restraint-based modelling. For any genomic locus, this integrated
strategy allows for simulating a plausible 4D trajectory that is
data-driven and at the same time satisfies basic physical prop-
erties of the chromatin fiber.

The potential of TADdyn to provide insights beyond the Hi–C
datasets is highlighted by the simulation of 21 loci of the mouse
genome during cell reprogramming of pre-B lymphocytes into
pluripotent stem cells (PSCs)35. By measuring structural and
dynamical properties from the simulations, we characterize the
interplay between 3D structure and gene transcription at an
extent unreachable from the experimental datasets alone. Inter-
estingly, we find that transcription starting sites (TSS) of simu-
lated loci embed into in a cage-like structure that favors contacts
with open and active regions located (even) several kilo-bases
(kb) away from the gene promoter. Hence, TADdyn simulations
are compatible with the formation of 3D hubs37 as a general
mechanism to modulate gene transcription.

Results
The TADdyn modelling strategy. TADdyn is based on the fol-
lowing methodological steps (“Methods” and Fig. 1): (i) collection
of experimental data, (ii) representation of selected chromatin
regions using a bead-spring polymer model, (iii) conversion of
experimental data into time-dependent restraints, (iv) application
of steered molecular dynamics to simulate the adaptation of
chromatin models to satisfy the imposed restraints, and (v)
analysis of the conformation dynamics. As discussed below, each

of these steps constitutes per se an extension of all the existing
restraint-based strategies for chromosome modelling and, in
particular, of TADbit38, a modelling tools previously developed in
our lab.

We applied TADdyn to a previously published in situ Hi–C
interaction time-series dataset (GEO accession number GSE96611).
We could use at once restraint-based modelling for seven distinct
time-points of in situ Hi–C experiments during C/EBPα priming
followed by Oct4, Sox2, Klf4 and Myc (OSKM)-induced
reprogramming of B cells to PSCs35. To collect statistics on
distinct expression dynamics, we focused on 20 different ~2
mega-bases (Mb) regions of the mouse genome encompassing a
total of 21 different loci (Supplementary Data 1). The selected
genes are representative of different time-dependent patterns of
transcriptional activity (Supplementary Fig. 1 and “Methods”),
which allowed us to study how various different transcription
dynamics interplay with changes in the 3D genomic organization.
Overall, we analyzed seven continuously active loci (Hsp90ab1,
Ppia, Rad23a, Rad23b, Rpl41, Rps14, and Rps26) and 5 completely
silent ones (Neurod6, Olfr1022, Olfr33, Rergl, and Rnu7).
Additionally, we studied 9 loci of interest with varying
transcriptional dynamics, such as: the early activated Tet2, the
late activated Sox2 and Nanog reprogramming genes, the
transiently activated Nos1ap gene, the transiently silenced
Lmo7, and the gradually silenced Mmp3, Mmp12, C/EBPα, Ebf1
genes (Supplementary Data 1, Supplementary Figs. 2–22a and
Supplementary Movies 1–21).

Next, Hi–C interaction matrices of all the regions at 5 kb
resolution were converted into TADdyn time-dependent spatial
restraints (“Methods” and Fig. 1a). Specifically, each region of
interest was represented as a chain of spherical beads each
spanning 50 nm in diameter and containing 5 kb of DNA. The
chain features the general physical properties of the chromatin
fiber: connectivity, excluded volume and (optionally) bending
rigidity36 (“Methods”). At each experimental stage the Hi–C
interaction matrix was converted into harmonic spatial restraints
between pairs of particles (Fig. 1b). This conversion follows the
simple, yet effective, rationale that pairs of particles with high
Hi–C interaction can be restrained close in space, while poorly
interacting particle pairs can be kept far apart39 (“Methods”).
Differently from previous methods40, the parameters of each
imposed pairwise harmonic restraint (the spring constant and the
equilibrium distance) were linearly interpolated between the
values at two consecutive experimental cell stages during the
steered molecular dynamics simulations (“Methods” and Supple-
mentary Fig. 23). The TADdyn dynamic restraints were designed
to simulate smooth structural changes between models of
consecutive experimental data points.

TADdyn simulations are an accurate dynamic description of
the input Hi–C data. To quantify the degree of agreement of the
TADdyn 4D models to the time-series Hi–C interaction matrices,
contact maps were calculated on an ensemble of 100 models
obtained at each time step of the trajectories (Fig. 1d). Next, for
each time-point the Spearman correlation coefficient (SCC) of the
modeled contact map and the experimental Hi–C interaction
matrices was computed as a measure of the agreement between
the two matrices (Methods). For the 21 loci, the SCC ranged
between 0.60 and 0.89 (Fig. 1d for Sox2 simulations and Sup-
plementary Figs. 2–22c for all other loci). From a previous
benchmark study of restraint-based models41, we conclude that
such SCC values are a good proxy of accurate reconstructions of
genomes and genomic domains. Notably, at each cell stage, the
Hi–C interaction map correlated best with the contacts maps at
the corresponding time of the simulated reprogramming
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trajectories. These results show that for a diverse set of loci the
simulated structures are a reliable 3D representation of two-
dimensional Hi–C interaction matrices, which effectively repro-
duce the actual contact pattern at the correct time of the trajec-
tory. Interestingly, these results, obtained from 100 trajectories,
did not vary when the ensemble of simulated trajectories was
extended to 500 or 1000 (Supplementary Fig. 24). This result is an
indication of the robustness of TADdyn’s simulations, and sug-
gests that 100 models are enough to obtain exhaustive statistics
on the system and to draw meaningful conclusions on the
simulated dynamics.

To test whether TADdyn is suited to model processes
characterized by gradual chromatin structural transitions, we
also performed two alternative set of simulations for the Sox2
locus. We removed restraints from cell stages D2 (ΔD2 dynamics)
and D6 (ΔD6 dynamics), and doubled the time duration (from 10

to 20 τLJ) of the remaining transitions (Bα→D4 in ΔD2 and
D4→D8 in ΔD6 simulations) to maintain the same total time per
trajectory (60 τLJ). These tests indicated that the deleted restraints
marginally affected the overall dynamics of the locus. Specifically,
the conformations expected to represent the missing cell stages
along the trajectories still provided accurate models at the
removed stage (SCCD2= 0.68 and SCCD6= 0.75 in ΔD2 and
ΔD6 simulations, respectively). Additionally, in the case of the
ΔD2 simulation, the Hi–C interactions map at D2 correlated best
with the contact map computed on the models predicting the
D2 stage, while, for the ΔD6, the SCC between Hi–C in D6
correlated slightly better with the models in PSC than in D6
(SCCPSC= 0.76 vs. SCCD6= 0.75). These results suggest that the
reprogramming dynamics, simulated in this work, are dominated
by smooth and gradual chromatin rearrangements that can be
effectively and robustly simulated using TADdyn.
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Fig. 1 The TADdyn key steps for simulating 4D dynamic changes in a locus. The shown example corresponds to the reprogramming dynamics for the
Sox2 locus from B cells to PSC. a Data collection. In situ normalized Hi–C interaction matrices35 for the region of 1.5Mb centered around the Sox2
promoter. b Distance restraints definition. Both LowerBound- (blue) and Harmonic (red) spatial restraints are obtained by filtering the Hi–C interaction
maps using the optimal triplet of TADbit parameters (“Methods”). c TADdyn steered dynamics runs. The simulated regions are represented as polymers
made of spherical particles each a 5 kb-bin of the input Hi–C matrix. Particles are colored from red (first particle) to blue (last particle of the modeled
region). The TSS of the locus of interest is represented by a black particle and the promoter by green ones. The models for all the stages (that is, from B to
PSC) were dynamically built by TADdyn. d Contact maps (dcutoff= 200 nm) of models during the simulation were used to assess their accuracy by
means of its Spearman correlation coefficients (SCCs) with the Hi–C input matrices. The SCCs of the contact maps with the seven Hi–C input matrices are
shown with the coefficient in bold black letters corresponding to the time point of the column. As our previous modelling benchmark indicates41, all the
SCCs > 0.60, that are obtained between models and Hi–C maps at corresponding cell stages, are indicative of good models. In c, d, only the models and the
contact maps at the correspondent experimental time-points are shown, but TADdyn allows to visualize the entire dynamics filling the blanks between
stages as shown in the Supplementary Movies 1–21.
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For clarity, we present the details of the simulations for three
loci, Sox2 (as a late activated locus), Mmp12 (as a late repressed
locus) and Rad23a (as a stably active locus) in the following
sections. The cumulative analysis of the 21 genes is presented in
the last paragraph of the Results section. All the results for all the
simulated loci are presented in the Supplementary Figs. 2–22, and
in the Supplementary Movies 1–21.

Dynamic structural reorganization correlates with local tran-
scriptional changes. To explore how the simulated models
changed over time, we performed a hierarchical clustering ana-
lysis of the correlation matrix between the contact maps of the
models and the input Hi–C interaction matrices. As a term of
comparison, the same clustering analysis has been performed
between the Hi–C interactions matrices including two replicates
and the cumulative datasets (“Methods”, Fig. 2a, b and Supple-
mentary Figs. 2–22d–f). Hi–C interaction matrices were grouped
in well-separated clusters reflecting the expected changes in
expression activity of each locus. This clustering indicates that the
studied loci changed their topology along with their transcrip-
tional activity. Interestingly, the bi-partite clustering is also
reflected in the analysis of the Hi–C matrices (Supplementary

Figs. 2–22e). Specifically, for 8 of the 21 simulated loci (that is
C/EBPα, Ebf1, Lmo7, Mmp12, Mmp3, Nos1ap, Sox2, and Tet2)
the active and inactive states of the locus were represented by
two major clusters. For example, the first cluster of Sox2 com-
prised the cell stages from B to D4 in which the locus is inactive
(RPKM < 0.06), while the second cluster includes D6 to PSC
when Sox2 is active (RPKM > 8.0) (Fig. 2a). Similar observations
were made for Mmp12. In contrast, Rad23a and other strongly
expressed loci, such as Ppia, Rpl41, Rps14, Rps26, resulted in a less
clear bipartite behavior likely because these loci remain in a
constantly active state during reprogramming with relatively
small fluctuations of expression. The Rad23a Hi–C datasets were
clustered, for instance, in 3 (almost) equidistant clusters asso-
ciating consecutive stages (D2-D4, B-Bα, and D6-D8-PSC) in a
reshuffled order respect to the reprogramming dynamics. In
almost all the highly expressed loci (Rad23a, Ppia, Rpl41, Rps14,
Rps26), the clustering of the models’ correlations was mixed
among the different cell stages. Interestingly, an analogous clus-
tering analysis between the Hi–C datasets (two replicates and
merged, “Methods”) reflects these stage mixing (Ppia, Rad23a,
Rpl41, Rps14, Rps26, and Hsp90ab1). The silent loci (Rnu7,
Neurod6, Rergl, Olfr33, and Olfr1002) clustered with different
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Fig. 2 Dynamic structural chromatin reorganization linked to transcriptional activity. Top of the figure indicates expression level (RPKM) for each of the
selected loci at each reprogramming stage35. a Heat-map of the normalized spearman rank correlations computed for each pair of 60 model contact maps
(i.e. one map every 1-time step of the simulation) against each of the seven Hi–C interaction maps obtained during the reprogramming process. b Heat-
map of the distance RMSD (dRMSD) between all models within a simulation. Each heat-map is accompanied by the corresponding dendrogram obtained
from the clustering analysis (“Methods”).
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scenarios: most of these loci were clearly di- or tri-partite
(Olfr1002, Olfr33, Rergl, and Neurod6) within the expected order
of the reprogramming stages from B to PS, and only one, Rnu7,
resulted in a completely reshuffled partition not reflecting the
time course of the reprogramming nor the clusters of replicates of
the Hi–C datasets. To further characterize the structural changes
associated with variations in transcriptional activity, we per-
formed a clustering analysis of the model structures based on the
distance RMSD (dRMSD) values between pairs of 3D models
(Methods). As for the matrix-based analysis, the dRMSD clus-
tering reflects the presence of different folding states that corre-
lated with the different transcriptional activities (Fig. 2b and
Supplementary Figs. 2–22f).

Time-dependent measures reveal locus-dependent structural
dynamics. In our simulations (Supplementary Movies 1–21), for
some of the studied loci (Sox2, Mmp12) we observed a “caging”
effect of the transcription start site (TSS) at the time when the
locus was transcriptionally active. To quantify this observation,
we first calculated for each TSS the time-dependent changes in its
3D structural embedding as well its explored volume (Methods,
Fig. 3 and Supplementary Figs. 2–22g, h). Notably, TADdyn
simulations showed that, as cells reprogramed, the TSS of Sox2
and Mmp12 remained largely accessible to other particles during
their less transcriptionally active phases (i.e. stages B-D4 for Sox2
and D6-PSC for Mmp12) (Fig. 3a). During the most active stages,
however, the TSS particle became embedded in the 3D model (the
TSS embedding was between 0.8 and 0.95 at the PSC stage for
Sox2 and B-D4 for Mmp12) (Fig. 3a).

Next, we assessed whether the 3D embedding would also affect
the dynamics of the TSS of different loci. For each simulation, we
calculated the convex-hull of the TSS particle every 50 time-steps
of the trajectory as a proxy of the volume explored (“Methods”
and Fig. 3b). The results indicate that the TSS of Sox2 explored a
smaller volume in the D6-PSC stages, when the gene was
transcriptionally active, compared to the volume explored in the
B-D4 stages when the gene was transcriptionally silent. The TSS
of Mmp12 acquired increased mobility during reprogramming as
its expression levels decreased (compare B-D4 and D6-PSC
stages). Interestingly, the explored volume of the Rad23a TSS
barely changed during the entire reprograming process. In fact,
for several other loci the embedding and spanned volume profiles
seem not to be related to transcriptional changes. For example,
the embedding profiles of several continuously active loci, such as
Hsp90ab1 and Ppia, and silent genes, such as Olfr1002 and Rergl,
varied substantially along the simulations even if the loci were
constantly active or inactive. These cases indicated that over the
21 simulated loci the dynamics of gene activation varied with no a
unique general description in terms of embedding and explored
volume. Importantly, the introduced measures on TSS may need
to be taken with caution for large loci (>100 kb). For example, the
Ebf1 and Nos1ap TSS particles are, in fact, constantly ‘caged’
within their own structural domain independently on their
transcriptional state.

TADdyn simulations characterize the time-dependent varia-
tions in domain borders. To further characterize the possible
topological transitions between gene expression states, we
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calculated dynamic changes in TAD insulation score and border
strength42 using the contact maps of the models along the
TADdyn trajectories (“Methods”). We found that, although the
number of borders was overall constant during the simulation,
their position often changed. In a striking example involving the
Sox2 locus, during the D4-D6 transition there was a clear shift of
a border at position chr3:34.60 Mb, moving further downstream
and converging near the TSS (Fig. 4a). A second border at
position chr3:34.74 Mb was displaced about 20 kb downstream,
thereby removing the topological insulation of a super-enhancer
region at chr3:34.70 Mb and the TSS (Fig. 4b). These border
changes resulted in the formation of a domain of about 120 kb,

which included exclusively the Sox2 gene and its super-enhancer
region. The fact that the border strength remained high after gene
activation at D6 is in agreement with our previously described
findings that the Sox2 TSS and its super-enhancer became iso-
lated in a sub-TAD when the gene was transcribed in PSCs
(Fig. 4a). Consistent with this observation, the Mmp12 TSS was
partially included in a weak domain border at chr9:7.25 Mb
during transcription. This weak border disappeared during the
gene’s transition from an active to an inactive state (during the
D4-D6 stages), so that the Mmp12 TSS became part of a larger
domain at the time of gene silencing. Finally, and with a similar
trend, the TSS of the invariantly active gene Rad23a remained
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Fig. 4 Gene activity correlates with domain borders and enhancer proximity. Top of the figure indicates expression level (RPKM) for each of the selected
loci at each reprogramming stage35. a Time dependent position of the domain borders as defined by the insulation score analysis on the contact maps
derived from the models. The position of the loci in the graph is indicated by a blue horizontal line and its transcriptional orientation is indicated by a blue
arrow. b Heat maps of the distances between the TSS particle and all the other model particles as a function of time. c Particles classification into active
(A, yellow), active and proximal to the TSS (AP, orange), and active, proximal and within the domain (APD, red). The bottom table shows the number of
particles in each category for each reprogramming stage.
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part of a domain border, and insulated in an unvaried domain
between chr8:84.58 and 82.86Mb for the entire simulation. This
trend, which may not be general, was not observed for other loci
where the proximity to domains borders did not correlated with
the transcriptional state. Overall, TADdyn simulations indicate
that border formation may not be the only structural property
correlating with transcriptional activity.

The formation of 3D hubs of active chromatin is a common
motif triggering transcriptional activation. To characterize the
elements within the borders of TADs containing tran-
scriptionally active loci, we first identified in the models what
we call active particles in any time-point of the reprogramming
process, which had overlapping signals (at least 250 base-pairs,
bp) of ATAC-seq and H3K4me2 ChIP-seq35 (“Methods”,
Fig. 4b and Supplementary Figs. 2–22l). Upon activation, the
Sox2 gene was positioned spatially close (<200 nm) to a set of
particles containing its super-enhancer (SE) about 120 kb
downstream of the TSS. Notably, and in line with our previous
observations35, the TSS-SE proximity started at D4, that is
before the Sox2 transcriptional activity could be detected (D6).
This spatial proximity was maintained for the rest of the
simulation while the Sox2 gene was transcribed. Consistently
with its constantly active state, the TSS 3D distance profiles of
Rad23a remained overall constant during reprogramming
(Fig. 4b) with marginal changes during the simulation, while
the Mmp12 late inactivation was not accompanied by a change
in its proximity with other genomic regions.

To further assess to what extend active particles (Supple-
mentary Data 2) became proximal to the TSS of the locus, we
counted for each reprogramming stage how many of the active
(A) particles became available to the TSS particle, either by
spatial proximity only (active-proximal particles, AP) or also by
sharing the same local domain (active-proximal-domain, APD)
(“Methods” and Fig. 4c). Interestingly, this analysis resulted in
a robust trend for all analyzed loci, showing higher numbers of
AP and APD particles when the locus was transcriptionally
active. Notably, for Sox2 the A, AP and APD particles were
increasing together with the locus transcription activity, but the
regions containing the annotated super-enhancer were only
classified as AP or APD at the D6 stage, that is after the
structural changes observed during the simulation at D4 stage.
For the Mmp12 simulation the number of A particles did not
decrease in the inactive stage, yet the numbers of AP or APD
decreased consistently with the gene activity. The Rad23a locus
was instead characterized by a quite constant and high number
of A, AP and APD particles consistently with is stable
transcription activity during the entire reprogramming process.
Altogether, we observed a consistent 3D co-localization of
active and TSS chromatin particles upon activation of the gene,
reminiscent of the recently proposed formation of enhancer
hubs or condensates37,43,44.

The only locus escaping this general trend was Rnu7 that
despite being silent was proximal to many active (A) particles
(Supplementary Fig. 17n). However, the TSS of this locus, which
was selected using unsupervised analysis (Methods), was
surrounded within <5 kb by several genes (Ptpn6, Gm20531,
Grcc10, Gm45234, and Atn1) that were expressed at different
levels during the reprogramming process. This may suggest a
cross-talk between genes and active particles when they are in
close sequential proximity (Supplementary Data 1).

Overall, TADdyn simulations clearly indicate a correlation
between the formation of an active 3D hub that correlates with
the expression of the embedded genes (Fig. 5). Of the
seven structural measures (that is, the 3D embedding, the

explored space, the genomic distance to the closest domain
boundary, the distance to the transcription termination site
(TTS), and the numbers of A, AP, and APD particles) only
the number of APD and AP particles positively correlated (r=
0.71, p-value= 0.0) with the transcriptional state (RPKM value)
of a given locus. However, there are additional locus
specific correlations, which may indicate that other structural
factors could affect the regulation of gene expression.

Discussion
Here we have introduced a computational tool, TADdyn, aimed
at studying time-dependent dynamics of chromatin domains
during natural and induced cell processes by simulating smooth
3D transitions of chromosome structure. TADdyn is unique in its
main features being a data-driven method to simulate structural
changes of chromatin over time. Additionally, TADdyn presents
several additions with respect to other existing restraint-based
approaches. First, chromatin is represented as a fiber of con-
tinuous spherical particles mapping each of the input Hi–C
matrix bins and embedding the main physical properties of the
chromatin fiber, such as chain connectivity, excluded volume, and
(optionally) bending rigidity21. This chromatin representation,
that allow to effectively integrate restraint- and polymer physics-
based modeling, implies that distinct regions of the model chain
cannot cross each other and, as such, may fail when conflicting
restraints from Hi–C are imposed to the same particles, which
happened only in 1 of the 2100 simulations performed. Alto-
gether, it demonstrates that the structural rearrangements studied
here are possible and satisfy both the physical properties of
chromatin and the experimentally derived restraints. Second,
TADdyn takes as input an entire set of time-series Hi–C inter-
action maps and converts the interactions propensities between
matrix bins into dynamical spatial restraints between pairs of
particles. The latter is an approach allowing to study, on a phy-
sically reliable chromatin model, the dynamic transitions of
chromatin that provides biological insights not directly accessible
by the analysis of Hi–C data alone nor by using other static
modelling strategies. Third, TADdyn allows to obtain robust
results upon changes of the input datasets, which could be used to
predict the effect of genomic perturbations. For example, here we
found that in two alternative simulations of the Sox2 locus region
(ΔD2 and ΔD6) that missed one reprogramming step resulted in
only marginally affected trajectories. This result suggests that the
reprogramming dynamics are dominated by smooth, gradual and
physically feasible spatial chromatin rearrangements.

TADdyn’s simulations of 21 loci across the mouse genome
have revealed structural features that correlate with the expres-
sion levels of the studied genes. In particular, we found that the
TSS of the Sox2 and Mmp12 loci gets embedded inside a struc-
tural cage making it less accessible to external particles and more
spatially constrained against random thermal motion (Figs. 3 and
4). These findings are consistent with previous super-resolution
imaging studies suggesting that the mobility of the promoter is
constrained upon activation45,46. However, this effect is not
observed for other simulations, which is also consistent with the
variety of dynamical behaviors described in the literature47.

Interestingly, within the cage the TSS establishes an
increasing number of interactions with enhancer-like chroma-
tin regions compared to the inactive phases (Fig. 4). Notably,
within the caged environment, active particles (that is, with
ATAC-seq and H3K4me2 signals) often include annotated
enhancers as well as newly predicted putative enhancers. Such
predicted enhancers can act at long-range, as exemplified by the
distal active particles interacting with the Sox2 promoter. Upon
transcription activation, the dynamic formation of local
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topological domains (“cages”) inferred here from high-
resolution time-resolved Hi–C data, could be reminiscent of
structural or topological motifs (such as rosettes or cliques)
suggested in previous studies using polymer-physics-based
models48 as well as transcription factories or phase-separated
condensates43,44,49,50. We speculate that these cages might
trigger and maintain the activation of some promoters by
facilitating their local association with a series of proximal
enhancers or open chromatin sites. At a larger scale, such
single-gene cages might eventually coalescence into larger
domains to form large multi-gene condensates43,51.

Additionally, to the caging of active chromatin observed in our
simulations, TADdyn also revealed that different structural
mechanisms may correlated with the expression of specific loci.
Some loci are, in fact, characterized by the absence of correlation
with either the caging effect or the confined dynamics of the TSS
or both phenomena (Fig. 5). As previously suggested47, our
findings indicate that confinement of loci does not always cor-
related with increased expression and that other structural fea-
tures could have a role in gene regulation. It is thus important to
integrate our simulations with additional experimental observa-
tions beyond Hi–C experiments. The models, however, suggest a
common mechanism for all the 21 loci upon activation that
promoter-enhancer communication52 occurs via direct interac-
tions between distant enhancers and its cognate target gene as
previously observed in many studies33,46,49,50,53–62. Importantly,
our models also suggest that the transcriptional activation of a

gene could be regulated by a series of spatially proximal enhan-
cers (i.e. 3D enhancer hubs) and that such regulation could be
independent of specific pairwise interactions. These results are
compatible with recent imaging approaches challenging the need
of direct and continuous promoter-enhancer interaction to pro-
mote transcription63–66. However, as the time difference between
consecutive reprogramming samples used to obtain Hi–C inter-
action maps was in the order of tens of hours we cannot rule out
that at smaller scales cell sub-populations diverge from the gen-
eral mechanism here proposed. Therefore, this limitation could
have precluded detection of other possible dynamic pathways of
genome conformation, satisfying only a subset of the input
interaction matrices. To address this, TADdyn will have to be
implemented in the future using data obtained from finer time-
resolved Hi–C and/or imaging-based approaches.

Methods
Collection of experimental data. Structural data were obtained from in situ Hi–C
chromatin interaction experiments previously generated by us35. Specifically, the
datasets were downloaded from the GEO database (accession number GSE96611)
for the cells stages from B to PSC cells of the reprogramming process in mouse.
The dataset included seven Hi–C experiments: B cells (B), Bα cells (after 18 h, Bα),
day2 (after 48 h, D2), day4 (after 48 h, D4), day6 (after 48 h, D6), day8 (after 48 h,
D8), and Pluripotent Stem Cells (after about 48 h, PSC). The reads were mapped
onto the Mus musculus reference genome (mm10, Dec 2011 GRCm38) using the
fragment-based strategy and filtered for invalid reads, such as self-circles, dangling
ends, errors, extra dangling ends, duplicated and random breaks35. Using the
filtered fragments, the genome-wide raw interaction maps were binned at 5 kilo-
base (kb) and normalized using the Vanilla algorithm67,68 as implemented in

Time and expression levels

lo
g(

R
P

K
M

+
1)

Dist to TSS (nm)EmbeddingConvex volNum A

Dist to border (nm)Num AP

r = -0.16    p = 0.070r = -0.14    p = 0.121r = 0.03 p = 0.757r = 0.08 p = 0.397

r = 0.26 p = 0.003r = 0.31 p = 0.000r = 0.70 p = 0.000

lo
g(

R
P

K
M

+
1)

Num APD

 50

 100

 150

 200

 250

 300

 350

 400

0.0 92.0RPKM

PSCD8D6D4D2BαB

D
is

ta
nc

e 
to

 T
S

S
 (

nm
)

c

ba

3D Open
Chromatin
Hub

Fig. 5 The formation of 3D hubs of active chromatin triggers dynamic gene activation. a Correlations between structural features of the models and
expression of the resident genes. Each of the seven panels show the scatter-plot, the linear regression model fit line, and the 95% confidence interval
between expression (log(RPKM+ 1)) with respect number of APD particles, number of AP particles, TSS distance to the closer border, number of A
particles, explored (convex-hull) volume, structural embedding and TSS-TTS distance, respectively. The linear regression r coefficient and p-values, that are
shown on top of each scatterplot, have been computed using Python (RegPlot function of the seaborn package). b Dynamic changes of the distance to the
Sox2 locus TSS for each APD (red), AP (orange) and A (yellow) particles during reprogramming simulation. c Snapshots of the dynamic simulation of the
Sox2 locus simulation with the chromatin represented as a cyan ribbon with the Sox2 locus TSS as a black sphere and all APD, AP and A particles as red,
orange, and yellow spheres, respectively.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-16396-1

8 NATURE COMMUNICATIONS |         (2020) 11:2564 | https://doi.org/10.1038/s41467-020-16396-1 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


TADbit38. Genomic regions were selected around 21 loci of interest (Supplemen-
tary Data 1) each characterized by a specific gene expression profile during the cell
reprogramming process (Supplementary Figs. 2–22a).

The selection of the loci of interest was aimed to explore scenarios with diverse
gene expression dynamics and with the maximum propensity to be accurately
modelled along the reprogramming process. This included 11 loci of general
interest including: two mostly active loci (Rad23a and Rad23b), the early activated
Tet2, the late activated Sox2 and Nanog reprogramming genes, the transiently
activated Nos1ap gene, the transiently silenced Lmo7, and the gradually silenced
Mmp3, Mmp12, C/EBPα and Ebf1 genes (Supplementary Data 1, Supplementary
Figs. 2–22a and Supplementary Movies 1–21). Additionally, we simulated 10
control loci including 5 continuously silent genes (RPKM= 0) (Rnu7, Neurod6,
Rergl, Olfr33, and Olfr1002) and 5 continuously active genes (RPKM maximum)
(Hsp90ab1, Ppia, Rpl41, Rps14, and Rps26). The control loci were selected in an
unsupervised way by looking among the completely silent (45 loci) and the mostly
expressed genes (top 45 loci) (Supplementary Fig. 1). The Hi–C matrices
containing the selected loci were next assessed for their potential to result in
accurate 3D models using the Matrix Modelling Potential (MMP)41. All Hi–C
interaction matrices of these loci had MMP scores higher than 0.78, and contained
very few low-coverage bins (<0.05% of the bins), indicating that the restrained-
based approach at 5 kb would provide accurate 3D models for all the regions.

The majority of the selected genes span less than 100 kb and where simulated
in the center of 1.5 mega-bases (Mb) chromatin regions. For the Nanog locus,
the modelled region contained only 1Mb around the locus after filtering low
coverage bins (that is, those with more than 75% of cells with zero counts),
and for the Mmp12 (chr9:7,344,381–7,369,499 bp) as well as Mmp3
(chr9:7,445,822-7,455,975 bp) neighbor loci, a single region of 1.5 Mb was
considered (chr9:6,650,000–8,150,000 bp). Three loci (Ebf1, Lmo7, and Nos1ap)
were longer than 100 kb and were simulated in 3.0 Mb regions centered on the gene
promoter (Supplementary Figs. 3, 5, and 10b).

Representation of the chromatin region using bead-spring polymer model.
TADdyn represents chromatin as a bead-spring polymer describing the effective
physical properties of the underlying fiber18,21. Specifically, each Hi–C-matrix bin
of 5 kb was represented as a spherical particle of diameter 50 nm using a com-
paction ratio of 0.01 bp/nm69,70. Additionally, two non-harmonic potentials were
introduced taking into account the excluded volume interaction (purely repulsive
Lennard-Jones) and the chain connectivity (Finitely Extensible Nonlinear Elastic,
FENE)18. In the present application, the bending rigidity potential (although it is
available in TADdyn) is not used for consistency with the initial models generated
using the TADbit software at the B stage (see below). The chromatin chain was
simulated inside a cubic box of size 50 μm (much larger than the size of the
models), which was centered at the origin of the Cartesian axis O= (0.0, 0.0, 0.0).
To avoid any border effect, the center of mass of the chromatin chain was tethered
to the origin O using a Harmonic (Kt= 50., deq= 0.0).

To account for the physical properties of chromatin, TADdyn requires as
initial model conformations already connected polymer chains with no
overlapping particles. This initial condition can be obtained in TADdyn in three
ways: (i) a generic random self-avoiding walk, (ii) a rod-like arrangement made of
stacked rosettes18, or (iii) a previously generated data-driven model. For the 100
time-series simulations performed here, the initial conformations at B cell stage
(the first Hi–C time point) were the 100 optimal models built using TADbit38,71.
Briefly, TADbit generates 3D models using a restraint-based modeling approach,
where the experimental frequencies of interaction are transformed into a set of
spatial restraints (Fig. 1a, b). The size of each particle in the models is defined by
the relationship of 0.01 bp/nm assuming the canonical 30 nm fibre69,70. Using a
grid search approach, TADbit identifies empirically three optimal parameters to
be used for modeling: (1) maximal distance between two non-interacting particles
(maxdist); (2) a lower-bound cutoff to define particles that do not frequently
interact (lowfreq); and (3) an upper-bound cutoff to define particles that
frequently interact (upfreq). Once the three optimal parameters are defined,
TADbit sets the type of restraints between each pair of particles considering an
inverse relationship between the frequencies of interactions of the contact map
and the corresponding spatial distances. Two consecutive particles are next
spatially restrained by a harmonic oscillator with an equilibrium distance that
corresponds to the sum of their radii. Non-consecutive particles with contact
frequencies above the upper-bound cutoff are restrained by a harmonic oscillator
at an equilibrium distance, while those below the lower-bound cutoff are
maintained further than an equilibrium distance by a lower-bound harmonic
oscillator. To identify 3D models that best satisfy all the imposed restraints, the
optimization procedure is then performed using a Monte Carlo simulated
annealing sampling.

Converting the experimental data into TADdyn restraints. All possible com-
binations of the parameters (lowfreq, upfreq, maxdist, dcutoff)71 were explored in
the intervals lowfreq= (−3.0,−2.0, −1.0, 0.0), upfreq= (0.0, 1.0, 2.0, 3.0), maxdist
= (150, 200, 250, 300, 350, 400) nm, and dcutoff= (150, 175, 200, 225, 250) nm. To
select the optimal set of parameters, the Spearman correlation coefficient (SCC) of
the input Hi–C interaction map in the B cell stage and the models contact map was
computed per each value of dcutoff using only the 100 best models (that is, with the

100 with lowest objective function over the 500 generated structures). Next, per
each triplet of parameters, the median Spearman correlation values were
computed over the 21 studied loci. The largest median correlation coefficient of
0.78 was obtained for lowfreq=−1.0, upfreq= 1.0, maxdist= 300 nm, and dcut-
off= 225 nm.

Next, the 100 TADbit generated models in B cells were energy minimized using
a short run of the Polak-Ribiere version of the conjugate gradient algorithm72 to
favor smooth adaptations of the implementations of the excluded volume and
chain connectivity interaction in TADdyn.

The optimal TADbit parameters optimized for the B stage (that is, lowfreq of
−1.0, upfreq of 1.0, and maxdist of 300 nm) were then used to define the set of
distance harmonic restraints of the other time points of the series (Supplementary
Fig. 23 and 1b). To adapt the harmonic restraint of a given pair of particles (i,j)
between consecutive cell stages cn and cn+ 1, one of the following 3 possible
scenarios was applied:

1. If the pair (i,j) was restrained by the same type of distance restraint
(Harmonic or LowerBoundHarmonic) in both cn and cn+1, the strength (k)
and the equilibrium distance (deq) of the harmonic were both changed
linearly from the values they had in cn to the values they had in cn+1

(Supplementary Fig. 23).
2. (a) If the distance restraint applied between (i,j) was present at time cn, but

vanished at time cn+1, the strength k was decreased from the value at cn to
0.0, and the equilibrium distance deq was kept constant and equal to the
value in cn. (b) If the distance restraint was present only at time cn+1, the
strength k was increased from 0.0 at cn to the value in cn+1, and the
equilibrium distance deq was kept constant and equal to the value in cn+1.

3. If the pair (i,j) was restrained by different type of distance restraint
(Harmonic to LowerBoundHarmonic, or vice versa) in cn and cn+1, two
distance restraints were defined for (i,j). The restraint which was active at
time cn was then switched off as in case 2a, and the one active at time cn+1

was switched on as in 2b (Supplementary Fig. 23).

TADdyn restraint-based dynamics simulations. By applying the previous
protocol, the simulation effectively and smoothly modified the underlying
restraints during the steered transition from cn to cn+1. The dynamics of the
system was thus described using the stochastic (Langevin) equation73, which was
integrated using LAMMPS74 (http://lammps.sandia.gov) with values of the
particle mass (m= 1.0), the friction (γ= 0.5 τLJ−1), and the integration time step
of dt= 0.001 τLJ, where τLJ is the internal time unit75. The time-dependent
Harmonic and LowerBoundHarmonic restraints were implemented using the
Colvars plug-in for LAMMPS76 originally introduced for advanced sampling
techniques, and here modified to implement the TADdyn transitional restraints.
The transition between consecutive time stages was set to last for 10 τLJ, hence a
single run to simulate the complete B to PSC reprogramming process passing
through the seven-cell stages lasted for 60 τLJ. In each of the 100 replicates of the
reprogramming run, the model conformations were stored every 0.1 τLJ, and
used for further data analysis.

To test whether the total number of replicate trajectories (100) was enough to
provide a good description of the variability of the ensemble of trajectories, we
generated for Sox2 and Mmp12 loci 2 additional runs producing respectively 500
and 1,000 replicates. Additionally, to test the predictive power of TADdyn in case
of smooth structural rearrangements two additional simulations were performed
for the Sox2 locus by removing the restraints of stages D2 (ΔD2) and D6 (ΔD6),
and by extending the corresponding transitions (Bα→D4 and D4→D8
respectively) from 10 to 20 τLJ to keep constant the total duration of the runs
(60 τLJ).

Time dependent contact maps and TADdyn models’ assessment. (i) The
contact maps were computed at each time step based on the probability within the
100 simulations that pairs of particles are contacting (that is within a distance cut-
off of 200 nm) (Fig. 2a and Supplementary Figs. 2–22c). Videos of the contact maps
along the reprogramming process are shown in the right panels of Supplementary
Movies 1–22. (ii) The resulting contact maps along the simulations were clustered.
The Spearman’s rank correlation coefficients (SCC) was computed with each of the
time-series Hi–C interaction map. The SCCs were converted into normalized
distances from 0 (max SCC) to 1 (min SCC) and used to cluster the contact maps
using the Ward hierarchical approach criterion77 as implemented in R (Fig. 2b and
Supplementary Figs. 2–22d). Analogous analysis was performed on the interaction
Hi–C maps for the 2 replicates and the merged Hi–C experiments (Supplementary
Figs. 2–22e) (iii) For each simulation, the distance root mean square deviation
(dRMSD) between the optimally superimposed models (separated by 1 τLJ) was
computed. Next, per each model pair, the median dRMSD over the 100 replicates
was computed. Finally, a structural clustering analysis was done on the matrix of
median dRMSDs by using the Ward hierarchical approach criterion as imple-
mented in R (Fig. 2b and Supplementary Figs. 2–22f).

Time dependent measures of the TADdyn structures. (i) The accessibility (A)
of each particle in the ensemble of models was calculated using TADbit with
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parameters nump= 100, radius= 50 nm, and super-radius= 200 nm. The
accessibility was, next, converted into embedding (E= 1.0-A) that is a measure of
the propensity of a particle to be caged in an internal cavity inside the model
structure. The embedding ranges from 0.0 meaning that the particle is located on
the interface of the model to 1.0 when the particle is closely surrounded by other
particles inside the model (caged) (Fig. 3a and Supplementary Figs. 2–22g). (ii)
The explored volume per particle every 5 τLJ of trajectory was calculated. Speci-
fically, all trajectories were partitioned in time intervals of 5 τLJ. In each time
interval, the 50 positions (i.e. one every 0.1 τLJ) occupied by the particle i were
considered, and the convex-hull embedding these 50 positions was calculated. In a
given time interval, the average (over the 100 replicate runs) convex-hull volume
explored by particle i was considered as the typical volume explored by the model
particle i during the time interval. The convex-hull values are represented as
boxplots (geom_boxplot function of the R package ggplot2) showing: central line,
median; box limits, 75th and 25th percentiles; whiskers, 1.5× interquartile range.
Outliers are not shown. The statistical comparison between the distributions of the
explored volume was performed with a two-sided Wilcoxon test using R. The
comparisons that resulted in p-values < 0.0001 were deemed to be significantly
different. (Fig. 3b and Supplementary Figs. 2–22h). (iii) The spatial distance
between selected pairs of particles was computed for the ensemble of simulations
as the Euclidian distance in nanometers using TADbit (Fig. 4a and Supplementary
Figs. 2–22k).

Time dependent insulation score analysis of TADdyn models. To study the
partitioning of the models and the Hi–C interaction maps into structural domains
(reminiscent of TADs78–80), the insulation score (I-score) analysis42 was performed
on the models contact maps using the parameters --is 100000 --ids 50000 --ez --im
mean --nt 0.1 --bmoe 3. The called domain borders, whose border strength was
deemed significant by the I-score pipeline, were used for further analysis (Fig. 4b
and Supplementary Figs. 2–22I, j).

Active particles analysis. In each cell stage, we classified model particles (5 kb)
into one of 3 possible categories (Supplementary Data 2, Fig. 4c and Supplementary
Figs. 2–22l): active (A) are particles hosting at least one overlapping 250bp-peak of
ATAC-seq and H3K4me2 (ATAC-seq and H3K4me2 data were obtained from our
previous work35), active-proximal (AP) are Active particles that are close to the
TSS particle of the gene either in absolute terms (spatial distance < 200 nm) or in
relative terms (spatial distance < half of average distance at the genomic separation)
for at least half of the duration of the stage. Active-proximal-domain (APD) are AP
particles that are inside the local domain containing the TSS (see insulation score
analysis above).

Gene expression analysis of RNA-seq data. Reads were mapped with STAR81

(-outFilterMultimapNmax 1 -outFilterMismatchNmax 999 -out-
FilterMismatchNoverLmax 0.06 -sjdbOverhang 100 –outFilterType BySJout
-alignSJoverhangMin 8 -alignSJDBoverhangMin 1 –alignIntronMin 20 -alignIn-
tronMax 1000000 -alignMatesGapMax 1000000) and the Ensembl mouse genome
annotation (GRCm38.78). Gene expression was quantified (RPKM) with STAR
(--quantMode GeneCounts).

Chromatin accessibility analysis of ATAC–seq data. Reads were mapped to the
UCSC mouse genome build (mm10) in Bowtie282 with standard settings.
Reads mapping to multiple locations in the genome were removed in SAM-
tools83; PCR duplicates were filtered in Picard. Bam files were parsed to
HOMER84 for downstream analyses. Peaks in ATAC–seq signals were identified
with findPeaks (-region -localSize 50000 -size 250 -minDist 500 -fragLength 0,
FDR < 0.001).

ChIPmentation/ChIP–seq data analysis. Reads were mapped and filtered as
described for ATAC–seq. H3K4me2-enriched regions were identified with
HOMER findpeaks (findPeaks -region -size 1000 -minDist 2500, by using a mock
IgG experiment as background signal).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
In situ Hi-C, ChIP-seq (H3K4me2 histone mark), ATAC-seq, and RNA-seq datasets
were downloaded from Gene Expression Omnibus (GEO) at the accession number
GSE96611.

Code availability
The TADdyn approach is available as part of the 3DGenome Github repository (https://
github.com/3DGenomes/TADbit/tree/TADdyn). Custom scripts used to analyze data
and generate figures are available at http://sgt.cnag.cat/3dg/datasets/.
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