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Abstract

Environmental factors or adverse growth conditions that may reduce cell function or viability
are considered stress. The cell ability to sense and respond to environmental stresses
determine its function and survival destiny. We recently defined Neuroglobin (NGB), a
heme-protein, as a compensatory protein in the 173-Estradiol (E2) anti-apoptotic activity
and as a sensor of oxidative stress in both neurons and breast cancer cells. Here, the possi-
bility that NGB levels could represent a pivotal regulator of integrated response of cancer
cells to stress has been evaluated. Data obtained in neuroblastoma and in breast cancer
cell lines evidence that nutrient deprivation significantly up-regulated NGB levels at different
time points. However, the analysis of autophagy activation led to exclude any possible role
of stress- or E2-induced NGB in the upstream regulation of general autophagy. However,
the over-expression of Flag-NGB in ERa stable transfected HEK-293 cells completely
affects nutrient deprivation-induced decrease in cell number. In addition, reported results
indicate that modulation of the anti-apoptotic Bcl-2 level may play a key role in the protective
NGB function against energetic stress. Overall, these data define a role of NGB as compen-
satory protein in the cell machinery activated in response to stress and as general stress
adaptation marker of cancer cells susceptible to oxidative stress, oxygen and, as demon-
strated here for the first time, even to nutrient willingness. Despite the lacking of any direct
NGB role on autophagic flux activated by energetic stress, NGB upregulation appears func-
tional in delaying stress-related cell death allowing an appropriate cell response and adapta-
tion to the changing extracellular conditions.

Introduction

During their life, cells may encounter unfavorable environmental conditions, which beyond a
certain threshold became “stressors” activating the so-called stress response pathway, which,
in turn, attempt to reduce cell damage and to maintain or re-establish cell homeostasis, or
eventually eliminate damaged cells [1,2]. Stressor injury, like nutrient deprivation, hypoxia
and oxidative stress, frequently occurs in living cells under either physiological or pathological
states such as fasting, ischemia or solid tumor development [3].
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In particular, cells triggered diverse strategies to cope with the fluctuation of nutrient avail-
ability including mobilization of stored (macro) molecules, recycling of cell components, and
an overall reduction of functions [3]. Autophagy (macro-autophagy), an intracellular degrada-
tion pathway that occurs at basal levels in all cells during nutrient rich conditions, is one of the
key cellular response upregulated in response to the nutrient withdrawal [4,5]. This process
provides the cell with nutrients and energy by degrading cell components, by reducing the
nutrient requirement, and decline of general functions; thus, autophagy allows cells to adapt
themselves and function properly and coherently within the new environment. The failure of
these strategies result in cells inability to respond properly and efficiently to stresses driving
them to the apoptotic or necrotic death [3]. Pathological conditions, like solid cancer growth,
conversely, are mainly linked to cells full adaption to the critical condition and escaping from
the extracellular controls [6,7].

Neuroglobin (NGB) is an intracellular heme-globin. Several findings have supported a neu-
roprotective role of overexpressed NGB against hypoxic/ischemic and oxidative stress-related
insults in both in vitro and in vivo experiments [8-14]. NGB operates as a mediator of stress
sensing and cellular response coupling, in neuron-derived cells [10,15-17]. This role implies
both the protein activation and/or its upregulation and the consequent triggering of adaptive
cells response [10]. More recently, independent studies indicate that NGB protein level is dif-
ferently modulated by oxidative stress and hypoxia in diverse extra nervous cancer cell lines
and tissues [18,19]. In addition, we recently found NGB as a compensatory protein in the 17f-
Estradiol (E2) activated pathway devoted to cell survival in both neuroblastoma (SK-N-BE)
and primary neuron cells [8,20,21]as well as in extra nervous cancer cells [22-24]. Remarkably,
as for neuron-derived cells, we demonstrated that NGB is a stress-inducible protein in breast
cancer lines being upregulated in response to the oxidative stress, although low levels of O, are
unable to impact on the NGB expression [23]. Altogether, these results suggest that NGB exerts
a pivotal role in sensing extracellular stimuli/stresses and in transducing information within
the cells to mount an appropriate cellular response in both nervous and non-nervous cells.
However, if NGB could play any role in the cell response to low nutrient availability, particu-
larly regarding on the regulation of autophagic flux, is still unknown.

Here, the effect of nutrient deprivation condition on NGB expression and its impact on the
downstream activated cellular response mechanisms, have been evaluated in neuroblastoma
cells (SK-N-BE), breast cancer cells (MCF-7) and human embryonic kidney cells (HEK-293),
cellular models sensitive to E2, which will be used as positive control on NGB levels and
functions.

Material and methods
Reagents

E2, Pen-Strep solution, RPMI-1640 media without phenol red, Dulbecco’s modified Eagle
medium (DMEM) without phenol red, Earle’s Balanced Salt Solution (EBSS), charcoal-
stripped fetal calf serum, protease inhibitor cocktail, bovine serum albumin fraction V (BSA),
Bafilomycin A1, anti-Tubulin and anti-LC3 antibodies and G418 (Geneticin) selection antibi-
otic were purchased from Sigma-Aldrich (St. Louis, MO, USA). Bradford protein assay was
obtained from Bio-Rad Laboratories (Hercules, CA, USA). Anti-NGB, anti-Bcl2 and anti-p62
antibodies were obtained from Santa Cruz Biotechnology (Santa Cruz, CA, USA). The chemi-
luminescence reagent for Western blot super power ECL was obtained from Bio-Rad (Milan,
Italy). All the other products were from Sigma-Aldrich. Analytical or reagent grade products
were used without further purification.
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Cell culture

SK-N-BE and MCF-7 cell lines (ATCC, LGC Standards S.r.1,, Milan, Italy) were used at passage
4-8 and were grown in air containing 5% CO?2 in phenol red free, RPMI-1640 or DMEM
medium, respectively, containing 10% (v/v) charcoal-stripped fetal bovine serum, L-glutamine
(2.0 mM), Pen-Strep solution (penicillin 100 U/ml and streptomycin (100 mg/ml) as previ-
ously described [8,24] (Control Medium). Nutrient deprivation condition was obtained by cul-
turing cells in amino acid and serum free, Earle’s Balanced Salt Solution (EBSS, Sigma
Aldrich) containing 1 g/L of D-glucose for the indicated times. Stable ERa-transfected HEK-
293 (ERa-HEK-293) cell lines were routinely grown in media containing G418 50 mM [25].
Cell line authentication were periodically performed by amplification of multiple STR loci by
BMR Genomics srl (Padua, Italy). Cells were simultaneously treated with the vehicle used to
dissolve all drugs (ethanol/PBS 1:10, v/v), and/or E2 (1 or 10 nM), and/or Bafalomycin-Al
(Baf-A1, 100 nM). When indicated, E2 or Baf-A1 pretreatment were performed adding the
compounds 1 h before. For nutrient deprivation, MCF-7, SK-N-BE or ERa-HEK-293, were
cultured as above reported, washed 3 times with PBS then cultured in EBSS for the indicated
time points.

Flag-NGB plasmid and cell transfection

The pcDNA-flag-NGB (Flag-NGB) was obtained by subcloning the NGB ORF from the
NGBNI1-pEGFP plasmid40 into the pcDNA-flag 3.1C. HEK-293 cells were grown to ~70%
confluence and then transfected with pcDNA-flag-NGB plasmid using lipofectamine reagent
(Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s instructions. Four hours

after transfection, the medium was changed and 24 h after the cells were treated as previously
described.

Western blot assay

Protein extraction and Western blot assay were performed as previously reported [21]. Briefly,
after treatment, cells were lysed and solubilized in the YY buffer (50 mM HEPES at pH 7.5,
10% glycerol, 150 mMNaCl, 1% Triton X-100, 1 mM EDTA, 1 mM EGTA) containing 0.70%
(w/v) SDS. Total proteins were quantified using the Bradford Protein Assay. Solubilized pro-
teins (20 pg) were resolved by 10% or 15% SDS-PAGE at 100 V for 1 h at 24.0°C and then
transferred to nitrocellulose with the Trans-Blot Turbo Transfer System (Bio-Rad, Hercules,
CA) for 10 or 7 min, respectively. The nitrocellulose was treated with filtered 5% (w/v) BSA in
138.0 mM NaCl, 25.0 mM Tris, pH 8.0, at 24.0°C for 1 h and then probed overnight at 4.0°C
with either anti-NGB (final dilution 1:1000), anti-LC3 (final dilution 1:1000), anti-p62 (final
dilution 1:1000), anti Bcl-2 (final dilution 1:1000) and anti -Tubulin (final dilution 1:1000)
antibodies. The antibody reaction was visualized with the chemiluminescence Western blot-
ting detection reagent (Amersham Biosciences, Little Chalfont, UK). The densitometric analy-
ses were performed by Image] software for Microsoft Windows (National Institutes of Health,
Bethesda, MD, USA).

Cell viability

ERo.-HEK-293 cell lines transfected or not with Flag-NGB were grown to 70% confluence in
6-well plates and cultured with EBSS for the indicated time point. After treatment, cells were
harvested with trypsin, and counted with Beckman Coulter Model ZM electronic particle
(Palo Alto, Calif., USA).
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Statistical analysis

The statistical analysis was performed by Student’s t-test with the INSTAT software system for
Windows. In all cases, p< 0.05 was considered significant.

Results
Effect of nutrient deprivation on NGB levels

The effects of nutrient deprivation on the expression of NGB levels has been evaluated in
human neuroblastoma cells (SK-N-BE) [8], breast cancer cells (MCF-7) [24] and the ER
devoid HEK-293 [26] stable transfected with ERa: plasmid (ERo-HEK-293). Cells were cul-
tured in control medium or EBSS for 2, 4 and 6 h (Fig 1). E2 treatment (10 nM in MCF7 and
ERa -HEK-293; 1 nM in SK-N-BE cells) has been used as positive control due to its well-
known ability to upregulate NGB levels in these cell lines [8,22-24]. EBSS culturing increases
NGB expression in all of the cell models considered (Fig 1A, 1B and 1C). Indeed, nutrient dep-
rivation rapidly increases NGB level in SK-N-BE and MCEF-7 cells (2h after the changing con-
dition) while, in ERo-HEK-293 cells EBSS treatment enhances NGB expression just 6h after
cell exposure, supporting a cell-based difference on stress response. In order to assess possible
synergistic effects between E2 treatment and nutrient deprivation condition, cells were pre-
treated with E2 (10 nM in MCF7 and ERo-HEK-293; 1 nM in SK-N-BE cells) 1h before the
incubation with EBSS. In ERa-HEK-293, E2 shorten the time necessary to increase NGB levels
(Fig 1C). However, E2 pre-treatment does not enhance EBSS-induced NGB upregulation in
any of the considered cell lines (Fig 1).
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Fig 1. Nutrient deprivation impact on NGB expression levels. NGB protein expression in MCF-7 (A), SK-N-BE (B) and ERa-HEK-293 (C) cells cultured
in control medium or in EBSS medium in presence or absence of E2 treatment (10 nM in MCF-7 and HEK-293 and 1 nM in SK-N-BE; 1 h pretreatment) or
with E2 alone for 2, 4 or 6 h. The amount of protein was normalized to tubulin levels. Top panels are typical western blot of three independent experiments.
Bottom panels represent the results of the densitometric analysis. Data are means * SD of three different experiments. P<0.05 was determined with Student
t-test vs. Veh (¥*) condition and vs E2 2h (°).

https://doi.org/10.1371/journal.pone.0189179.g001
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Nutrient deprivation and E2 effects on autophagic flux

Due to the strict relation between nutrient deprivation and autophagy [4,5], we next evaluated
the activation of such cellular event in our cellular models at different time of nutrient depriva-
tion exposure. Autophagy induction was evaluated by following the level of microtubule asso-
ciated protein light chain 3 (LC3I) protein and its lipidated form (LC3II), which is the marker
of the autophagosome number being accumulated on the autophagosome membrane where it
remains until a complete degradation [27,28]. In all considered cell models, the amount of
LC3II protein increases already 2 h after the exposure to nutrient deprivation suggesting a
rapid cell response to the lack of nutrient availability. However, the accumulation of LC3II
protein and, consequently, of autophagosomes, could be related to an effective increase of
autophagy process and/or to a defect in the autophagolysosome formation associated with
autophagy inhibition [27,28]. To solve this ambiguity, we analyzed the expression levels of p62
protein, also known as sequestrosome (SQSTM1), an autophagy cargo molecule that drive
selected soluble molecules to the auto-phagolysosome for their degradation. Thus, p62 is con-
sidered as both an autophagy substrate and a marker of the autophagic flux being degraded
when autophagy flux is allowed and accumulated when autophagy is impaired [27]. Fig 2
shows that the nutrient deprivation significantly leads to a rapid degradation of p62 protein
parallel with the accumulation of LC3II protein sustaining an effective induction of autophagy
flux induced by the EBSS culturing medium in selected cell lines. The cell treatment with the
well-known autophagy inhibitor Baf-A1 (100 nM) [27] alone or 1h before the EBSS culturing
resulted in a further LC3II accumulation (Fig 2). This additive effect indicates that nutrient
deprivation-induced autophagosomes accumulation depends on the activation of autophagic
flux not to its block.

In order to evaluate if the other NGB inducer (i.e., E2) (see Fig 1) modulates the autophagic
flux, E2 effects were assessed. As shown in Fig 3, E2 (10 nM) stimulation leads to the accumu-
lation of p62 protein 2h after the hormone stimulation in both MCF-7 and in ERa-HEK-293
cells, without any significant effect on the expression of LC3II (Fig 3A, 3A’, 3C and 3C’). Such
effect appears to be rapid and transient in MCF-7 where it vanishes 4h after E2 stimulation
(Fig 3A”), whereas it persists until 6h in ERo-HEK-293 (Fig 3C’), probably due to the ectopic
expression of ERa in these latter cells. On the other hand, in neuroblastoma SK-N-BE cells, E2
(InM) treatment enhances the amount of LC3II protein since 4h after the stimulation (Fig 3B)
without a parallel reduction of p62 protein (Fig 3B’), indicating that E2 leads to the accumula-
tion of autophagosome without any completion of the autophagic flux. Altogether, obtained
data indicate that E2 could affect autophagy flux exerting an inhibitory role on it. Notably, in
all cells considered the Baf-A1 (100 nM) pre-treatment 1 h before E2 stimulation does not
result in a further increase of LC3II and/or p62 protein levels respect to what observed with
the Baf-Al treatment alone (Fig 3). The absence of any additive effects stimulating cells with
both E2 and Baf-A1 suggests a possible common mechanism shared by the hormone and the
autophagy inhibitor in the last stage of autophagy flux.

Involvement of NGB overexpression on the autophagic flux and cell
viability during nutrient deprivation

Data reported in Figs 1 and 2 indicate that the EBSS-dependent up-regulation of NGB is not
parallel with the induction of autophagy flux in ERo-HEK-293 cells where NGB increases after
6h, while autophagy is activated already 2h after. Such data lead to hypothesize that NGB
induction is not directly linked to the autophagic flux activation. Therefore, in order to test the
possible role of high levels of NGB in the autophagic process, ERo-HEK-293 cells were tran-
siently transfected with pcDNA-Flag-NGB plasmid (Fig 4A). Both control and Flag-NGB
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Fig 2. Nutrient deprivation induces autophagy flux. Western blot analysis of LC3 (A,B,C) and p62 (A’,B’,C’) expression in MCF-7 (A,A’), SK-N-BE (B, B’)
and ERa- HEK-293 (C, C’) maintained in culture with control medium or with EBSS in presence or absence of Baf-A1 (100 nM, 1 h pretreatment) or with Baf-
A1 (100 nM) alone at indicated time points. For LC3 quantitation, the formula LC3I1/(LC3I + LC3II) has been applied. The loading control was done by
evaluating tubulin expression in the same filter. Top panels are representative western blot of three independent experiments. Bottom panels are the relative
results of densitometric analysis. Data are means + SD of three different experiments. P<0.05 was determined with Student t-test vs Veh (*), EBSS 2h (°),

EBSS 4h (#) and EBSS 6h (§) conditions.
https://doi.org/10.1371/journal.pone.0189179.9002

overexpressing cells were exposed to nutrient deprivation condition for 2, 4 or 6h. Notably, the
levels of both autophagy markers (i.e., LC3II and p62) do not show any significant difference
between not-transfected and Flag-NGB transfected cells (Fig 4B and 4C). Furthermore, even
the very high NGB levels reached by its ectopic expression 6h after nutrient deprivation does
not change the level of the autophagy flux with the respect to the not-transfected cells support-
ing that a possible direct effect of NGB levels on autophagy activation, could be ruled out. Pro-
longed/chronic exposure to nutrient deprivation stress could lead to apoptotic or necrotic cell
death [3]. This evidence prompted us to verify if Flag-NGB overexpression could affect cell via-
bility during short and prolonged exposure to nutrient deprivation condition. Fig 4D shows
that EBBS culturing significantly reduced cell number 6h after the treatment, which is parallel

with the increase of NGB levels in this cell line (See Fig 1C).

Such decline in cell number is fur-

ther enhanced 24 h after exposure to nutrient deprivation condition. Remarkably, in Flag-
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https://doi.org/10.1371/journal.pone.0189179.g003

NGB cells, EBSS-dependent decrease in cell number after 6 and 24h exposure is completely
abolished (Fig 4D). Evidence have indicated that death induced by nutrient deprivation is
commonly mediated by mitochondrial apoptotic pathway that mainly involves several mem-
bers of Bcl-2 family, including the anti-apoptotic protein Bcl-2 [3]. This led us to evaluate the
effect of overexpressed NGB on Bcl-2 expression. As reported in Fig 4E, in Flag-NGB ERo-
HEK-293 cells the expression of Bcl-2 results significantly increased, with respect to the not-
transfected counterpart, in both vehicle condition and until 4h after the exposure to nutrient
deprivation. On the other hand, the Bcl-2 protein levels in Flag-NGB cells does not result sig-
nificantly different from what observed in not-transfected cells after 6h nutrient deprivation
exposure, or even reduced after 24h of low nutrient availability. Overall, these results show
that ectopic expression of NGB increases cell survival during a prolonged exposure to nutrient
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Fig 4. Impact of NGB overexpression on cell response to nutrient deprivation. ERa-HEK-293 cells were
transiently transfected with Flag-NGB expressing plasmid. A) Western blot analysis of Flag expression in not
transfected (CONTROL) and NGB-plasmid transfected (Flag-NGB plasmid) cells. Analysis of LC3 (B) and p62 (C)
protein expression in not transfected and transfected cells cultured in control medium (10% FBS) or nutrient deprived
EBSS solution for 2, 4 and 6h. The amount of protein was normalized on tubulin levels. For LC3 quantitation, the
formula LC3II/(LC3I + LC3II) has been applied. Top panels are representative western blot of three independent
experiments. Bottom panels are the relative results of densitometric analysis. Data are means + SD of three different
experiments. P<0.05 was determined with Student t-test vs CONTROL Veh (*) and Flag-NGB plasmid Veh (°). D)
Evaluation of cell number during nutrient deprivation stress. Both not transfected (CONTROL) and NGB-plasmid
transfected cells (Flag-NGB plasmid) were grown in control medium with 10% of FBS or in EBSS solution for 2, 4, 6 and
24h and counted at each time points. Data are means + SD of four different experiments. P<0.05 was determined with
Student t-test vs CONTROL Veh (*) and vs CONTROL EBSS 24h (°). E) Western blot analysis of Bcl-2 protein
expression in not-transfected (CONTROL) and NGB-plasmid transfected cells (Flag-NGB plasmid) cultured in control
medium (10% FBS) or EBSS at indicated time points. Top panel is representative western blot of three independent
experiments. Bottom panel is the relative result of densitometric analysis. Data are means + SD of three different
experiments. P<0.05 was determined with Student t-test vs CONTROL Veh (*), CONTROL EBSS 2h (*) and
CONTROL EBSS 4h (#).

https://doi.org/10.1371/journal.pone.0189179.g004

deprivation, and it is linked to a parallel-enhanced expression of the anti-apoptotic protein
Bcl-2.

Discussion

NGB is a monomeric intracellular heme-globin, which attracted research interest in the last
almost two decades because of its wide distribution in the brain and, in particular, of its well-
known pro-survival effects against several type of extracellular insults when overexpressed [8-
14]. In neuron derived cells and in extra nervous cancers, NGB expression is closely related
and/or induced by stress conditions themselves like as hypoxia [29,30], oxidative stress (H,0,)
[21,23,24], oxygen and glucose deprivation [31], and lipopolysaccharide treatment [20]. In
addition, NGB ability to change its structure, reactivity, and function in response to intracellu-
lar redox state changes has further reinforced the idea that NGB, as a stress responsive-sensor,
transfers the stress condition to the signal transduction pathways important for cell response
to stress [17]. This evidence prompted us to evaluate the possible NGB modulation and func-
tion in the cell response to low nutrient availability. Indeed, although many research studies
were aimed at evaluating the effect in neurons of ischemic injury and or oxygen and glucose
deprivation on NGB expression [31-33], the role of nutrient stress on NGB protein levels is
still unknown. Results reported here clearly indicate that culturing cells in starved condition
positively modulates NGB protein levels in both neuroblastoma and breast cancer cell lines. In
addition, such effects appear to share the same intracellular pathway activated by one of the
main NGB inducer, E2, which does not exert any synergistic effects when given before the
nutrient deprivation condition. Consistent with this, we recently prove that, at least in breast
cancer cell line, both E2 and oxidative stress inducing compound Lead Acetate, led to the NGB
expression through the activation of AKT pathway [34] (Fiocchetti et al. personal communica-
tion). It is possible that similar common mechanisms could be activated by nutrient depriva-
tion to modulate NGB levels.

Nutrient withdrawal represents one of the main challenge that fast-growing cancer cells
could encounter during cancer development [4]. The ability of cancer cells to adapt to stresses
and to escape from cell death is fundamental for tumor growth and survival [4].

Autophagy is the key cellular responses that is promptly activated in response to nutrient
stress [1,3-5]. It represents an homoestatic process based on the production of double mem-
brane vesicle, autophagosomes, that expand to engulf citoplasmic components to degrade and
use them as structure but also as an energy reserve [3,35,36]. Basal autophagy maintains
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protein and organelle quality control [36] and its rate is further enhanced during stressing con-
dition to clear damaged organelles and recycle nutrients [3,35,36].

Accordingly, with literature, nutrient deprivation treatment leads to a rapid increase in the
accumulation of the autophagosome marker LC3II with a parallel degradation of the p62
autophagy substrate in both neuroblastoma and breast cancer cells. Consistent with an effec-
tive increase in autophagy flux, by treating cells with autophagy inhibitor Baf-Al, a further
increase in auto-phagosome accumulation during nutrient withdrawal occurs. On the con-
trary, E2 treatment blocks the continuation of autophagic flux in the cell model used. Despite
of controversial evidence about the role of E2 on autophagy, showing the hormone ability to
both induce [37,38] or block [39-41] autophagic flux, our data sustain the role of E2 as an ana-
bolic hormone that, like as it occurs for insulin treatment [42], is expected to function sup-
pressing the conserved catabolic process of self-digestion. Moreover, the absence of any
synergistic effects between E2 and Baf-A1l suggests that E2 and Baf-A1 share the same mecha-
nisms in preventing the autophagic flux.

Differences between E2 and EBSS effects on autophagy lead to the paradoxical circum-
stance for which two different inducers of NGB overexpression oppositely affect the same
intracellular mechanism. However, a possible direct involvement of up-regulated NGB in the
general autophagy process could be kept out. Indeed, nutrient deprivation shows a different
timing in the activation of autophagy process and the up-regulation of NGB protein levels,
which sustains the lack of any direct relationship between such events. This is further con-
firmed by data demonstrating as the ectopic expression of NGB in ERo-HEK-293 cells does
not change the autophagic flux markers (LC3II, p62) either in basal condition or after exposure
to nutrient deprivation at those time points when the cellular response to nutrient withdrawal
does not affect the NGB protein levels. Altogether, such evidence is consistent with other
reported findings, which show that NGB overexpression does not exert any significant effect
on the mRNA levels of upstream autophagy regulators Atg5, Atg7 and Beclin-1 [43].

Autophagy has been considered for long time a crucial process able to promote cancer sur-
vival under metabolic and genotoxic stresses which allows cancer resistance to treatment
[4,35]. However, a mutually opposed survival and death-promoting role for autophagy has
been suggested and mechanisms regulating such functions, in particular in cancer cells, are
still far from resolution [4,35,36]. Remarkably, the E2 inhibitory effects on autophagy (present
data) and its well-known anti-apoptotic functions in neuroblastoma [8] and breast cancer
[24] cells, sustain the complexity of interrelationship between autophagy rate and cell death
regulation.

As a whole, the lacking of any involvement of NGB overexpression in the autophagy activation
does not rule out the possible role of stress upregulated NGB in the pro-survival mechanism
activated by cells in response to extracellular nutrient deprivation. Indeed, an appropriate cell
response to nutrient shortage it is not limited to the autophagy process, being generally pointed to
attempt cell survival waiting for “better times” [3]. Accordingly, here we found that NGB overex-
pression preserves cell viability after prolonged exposure to nutrient withdrawal further sustaining
the pro-survival role of high levels of NGB during different type of insults [8-10,24,44,45]. Nutri-
ent deprivation-induced cell death mainly occurs through the activation of intrinsic or mitochon-
drial apoptotic pathway [3]. Such process relies on the balance between pro-apoptotic (i.e. Bim,
Bax, Bid) and anti-apoptotic (i.e. Bcl-2, Bcl-xL, Bcl-x) [46] members of Bcl-2 protein family. As
elsewhere reported [47], glucose withdrawal-induced death is activated via the mitochondrial
translocation of Bax and, in MCF-7 cells, it can be inhibited by Bcl-2 overexpression [47]. Such
evidence confirms that the increased expression of Bcl-2 protein is tightly linked to pro-survival
and anti-apoptotic events. Furthermore, NGB expression is related to a decreased or increased
expression of pro-apoptotic or anti-apoptotic Bcl-2 members, respectively [21,48-51]. In addition,
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E2-dependent up-regulation of NGB results pivotal in the hormone induced overexpression of
Bcl-2 protein in breast cancer cell line [24]. Present reported findings show an increased level of
Bcl-2 protein parallel with NGB overexpression. Therefore, although NGB may affect cell survival
impinging on different pathways [17,21,51,52], the regulation of the Bcl-2 protein network may
play a key role in the protective NGB function during energetic stress. In parallel, lowest Bcl-2 lev-
els in NGB-overexpressed cells after a longer time of exposure to nutrient deprivation lead to
hypothesize that the high levels of NGB could contrast cell death in a limited “time window” at
the beginning of energetic stress-related insult. Indeed, stress-dependent induction of NGB could
be functional to prevent accidental apoptosis during the exposure to low and shortened stress
condition [52-55]. On the opposite, we recently proved as the E2-dependent up-regulation and
mitochondrial re-localization of NGB is required to confer cell protection against high levels of
oxidative stress [23,24].

A great amount of intracellular functions has been ascribed to overexpressed NGB, mainly
linked to the well-known ability of the globin to exert pro-survival function [56-59]. Among
the evidence put forward to define mechanisms underlying the protective function of NGB,
several reports support a role of NGB in intracellular signaling impacting on metabolic, oxida-
tive/hypoxia and survival/apoptotic pathways. NGB has been found upregulated by ischemia/
hypoxia in cultured cell lines and primary mouse cortical neurons [10,33,29] and by oxidative
stress [21] in neuroblastoma cell. In addition, NGB function as oxygen [15,60] and oxidative
stress sensor [17] has been demonstrated. Overall, these data define a role of NGB as compen-
satory protein in the cell machinery activated in response to stress and as general stress adapta-
tion marker of cancer cells susceptible to oxidative stress, oxygen and, as demonstrated here
for the first time, even to nutrient willingness. Despite the lacking of any direct NGB role on
autophagy flux activated by energetic stress, NGB upregulation appears functional in delaying
stress-related cell death allowing an appropriate cell response and adaptation to the changing
extracellular conditions. Therefore, NGB could represent a link between the cell ability to
sense nutrient withdrawal, and the impairment of cell death during acute stress phase linked
to the up-regulation of Bcl-2 anti-apoptotic protein.

Modulation of endogenous cellular defense mechanisms activated in response to stress rep-
resents an innovative approach in therapy in diseases causing chronic tissue damage, like as
cancer [7]. Here reported observation add to our growing knowledge of the importance of
NGB in mechanisms and structures involved in cellular stress response opening novel avenue
in the development of therapeutic interventions.
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