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Background: Extended research has pointed to the efficacy of deep brain stimulation

(DBS) in treatment of patients with treatment-refractory Tourette syndrome (TS). The four

most commonly used DBS targets for TS include the centromedian nucleus–nucleus

ventrooralis internus (CM-Voi) and the centromedian nucleus–parafascicular (CM-Pf)

complexes of the thalamus, and the posteroventrolateral (pvIGPi) and the anteromedial

portion of the globus pallidus internus (amGPi). Differences and commonalities between

those targets need to be compared systematically.

Objective: Therefore, we evaluated whether DBS is effective in reducing TS symptoms

and target-specific differences.

Methods: A PubMed literature search was conducted according to the PRISMA

guidelines. Eligible literature was used to conduct a systematic review and meta-analysis.

Results: In total, 65 studies with 376 patients were included. Overall, Yale Global Tic

Severity Scale (YGTSS) scores were reduced by more than 50 in 69% of the patients.

DBS also resulted in significant reductions of secondary outcome measures, including

the total YGTSS, modified Rush Video-Based Tic Rating Scale (mRVRS), Yale-Brown

Obsessive Compulsive Scale (YBOCS), and Becks Depression Inventory (BDI). All targets

resulted in significant reductions of YGTSS scores and, with the exception of the CM-Pf,

also in reduced YBOCS scores. Interestingly, DBS of pallidal targets showed increased

YGTSS and YBOCS reductions compared to thalamic targets. Also, the meta-analysis

including six randomized controlled and double-blinded trials demonstrated clinical

efficacy of DBS for TS, that remained significant for GPi but not thalamic stimulation

in two separate meta-analyses.

Conclusion: We conclude that DBS is a clinically effective treatment option for patients

with treatment-refractory TS, with all targets showing comparable improvement rates.

Future research might focus on personalized and symptom-specific target selection.

Keywords: Tourette syndrome, tic disorders, deep brain stimulation, DBS, neuromodulation, systematic review,
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INTRODUCTION

Tourette syndrome (TS) is a neurodevelopmental disorder
characterized by motor and vocal tics. Tics have an onset in
childhood and reach their peak between 10 and 12 years of age
(1). A majority of patients experience reduced symptoms by late
adolescence or early adulthood. Nevertheless, around 20% of
patients continue to experience persistent, distressing, and even
painful tics throughout adulthood (2). Tics can have a great
influence on the patient’s overall health and well-being, as they
may disrupt daily functioning and adversely affect the quality of
life (3, 4). The pathophysiology of TS is related to disturbances
of a complex neural network with dysregulations of the
cortico-basal ganglia-thalamo-cortical (CBGTC) circuits being of
predominant importance (5–9). The sensorimotor circuit, but
also the limbic and associative circuits are implicated in the
heterogenous pathophysiology of TS (5, 10–12). Therefore, TS is
in many cases accompanied by comorbidities such as attention-
deficit hyperactivity disorder (ADHD), obsessive-compulsive
disorder (OCD), or depression (13, 14). Importantly, comorbid
disorders are associated with increased social problems and
reduced quality of life (15). Conventional treatment approaches
for TS include pharmacological and behavioral therapy that are
beneficial for a majority of patients (16–19). Nonetheless, some
patients do not respond to these treatments and remain severely
affected. An alternative and safe treatment option for those
treatment-refractory patients constitutes deep brain stimulation
(DBS) (20).

In 1999, DBS for TS was introduced by Vandewalle
et al. (21). The original target chosen by this group was
the centromedian nucleus-substantia periventricularis-nucleus
ventro-oralis internus complex (CM-Spv-Voi), informed by the
experiences of Hassler and Dieckmann (22) with stereotactic
thalamic lesions in this region. Thereafter, different targets have
been selected based on the involvement of the CBGTC-circuits
in TS pathophysiology. The most commonly used targets for
TS include different thalamic nuclei and the globus pallidus
internus (GPi). Within the thalamus, the centromedian nucleus–
nucleus ventrooralis internus (CM-Voi) and the centromedian
nucleus–parafascicular (CM-Pf) complexes have been used most
frequently. This was motivated by their diverse connections to
subcortical and cortical regions, including motor, associative,
and limbic areas (23–25). The GPi consists of an anteromedial
part (amGPi), which is densely connected with associative and
limbic networks, and a posteroventrolateral part (pvlGPi), which
mainly projects to sensorimotor areas (26, 27). Based on this
differentiation, it can be assumed that the pvlGPi may be
particularly effective in reducing tic symptoms, while the amGPi
might be especially effective for the treatment of comorbid
OCD symptoms (28–32). The selection of an ideal target for TS
treatment is still a matter of debate and differences regarding
clinical relevance remain unclear (33–38). Beyond that, target
selection is complicated by the fact that the mechanism of
action of DBS is still not fully understood, although, there is
a growing consensus among researchers that DBS may exert
its therapeutic effects by modulating the activity of widespread
networks (20, 39–41). To date, the target choice is often a matter

of preference of the centers, based on their surgical experience
(42). On the contrary, some researchers have emphasized the idea
that target selection should ideally be based on the individual
characteristics of each patient. Hence, the patient’s individual
symptomatology and possible comorbid disorders should be
taken into account in order to decide on the most appropriate
target (34, 43).

Our objective was to examine the clinical effects of DBS
for TS treatment with a systematic review and meta-analyses.
First, we aimed to evaluate whether DBS is capable of reducing
TS symptoms in the long-term. Our second goal was to
evaluate whether the most commonly used targets, namely
the CM-Voi, CM-Pf, the amGPi, and the pvlGPi, lead to
different clinical outcomes regarding tic reduction and comorbid
OCD symptoms.

METHODS

Systematic Literature Search
A systematic literature search was conducted following the
guidelines of Preferred Items for Reporting Systematic Reviews
and Meta-analyses (PRISMA) (44). A search of the electronic
database of PubMed was performed to identify the existing
literature investigating the effects of DBS in TS patients. The
search terms included “Tourette syndrome OR Gilles de la
Tourette syndrome OR Tourette’s disorder OR Tic disorder”
AND “Deep Brain Stimulation OR DBS.” Literature search was
narrowed to all available articles published from January 1st 1999
to July 8th 2021. Additionally, two recently published meta-
analyses of Baldermann et al. (36) and Xu et al. (38) were screened
for additional research articles. In order to be included, studies
were required to meet the following conditions: (1) case report,
case series, clinical trial, or randomized controlled study of DBS
for patients diagnosed with TS or a tic disorder; (2) original,
published and peer-reviewed; (3) written in English. Studies were
excluded if (1) clinical data of the patients could not be identified,
(2) the clinical outcome was not assessed by the Yale Global
Tic Severity Scale (YGTSS), or (3) patients had already been
described in other articles. Titles and abstracts in each study from
the search results were independently screened for eligibility by
two researchers (LW and JK).

Data Extraction
The full text of the screened articles was further checked
for eligibility and compliance with selection criteria by two
researchers (LW and JK). If necessary, exclusion of duplicates
was ensured by screening the patient demographics in the
studies. Then, the following data were extracted from all studies
included in the quantitative synthesis: first author name and
publication year, number of participants, sex, age at surgery,
DBS targets, follow-up (FU) range, pre- and post-surgery
scores of the global YGTSS, total YGTSS, modified Rush
Video-Based Tic Rating Scale (mRVRS), Yale-Brown Obsessive
Compulsive Scale (YBOCS), and Becks Depression Inventory
(BDI). When possible, individual patient data was gathered from
the constituent studies. If two targets were evaluated in one
patient, an additional case was added.
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Study Quality Assessment
The quality of each study was assessed using the classifications
scheme developed by French and Gronseth (45). This scheme
includes 4 levels of evidence, with level 1 representing high-
quality studies with low risk of bias and level 4 representing
studies with a very high risk of bias. Additionally, the quality
of randomized trials was assessed using the Cochrane risk of
bias tool for randomized controlled trials (46). Two researchers
independently evaluated the risk of bias of each study (LW
and JK).

Statistical Analysis
The global YGTSS score (tic severity + impairment; range: 0–
100, highest score representing worst clinical condition) served
as primary outcome measure. Secondary tic-related outcome
measures included the YGTSS total tic score (tic severity;
range: 0–50), as well as the mRVRS. Additional secondary
outcome measures included YBOCS and BDI assessments. Cases
were weighted by the number of participants included in
each individual study. Pre- and post-surgery primary outcome
scores were compared using Wilcoxon signed-rank tests. Global
YGTSS scores for maximum follow-up as well as for different
postoperative time points (T1: ≤ 6 months; T2: ≤12 months; T3:
>12 months) were compared with baseline scores (T0) across the
whole sample. To examine whether YGTSS scores differed for the
various postoperative time points Friedman’s test was applied. In
case of a significant result, post-hoc Dunn tests were conducted
and Bonferroni-corrected for multiple comparisons. Regarding
the secondary outcome measures, last reported YGTSS total
tic, mRVRS, YBOCS and BDI scores were compared with
preoperative baseline scores using Wilcoxon signed-rank tests.
Subgroup analyses of YGTSS percentage change scores at T2
(6–12 months) were performed using Kruskal-Wallis tests in
order to compare the four targets (CM-Pf, CM-Voi, amGPi, and
pvlGPi). T2 was chosen as time point for the subgroup analysis
because of its clinical relevance and temporal precision compared
to T3 and maximum follow-up. Post-hoc pairwise comparisons
using the Dunn-Bonferroni approach were performed in the
case of significant results. Furthermore, absolute change scores
of the YBOCS at maximum follow-up were compared between
the four targets using Kruskal-Wallis tests. For the YBOCS
scores, maximum follow-up was chosen as time point for the
subgroup analysis, because a temporal categorization was not
possible due to insufficient data. Again, post-hoc Dunn tests were
performed in case of significant results and Bonferroni-corrected
for multiple comparisons. Of note, articles were excluded from
subgroup analyses if the target was not appropriately specified,
or multiple targets were used and outcomes combined. Beyond
that, three separate meta-analyses of randomized controlled and
double-blinded trials (RCTs) were conducted with the YGTSS
total tic score as primary outcome measure. A first meta-
analysis was performed to examine the general effect of DBS
across all targets. In addition, two separate meta-analyses were
conducted including RCTs targeting the thalamus and GPi,
respectively. Standardized means of the YGTSS total tic score
were compared between the experimental condition (DBS ON)
vs. control condition (DBS OFF). A random-effect model was

used to account for heterogeneity among studies. Analyses were
performed with SPSS 27 and the Review Manager 5.4.1. (47, 48).
Significance levels were set at p < 0.05.

RESULTS

Study Selection
The PubMed search of the existing literature on the clinical
outcome of DBS in TS patients identified 479 articles. In addition,
the meta-analyses by Baldermann et al. (36) and Xu et al.
(38) yielded 57 and 29 studies, respectively. After removing
duplicates (n = 75), abstracts were screened for the above
mentioned selection inclusion criteria, which resulted in the
exclusion of 397 records. Full texts of the remaining 93 articles
were subsequently checked for eligibility. Among these, 18
articles were excluded because the clinical outcome was not
assessed using the YGTSS or YGTSS change was not sufficiently
reported (e.g., only improvement rates without baseline values).
Thereafter, additional 10 studies were excluded after a thorough
analysis, because the study participants had already been reported
in other articles. In total, 65 studies were included, of which 58
studies were case reports or case series with an evidence level
of four (45). Seven reports were randomized, double-blinded
controlled trials, with an evidence level of three. The majority of
RCTs had an overall low risk of bias, except for two RCTs, which
had some concerns (see details in Supplementary Figure 1).
One RCT needed to be excluded because YGTSS scores were
only reported for the stimulation ON setting, but not for the
stimulation OFF setting. Another RCT was already excluded
during the full text screening, because only percentage changes
were reported without raw baseline and follow-up scores. An
adapted PRISMA flow diagram is displayed in Figure 1.

Individual Participant Data
In total, 65 studies with 376 patients were included in the final
analysis (see Table 1 for a detailed overview of the included
studies). Most of the included patients were male (75.63%)
and the median age was 30.5 years (range: 15–50 years). Of
those 376 patients, 96 (25.53%) were stimulated in the CM-
Voi, 59 (15.69%) in the CM-Pf, 100 (26.6%) in the amGPi, and
81 (21.54%) in the pvlGPi. The four targets are visualized in
Figure 2. The ventral anterior/ventrolateral thalamus (VA/VL)
was targeted in 11 patients (2.93%). In four patients, the
thalamus was indicated as target, but not further specified.
Similarly, in one case, the GPi without further specification was
reported as the target. In two cases, both amGPi and pvlGPi
were stimulated. The anterior limb of internal capsule/nucleus
accumbens (ALIC/NAc) was targeted in eight patients (2.13%). In
two other cases electrodes were implanted in the globus pallidus
externus (GPe). A total of 12 patients received electrodes in
two target areas. In two patients the thalamus and pvlGPi were
targeted; however, the thalamus was not further specified. The
CM-Voi and ALIC/NAc were targeted in three patients, while the
CM and ALIC/NAc were targeted in one patient. Electrodes in
both the amGPi and ALIC/NAc were implanted in two patients
and three patients received electrodes in both the pvlGPi and
the subthalamic nucleus (STN). In one patient, electrodes were

Frontiers in Neurology | www.frontiersin.org 3 October 2021 | Volume 12 | Article 769275

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Wehmeyer et al. Review of DBS in Tourette Syndrome

FIGURE 1 | Adapted PRISMA 2020 flow diagram (44).

implanted in the region of the ALIC and the bed of the nucleus
of stria terminalis. In another two patients the fields of forel
(subthalamus) were targeted. Although most patients received
bilateral DBS, six patients underwent unilateral DBS in the
pvlGPi and one patient in the amGPi.

Clinical Outcomes Analysis
Global YGTSS scores for all targets combined were significantly
reduced at maximum follow-up (n = 343, Z = −15.97, p
< 0.001). The follow-up period ranged from 3 to 91 months
(Mdn = 25 months). The median YGTSS score decreased from
79.92 points (IQR = 13.25) to a post-surgery median of 34.69
points (IQR = 20.93), which represents a median reduction rate
of 56.59%. Also, 69.4% (n = 238) of the patients experienced
a symptom reduction of more than 50% at maximum follow-
up. Moreover, global YGTSS scores at different postoperative
time points (T1: ≤6 months; T2: ≤12 months; T3: >12 months)
differed significantly from postoperative baseline scores (T0).
DBS resulted in a YGTSS median reduction of 34 points at
T1 (n = 201, Z = −12.27, p < 0.001). At T2, global YGTSS
scores were reduced by a median of 37 (n = 190, Z = −11.87,
p < 0.001), whereas median scores decreased by 53.93 at T3
(n = 123, Z = −9.65, p < 0.001). Interestingly, clinical efficacy
increased significantly over time after surgery. A Friedman’s test
showed a significant difference between global YGTSS scores at
T0, T1, T2, and T3 [n = 73, χ2

(3) = 207.14, p < 0.001]. Dunn’s

post-hoc tests revealed that median YGTSS scores decreased from
T0 to T1, from T1 to T2, and from T2 to T3 (T0: Mdn = 67.56,
IQR = 10.44; T1: Mdn = 39.12, IQR = 6.18; T2: Mdn = 37.00,
IQR = 2.25; T3: Mdn = 24.07, IQR = 0), which was statistically
significant in all cases after Bonferroni adjustments (p < 0.001).
YGTSS outcomes for the different time points are depicted
in Figure 3.

Analysis of secondary tic-related outcome measures revealed
that the median of YGTSS total tic scores decreased from 39.12
points (IQR = 10) to 19.0 points (IQR = 13) at maximum
follow-up (range: 3–107 months, Mdn = 12 months), which
equals a median symptom reduction rate of 50.43% (n = 159,
Z = −10.90, p < 0.001). Results for the MRVRS showed
a median reduction of 35.54% at maximum follow-up (Pre:
Mdn= 14.00, IQR= 4.06; Post:Mdn= 9.00, IQR= 7.70, n= 64,
Z = −6.57, p < 0.001). The follow-up period for the MRVRS
ranged from 3 to 84 months (Mdn = 12 months). Regarding
comorbid symptoms, the median of YBOCS scores decreased
from 20 points (IQR = 10.82) to 11.45 points (IQR = 7.51) at
maximum follow-up (range: 3–107 months,Mdn = 34 months),
representing a median reduction rate of 43.23% (n = 206,
Z = −11.84, p < 0.001). Of these patients, 68.4% (n = 141)
experienced at least a 35% reduction of OCD, which is the
criterion to be considered a responder (122). Finally, the BDI
median score declined by a reduction of 50% from 25.70 points
(IQR = 13.40) to 13.85 points (IQR = 11.30) at maximum

Frontiers in Neurology | www.frontiersin.org 4 October 2021 | Volume 12 | Article 769275

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Wehmeyer et al. Review of DBS in Tourette Syndrome

TABLE 1 | Overview of included studies (n = 65).

References Level of

evidence

N Target(s) Follow-up Primary outcome

measure

Mean

improvement %

Diederich et al. (49) 4 1 pvlGPi 14 mo YGTSS100 46.99

Bajwa et al. (50) 4 1 CM-Spv-Voi 24 mo YGTSS50 63.64

Kuhn et al. (51) 4 1 ALIC/NAc 30 mo YGTSS100 41.11

Maciunas et al. (52) 3 5 CM-Pf 3 mo YGTSS100 43.60

Shahed et al. (53) 4 1 pvlGPi 12 mo YGTSS100 73.33

Shields et al. (54) 4 1 CM 3 mo YGTSS100 45.57

Dehning et al. (55) 4 4 pvlGPi 5–12 mo YGTSS100 41.32

Kuhn et al. (56) 4 1 ALIC/NAc 10 mo YGTSS100 51.85

Neuner et al. (57) 4 1 ALIC/NAc 36 mo YGTSS100 44.00

Servello et al. (58), Servello et al.

(59)*

4 6 Voi/CM-Pf (2), ALIC/NAc (1),

Voi/CM-Pf + ALIC/NAc (3)

10–34 mo YGTSS100 49.12

Burdick et al. (60) 4 1 ALIC/NAc 30 mo YGTSS50 −14.81

Marceglia et al. (61) 4 7 Voi/CM-Pf 6–48 mo YGTSS100 33.01

Ackermans et al. (62) 3 6 CM-Spv-Voi 12 mo YGTSS50 47.62

Pullen et al. (63) 4 1 CM-Pf 18 mo YGTSS100 94.81

Kaido et al. (64) 4 3 CM-Pf-Voi 12 mo YGTSS100 36.14

Kuhn et al. (65) 4 2 VA/VL 12 mo YGTSS100 85.98

Lee et al. (66) 4 1 CM-Pf 18 mo YGTSS100 58.43

Martínez-Fernández et al. (67)* 4 6 amGPi (3), pvlGPi (3) 3–24 mo YGTSS100 24.92

Rzesnitzek et al. (68) 4 1 CM-Pf 13 mo YGTSS100 83.12

Savica et al. (69) 4 3 CM-Pf 12 mo YGTSS100 69.73

Dong et al. (70) 4 2 pvlGPi (unilateral) 12 mo YGTSS100 55.88

Duits et al. (71) 4 1 CM-Spv-Voi 23 mo YGTSS50 7.14

Sachdev et al. (72) 4 1 ALIC/NAc 7 mo YGTSS100 79.37

Massano et al. (73) 4 1 amGPi 24 mo YGTSS100 60.49

Motlagh et al. (74) 4 8 Tha (4), pvlGPi (2), Tha +

pvlGPi (2)

6–107 mo YGTSS50 39.80

Okun et al. (75) 3 5 CM 6 mo YGTSS100 19.43

Piedimonte et al. (76) 4 1 GPe 6 mo YGTSS100 70.51

Dehning et al. (77) 4 6 pvlGPi 12–60 mo YGTSS100 68.06

Dong et al. (78) 4 1 pvlGPi 39 mo YGTSS100 92.86

Huasen et al. (79) 4 1 amGPi 12 mo YGTSS100 55.42

Nair et al. (29) 4 4 amGPi 3–26 mo YGTSS100 90.96

Patel and Jimenez-Shahed (80) 4 1 GPi 6 mo YGTSS100 52.81

Pourfar et al. (81) 4 1 CM-Spv-Voi 14 mo YGTSS100 48.86

Sachdev et al. (82), Cannon et al.

(83)

4 17 amGPi (15), amGPi +

ALIC/NAc (2)

4–46 mo YGTSS100 54.21

Zhang et al. (84) 4 12 pvlGPi 13–80 mo YGTSS100 52.13

Kefalopoulou et al. (85), Morreale

et al. (86)

4 15 amGPi (12), pvlGPi (2) 6 mo YGTSS100 50.54

Wardell et al. (87) 4 4 amGPi 14–48 mo YGTSS100 38.66

Cury et al. (88) 4 1 CM-Pf 18 mo YGTSS100 70.53

Huys et al. (89) 4 8 VA/VL 12 mo YGTSS100 55.75

Smeets et al. (90) 4 5 amGPi (4), GPe (1) 12–38 mo YGTSS50 74.23

Testini et al. (91) 4 11 CM-Pf 2–91 mo YGTSS100 51.97

Zhang et al. (92) 4 24 pvlGPi (4 unilateral) 12 mo YGTSS100 57.84

Akbarian-Tefaghi et al. (93) 4 15 amGPi 17–82 mo YGTSS100 45.45

Dwarakanath et al. (94) 4 1 amGPi 9 mo YGTSS100 72.45

Neudorfer et al. (95) 4 2 FF H1 12–18 mo YGTSS100 76.54

Picillo et al. (96) 4 1 CM-Pf 12 mo YGTSS100 7.69

Welter et al. (97) 3 16 amGPi 6-12 mo YGTSS100 40.24

(Continued)
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TABLE 1 | Continued

References Level of

evidence

N Target(s) Follow-up Primary outcome

measure

Mean

improvement %

Azimi et al. (98) 4 6 amGPi 12 mo YGTSS100 62.56

Doshi et al. (99) 4 2 amGPi 18 mo YGTSS100 64.56

Dowd et al. (100) 4 12 CM-Pf-Voi 6–58 mo YGTSS100 50.59

Kano et al. (101) 4 2 CM-Pf-Voi 29–35 mo YGTSS100 34.13

Richieri et al. (102) 4 1 VA/VL 48 mo YGTSS50 74.36

Brito et al. (103) 4 5 CM-Pf 12 mo YGTSS100 30.00

Kakusa et al. (104) 4 1 CM + ALIC/NAc 12 mo YGTSS100 84.29

Rossi et al. (105) 4 1 amGPi (unilateral) 26 mo YGTSS100 87.10

Zhang et al. (106) 4 1 pvlGPi 3 mo YGTSS100 53.19

Zhang et al. (107) 4 10 pvlGPi 24–96 mo YGTSS100 81.43

Zhu et al. (108) 4 3 pvlGPi + STN 6 mo YGTSS100 36.60

Duarte Batista et al. (109) 4 1 ALIC/BST 12 mo YGTSS100 81.00

Servello et al. (30, 58, 110, 111),

Porta et al. (112, 113), Marceglia

et al. (114)

4 57 Voi-CM-Pf (41), amGPi (14),

ALIC/NAc (2)

24–48 mo YGTSS100 38.94

Andrade et al. (115), Heiden et al.

(32)

4 7 CM-Voi 6 mo YGTSS100 42.22

Kimura et al. (116) 4 25 CM-Pf 36 mo YGTSS100 56.59

Müller-Vahl et al. (117) 3 10 CM-Voi (4), pvlGPi (6) 8–108 mo YGTSS50 26.96

Sun et al. (118) 4 6 pvlGPi 26–48 mo YGTSS100 59.62

Baldermann et al. (119) 4 8 CM-Voi 12 mo YGTSS100 47.73

Duplicate studies are mentioned. An additional case was added when two targets were evaluated in one patient (*).N, Number of participants; mo, months; YGTSS100, global YGTSS

score; YGTSS50, YGTSS total tic score; ALIC/NAc, Anterior limb of internal capsule/nucleus accumbens; GPe, Globus pallidus externus; STN, Subthalamic nucleus; FF H1, H1 Field of

Forel; Tha, Thalamus.

FIGURE 2 | Simplified visualization of DBS electrodes of the different targets. Shown are the target regions: green = CM; purple = Pf; turquoise = Voi; red = pvlGPi;

orange = amGPi. For illustration purposes targets are displayed unilateral only. (A) Thalamic targets: left electrode = CM-Pf; right electrode = CM-Voi. Background

shows the coronal section of a brain MRI. (B) Pallidal targets: left electrode = pvlGPi; right electrode = amGPi. Background shows the horizontal section of a brain

MRI. Graphics were generated using the DISTAL atlas (120) and MNI PD25 atlas (121). S, superior; A, anterior; L, left; R, right.

follow-up, which ranged from 3 to 49.5 months (Mdn = 23.5
months). This reductionwas also statistically significant (n= 110,
Z =−7.71, p < 0.001).

Subgroup Analysis
Wilcoxon signed-rank tests revealed that stimulation of all targets
resulted in a significant global YGTSS reduction after up to 12

months (see Table 2). Importantly, these target-specific YGTSS
percentage changes differed significantly [n= 172, χ2

(3) = 21.41,
p < 0.001]. Dunn’s pairwise tests showed that the median
YGTSS percentage change was significantly larger for pvlGPi
compared to CM-Pf (p < 0.001) and CM-Voi (p = 0.006).
Additionally, the median percentage change was significantly
larger after amGPi compared to CM-Pf (p = 0.017). Other
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pairwise comparisons were not statistically significant. YGTSS
outcomes for the different targets are depicted in Figure 4.

Furthermore, Wilcoxon signed-rank tests showed that
stimulation of the CM-Voi, amGPi, pvlGPi, but not the CM-
Pf resulted in a significant reduction of YBOCS scores at
maximum follow-up (range: 3–84 months, Mdn = 48 months)
(see Table 3). Importantly, only 3 studies were included in
the CM-Pf target group (n = 11) with a maximum follow-up
period of 6 months. Subgroup analysis of the YBOCS absolute
change scores showed significant differences across targets, as
determined by a Kruskal-Wallis test [n = 143, χ

2
(3) = 26.58,

p < 0.001]. Bonferroni corrected post-hoc analysis indicated that
the median YBOCS absolute change after pvlGPi stimulation
was significantly higher than after CM-Voi DBS (p = 0.004)
and CM-Pf DBS (p < 0.001). Additionally, the median absolute
change was significantly greater for amGPi DBS compared to
CM-Pf DBS (p = 0.011). Other pairwise comparisons were not
statistically significant. YBOCS outcomes for the different targets
are depicted in Figure 5.

Meta-Analyses
Three separate meta-analyses of randomized controlled and
double-blinded trials were conducted with the YGTSS total tic
score as primary outcomemeasure (see Figure 6). The first meta-
analysis, which included six studies (FU range= 0.23–6 months,
Mdn = 3 months), showed a significant overall effect of the

FIGURE 3 | Scatterplots of global YGTSS scores for all targets combined at

different postoperative time points (T0: baseline; T1: ≤ 6 months; T2: ≤ 12

months; T3: >12 months). Circles represent individual studies; color-filled

circles represent more heavily weighted studies (more participants). Horizontal

bars show the median values for each target. Significant differences between

time points are indicated with asterisks (p < 0.05).

experimental condition (DBS ON) over the control condition
(DBS OFF) for thalamus and GPi targets combined. The test
of heterogeneity was not significant, and the overall effect size
was −0.66 (CI: −1.10, −0.22). The second meta-analysis for
thalamic DBS included four studies with a total of 27 patients
in the experimental group and 25 patients in the control group
(FU range = 0.23–6 months, Mdn = 3 months). The test for
the overall effect was not significant at 0.05 level (p = 0.07),
indicating that YGTSS tic scores did not significantly differ
between the experimental and control condition. The overall
effect size was −0.72 (CI: −1.50, 0.06). In the contrary, results
of the third meta-analysis for pallidal DBS (FU = 3 months)
showed a significant overall effect of GPi DBS (p = 0.02),
favoring stimulationONover stimulationOFF. A non-significant
heterogeneity and overall effect size of −0.66 (CI: −1.20, −0.12)
were observed.

DISCUSSION

Summary of Main Findings
Here, we provide an up-to-date overview of the existing
literature to examine the clinical efficacy of DBS in patients
with TS. Analysis of global YGTSS scores of 343 individual
patients revealed that DBS of all targets combined is capable
of reducing TS symptomatology. At maximum follow-up, two-
thirds of patients experienced a symptom reduction of more

FIGURE 4 | Scatterplots of global YGTSS percentage change scores for the

different targets at T2 (6–12 months after DBS surgery). Circles represent

individual studies; color-filled circles represent more heavily weighted studies

(more participants). Horizontal bars show the median values for each target.

Significant differences between targets are indicated with asterisks (p < 0.05).

TABLE 2 | Overview of global YGTSS outcomes for the different targets at T2 (6–12 months post-operatively).

Target N Pre-DBS median Post-DBS median Median reduction Median % change p-value

CM-Pf 36 79.92 (0.00) 43.80 (0.00) 36.12 (0.00) 45.20 (0.00) <0.001

CM-Voi 55 67.56 (0.00) 37.00 (0.00) 30.56 (0.00) 45.23 (0.00) <0.001

amGPI 20 76.33 (8.09) 28.67 (22.67) 47.33 (23.83) 62.45 (29.36) <0.001

pvlGPi 61 74.00 (8.40) 34.00 (3.55) 42.80 (15.50) 57.84 (13.40) <0.001

Measures of dispersion in brackets are interquartile ranges. P-values represents the results of Wilcoxon signed-rank tests comparing pre- and post-surgery global YGTSS scores at T2

for each target.
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TABLE 3 | Overview of YBOCS outcomes for the different targets after DBS surgery at maximum follow-up.

Target N Pre-DBS median Post-DBS median Median reduction Median % change p-value

CM-Pf 11 17.60 (5.00) 7.00 (11.60) 5.60 (6.60) 44.44 (50.13) 0.102

CM-Voi 73 20.17 (3.17) 11.45 (0.45) 8.72 (2.92) 43.23 (0.00) <0.001

amGPI 36 19.50 (11.43) 10.69 (4.12) 11.50 (15.55) 55.17 (46.42) <0.001

pvlGPi 23 24.70 (7.00) 3.20 (9.30) 16.50 (10.50) 87.04 (30.15) <0.001

Measures of dispersion in brackets are interquartile ranges. P-values represents the results of Wilcoxon signed-rank tests comparing pre- and post-surgery YBOCS scores at maximum

follow-up for each target.

FIGURE 5 | Scatterplots of YBOCS absolute change scores for the different

targets at maximum follow-up. Circles represent individual studies; color-filled

circles represent more heavily weighted studies (more participants). Horizontal

bars show the median values for each target. Significant differences between

targets are indicated with asterisks (p < 0.05).

than 50%. Considering the time course of symptom improvement
after DBS-surgery, our results show that global YGTSS scores
were already reduced after 6 months. Importantly, thereafter
the clinical benefits of DBS increased even further. Moreover,
the present results revealed that DBS resulted in significant
reductions of other tic-related outcome measures (MRVRS,
YGTSS total tic score) as well as comorbidities (YBOCS, BDI).
The meta-analysis of six RCTs including thalamic and pallidal
targets further confirmed the clinical efficacy of DBS.

Additionally, we compared the clinical outcomes of the
most commonly used DBS targets, namely CM-Pf, CM-Voi,
amGPi, and pvlGPi. Stimulation of all targets resulted in a
significant reduction of global YGTSS scores between 6 and
12 months. However, stimulation of the GPi led to an even
larger reduction rate of tic symptoms compared to thalamic
stimulation. Specifically, pvlGPi DBS showed higher reduction
rates of global YGTSS scores compared to CM-Pf and CM-
Voi DBS. Reduction rates were also greater for amGPi DBS
compared to CM-Pf DBS. Results of the two separate meta-
analyses revealed a significant effect for GPi stimulation, but
not for thalamic stimulation. Moreover, stimulation of all targets
except for the CM-Pf resulted in a significant reduction of
YBOCS scores at maximum follow-up. Also, pvlGPi DBS led
to increased OCD symptom reduction compared to CM-Pf and
CM-Voi DBS at maximum follow-up. Similarly, stimulation of
amGPi led to increased OCD symptom reduction compared to
CM-Pf stimulation.

Interpretation of Main Findings
Based on the present results, we suggest that DBS is capable
of reducing TS symptomatology in patients with treatment-
refractory TS, which is in line with previous research (36, 37,
123). DBS significantly reduces tic-related symptoms as well as
comorbid OCD and affective symptoms in TS patients. The latter
finding is of great importance, since it is common that patients
with TS exhibit at least one comorbid disorder (3, 15, 124).
Moreover, time appears to play an important role in DBS for TS,
as the beneficial effects of DBS seem to increase up to more than 1
year after surgery. Recent evidence implicates that this is not the
case with conservative therapies, including pharmacological and
behavioral therapy, which effects tend to decline over time (123).
The individual optimization of stimulus parameters, especially
during the first 6 months after surgery, likely contributes to this
particular time course of DBS effects (74). Of note, our results
are mainly based on the analysis of case reports or case series
with an evidence level of four (45). The meta-analysis for all
targets combined, which also pointed to the efficacy of DBS in
TS, included only six RCTs with several limitations including a
high heterogeneity in terms of time frame, procedure, outcome
measures and target selection. In order to move away from the
experimental use of DBS for TS patients, additional randomized
controlled and double-blinded trials are needed. At the same
time, RCTs with larger cohorts are almost impossible in TS
because the number of candidates for DBS may not be sufficient.
Nevertheless, future RCTs should strive to use consistent and
comparable study designs.

Importantly, the present results demonstrate that stimulation
of all targets lead to a significant tic reduction following DBS
surgery. Similarly, stimulation of all targets except for the CM-
Pf result in significant reductions of OCD symptoms. Results of
the subgroup analyses also indicate that the clinical outcomes of
DBS differ among the four targets. However, these results should
be interpreted with great caution due to several reasons. On the
one hand, we cannot rule out the possibility that the results of
the subgroup analysis are influenced by our categorization of
the individual targets. We have tried to categorize the targets
as accurately as possible based on the description of the target
locations in the original articles. However, especially in the
two thalamic target groups, the individual targets within a
categorization are likely to vary, because of the size as well as
the complex nomenclature of the thalamus (125, 126). Also,
even if authors specify the same surgical target, targets can
still be slightly different. For example, personal correspondences
showed that the CM-Voi target used by Servello et al. (127) is
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FIGURE 6 | Forest plots of RCTs. Mean YGTSS total tic scores were compared between experimental conditions (DBS ON) vs. control conditions (DBS OFF).

(A) General effect of DBS for both thalamic and pallidal targets. (B) Effect of DBS for thalamic targets. (C) Effect of DBS for pallidal targets. Targets were not further

specified. Graphics were created with the Review Manager 5.4.1. (48). GPi, globus pallidus internus; Tha, thalamus; CI, confidence interval.

located 2mm further anterior to the CM-Voi target of Visser-
Vandewalle et al. (21, 110). Additionally, the actual volume of
tissue activated (VTA) is highly dependent on factors such as
the exact electrode position, stimulation settings, and individual
anatomy. Furthermore, it cannot be ruled out that the results
are confounded by a systematic bias in patient selection. Because
of the relatively small sample sizes in target groups, clinical
outcomes may be influenced by the patient selection of a single
center, as patient selection processes may differ from site to site.
Certain selection criteria, such as age, tic severity and impairment
were shown to significantly influence clinical outcomes after DBS
(36). Regarding the post-surgery time periods included in our
analyses, it should be kept in mind that tic reduction rates after 6
to 12 months were compared between targets; meaning that the
present analysis of the YGTSS showed differences between the
targets up to 1 year after surgery. On the contrary, for the YBOCS,
targets were compared at maximum follow-up, ranging from 3 to
84 months, which is a very broad time period. Similarly, studies
included in the meta-analysis for thalamic DBS ranged from 7

days to 6 months, which is still a broad time period. Based on the
present findings, one may argue that it is challenging to compare
such temporally heterogeneous results.

Nonetheless, results of the subgroup analyses particularly
emphasize the high capability of pallidal DBS to reduce tic
symptoms up to 1 year following DBS surgery. In line with our
findings, pvlGPi has proven to be an effective target for patients
with other motor dysfunctions, such as Parkinson’s disease and
dystonia (33, 128–130). Therefore, the pvlGPi is also preferably
chosen for DBS in TS patients with dystonic tics (67, 85).
Given its anatomical connections to sensorimotor regions, the
modulation of these fibers seem like a probable mechanism
of action for pvlGPi DBS (28, 32). However, stimulation of
projections from pvlGPi to sensorimotor networks was found
to correlate negatively or not at all with tic improvement (31,
131). The amGPi was previously thought to be a particularly
effective target for TS patients with comorbid OCD symptoms,
but according to the present results, it may also play an
equally important role in tic reduction (30). In line with

Frontiers in Neurology | www.frontiersin.org 9 October 2021 | Volume 12 | Article 769275

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Wehmeyer et al. Review of DBS in Tourette Syndrome

this, registry data demonstrated that amGPi DBS resulted in
the greatest tic improvement after 1 year compared to CM,
pvlGPi and ALIC DBS; however differences between targets
were not significant (37). Concurrently, connectivity from the
amGPi to limbic and associative networks positively correlated
with tic improvement (31, 131). Interestingly, activation of the
sensorimotor pallido-subthalamic pathway was more predictive
of OCD symptom improvement compared to the associative
pallido-subthalamic pathway (131). This agrees with our
findings, which demonstrated the high capability of pvlGPi
and amGPi DBS in reducing OCD symptoms. Surprisingly,
the current findings partly differ from what we know from
previous reports and are not entirely consistent with the
functionally distinction of sensorimotor, associative, and limbic
pathways. It should be noted that TS is no pure motor
disorder (132). Heterogeneity and complexity of the disorder
might partly explain the tic improvement following amGPi
DBS and OCD symptom improvement after pvlGPi DBS (131,
133). Additionally, the different targets might improve TS
symptomatology through different functional mechanisms, such
as direct inhibition of tic execution or enhancement of the
ability to suppress tics (134, 135). However, the exact causal
relationships are not understood, and further research is needed
to explain this inverse differentiation of the pallidal DBS targets.

Beyond that, the present results suggest that thalamic DBS
yields lower tic reduction rates compared to pallidal DBS up
to 12 months postoperatively. To our knowledge, no significant
differences have to date been found between targets in terms of
tic reduction rates (36–38, 136). Only a few studies compared
the clinical effects of thalamic stimulation with those of pallidal
stimulation, which indeed pointed to a superior effect of the
latter, but only up to 3 months (117, 137, 138). However, as our
findings show, it may take at least 1 year for the positive effects of
DBS to fully develop. Accordingly, YGTSS reduction was shown
to be greater at least 1 year after CM-Pf DBS compared to <1
year (91). Moreover, although the initial positive effects of GPi
DBS have been shown to decrease several years after surgery, the
beneficial effects from CM-Voi DBS were ongoing in a subset of
patients (117, 139). Based on this, we cannot rule out differences
in clinical time courses between targets, but long-term results
are rare and further investigations are needed. Apart from that,
results of our meta-analysis revealed a non-significant effect of
DBS for thalamic targets. It should be noted that this finding
was predominantly shaped by a single RCT favoring stimulation
OFF over stimulation ON, which was weighted with 32.6% (for
details see Figure 6). According to the authors, results of this
trials might be influenced by poor compliance, placebo effect,
and high infection rate (117). Also, in three patients, electrode
positions did not correspond to the planned target point and
extended into subthalamic regions, which in turn may have
compromised optimal stimulation settings, eventually resulting
in under-stimulation (117). Furthermore, our results revealed
that thalamic DBS targets are less capable of alleviating OCD
symptoms than pallidal targets. In particular, CM-Pf DBS was
found to have no effect at all. This result is rather surprising,
because of the connections between the CM-Pf and limbic
regions, especially the nucleus accumbens (23–25). However, it

should be noted that only 3 studies were included in the CM-
Pf target group (n = 11) with a maximum follow-up period of 6
months. As already discussed above, the results are also highly
dependent on the patient selection and the type and severity
of the OCD symptoms. Centers tend to target the amGPi or
ALIC/NAc for patients with more severe OCD symptoms, while
CM-Pf is preferably chosen for patients with predominant tic
symptoms (140).

Finally, it needs to be mentioned that despite the effectiveness
of the various DBS targets, other factors also play a role in the
selection of targets. In the present review, no differences in side
effects between the targets have been taken into account, because
a quantitative evaluation of adverse events was not feasible due
to lack of information. Ideally the safety of DBS should also
be assessed in the same way. Side effects may vary across the
four targets, which could influence the final decision on target
selection for DBS of individual patients. Some other technical
details are also not considered, such as the substantial amount
of total energy needed for GPi stimulation compared to thalamic
stimulation, which may result in reduced battery life duration,
leading to more frequent battery replacements in the case of
non-rechargeable implanted pulse generators (141).

To sum up, it should be emphasized that the present results
do not provide an answer to the question of which target is more
clinically relevant for the treatment of TS. Rather, they highlight
the importance of considering which target might be the best
choice for the individual patients based on specific symptoms and
individual characteristics. Future studies might focus on defining
precise criteria and guidelines for the target selection for DBS
in TS.

Future Directions for DBS Targeting in TS
Connectomic DBS represents a unique opportunity to guide
target selection in psychiatric disorders that are heterogenous,
such as Tourette Syndrome (39, 142, 143). The application of
DTI tractography has the great potential to shift the focus away
from identifying one appropriate target for TS and instead enable
for personalized and symptom-specific targeting. Specifically, a
connectomic approach may allow to display the fiber pathways
associated with specific symptom improvement. Identification
of such connectivity patterns could potentially lead to the
optimization of targets or discovery of new targets. Several
studies have investigated structural connectivity patterns in DBS
for TS (31, 32, 103, 115, 131, 144). Importantly, studies showed
that the VTA of the target alone did not predict the clinical
efficacy of DBS for TS (103, 145). Instead, results of several
studies indicated that the connectivity between the VTA and
cortical regions was linked to the clinical outcome after DBS
in TS patients (31, 32, 103, 115). However, the various targets
used for DBS in TS show different connectivity profiles, and
cortical networks linked to clinical improvement have been
shown to differ across targets (31, 32). In particular, networks
positively correlated with tic improvement included limbic and
associative regions for the GPi, and sensorimotor as well as
parietal-temporal-occipital regions for the thalamus. For both
targets, connectivity to the cerebellum also correlated positively
with tic improvement (31). This suggests that stimulation of
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the different targets does not result in the modulation of a
single network. Rather, stimulation of the different targets might
result in the modulation of distinct, maybe partly overlapping
networks, which then lead to the improvement of specific
symptoms via a certain functional mechanism. DBS should aim
to target those symptom-specific networks, thereby allowing to
treat the entire complex spectrum of TS symptoms. Further
studies examining the clinical outcomes of DBS in TS with
known targets using structural imaging techniques are needed to
improve our understanding of the underlying DBS mechanisms
and to increase the efficacy of target selection. Particularly, there
is a need for studies that identify fiber pathways associated with
improvement of various TS symptoms, including simple tics,
complex tics, the premonitory urge, comorbid symptoms, as
well as tic suppression. In addition, the functional mechanisms
by which modulation of the network ultimately improves tic
symptoms (e.g., by directly inhibiting tic execution or by
improving the ability to suppress tics) should also be investigated.

Limitations
There are several limitations of the present review. As already
mentioned above, the most obvious limitation is that our results
are mainly based on case reports and case series with a high
risk of bias. In addition, not all individual data were available,
and aggregate data had to be extracted for some studies. This
was mitigated by weighting the data by sample size for statistical
analysis. Regarding the subgroup analyses, the numbers of
patients in each target group varied. Notably, the number of
patients in the CM-Pf target group for the YBOCS subgroup
analysis was very low. The meta-analysis for all targets combined
included only six RCTs, with a high heterogeneity in terms of
time frame, procedure, outcome measures and target selection.
Considering that the effects of DBS continue to manifest up to
more than 12 months after surgery, one could argue that the
included RCTs are also generally too short. Next, when drawing
conclusions, one should be aware that the included articles in
the present systematic review represent a very heterogenous
data pool. The significant effects might be influenced by other
factors, such as patient selection, tic severity before surgery,
age, sex, poor compliance, medication, placebo effect in open-
label settings, or stimulation parameters. Moreover, the wide
time range of the maximum follow-up is another limitation,
that may influence the results systematically. Taking into account
the increase in the effectiveness of DBS over time, it may be
considered problematic to report aggregated follow-up scores
that span more than 6 months. For global YGTSS scores,
we were unable to further narrow down the time category
T3 (>12 months), because of insufficient data. Therefore, no
statistical analyses were reasonably possible to examine whether
the beneficial effects ceased over time. For the future, the use of
international registries might contribute as part of the solution
for this problem (146). It would also have been worthwhile
to examine whether the increase of clinical efficacy of DBS
differs between the four targets. Unfortunately, this was also not
possible due to insufficient data. Another limitation refers to the
assessment of TS symptomatology. The diversity of symptoms is
not reflected inmean scores, such as the global YGTSS or YBOCS
score. Thus, the heterogeneity of tics and comorbid symptoms

was not considered in the present analysis. Moreover, to evaluate
the effect of DBS onmore of the heterogenous symptoms of TS, it
would have been helpful to include additional psychiatric scales
in the final analysis, including assessments of the premonitory
urge (Premonitory Urge for Tic Scale–PUTS), and quality of life
(Gilles de la Tourette Syndrome-Quality of Life Scale–GTS-QoL)
(147, 148). However, these assessments were very rarely used in
the included studies. Lastly, no side effects of DBS were reviewed
in the present work. These limitations should be considered when
planning and conducting future research, especially randomized
controlled and double-blinded trials.

CONCLUSION

We conclude that DBS is a clinically effective treatment option for
patients with treatment-refractory TS, with all targets showing
comparable significant improvement rates. However, the present
results suggest that reduction rates in tic symptoms may differ
across targets up to 12 months after surgery. Importantly, it may
take at least 1 year for the positive effects of DBS to fully develop,
and therefore no conclusions can be drawn about potential
differences in long-term clinical outcomes between targets.
Future research might shift its focus away from identifying
one appropriate target for DBS in TS and instead enable
personalized and symptom-specific target selection. A first step
in this direction might be the characterization of target- and
symptom-specific networks modulated by DBS.
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