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Machine learning for lymph
node metastasis prediction
of in patients with gastric
cancer: A systematic review
and meta-analysis

Yilin Li , Fengjiao Xie, Qin Xiong, Honglin Lei
and Peimin Feng*

Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine,
Chengdu, China
Objective: To evaluate the diagnostic performance of machine learning (ML) in

predicting lymph node metastasis (LNM) in patients with gastric cancer (GC)

and to identify predictors applicable to the models.

Methods: PubMed, EMBASE, Web of Science, and Cochrane Library were

searched from inception to March 16, 2022. The pooled c-index and

accuracy were used to assess the diagnostic accuracy. Subgroup analysis

was performed based on ML types. Meta-analyses were performed using

random-effect models. Risk of bias assessment was conducted using

PROBAST tool.

Results: A total of 41 studies (56182 patients) were included, and 33 of the

studies divided the participants into a training set and a test set, while the rest of

the studies only had a training set. The c-index of ML for LNM prediction in

training set and test set was 0.837 [95%CI (0.814, 0.859)] and 0.811 [95%CI

(0.785-0.838)], respectively. The pooled accuracy was 0.781 [(95%CI (0.756-

0.805)] in training set and 0.753 [95%CI (0.721-0.783)] in test set. Subgroup

analysis for different ML algorithms and staging of GC showed no significant

difference. In contrast, in the subgroup analysis for predictors, in the training

set, themodel that included radiomics had better accuracy than themodel with

only clinical predictors (F = 3.546, p = 0.037). Additionally, cancer size, depth of

cancer invasion and histological differentiation were the three most commonly

used features in models built for prediction.

Conclusion: ML has shown to be of excellent diagnostic performance in

predicting the LNM of GC. One of the models covering radiomics and its ML

algorithms showed good accuracy for the risk of LNM in GC. However, the

results revealed some methodological limitations in the development process.

Future studies should focus on refining and improving existing models to

improve the accuracy of LNM prediction.
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Background

Gastric cancer (GC) is the fifth most common malignancy

and the third leading cause of cancer-associated death

worldwide (1–3). Lymph node metastasis (LNM) is one of the

most sensitive prognostic factors for patients with GC (4–6).

Patients at different lymph node stages may require different

degrees of lymphadenectomy or neoadjuvant therapy (7–10),

and typically have different outcomes. Therefore, it is of

necessity to accurately predict and evaluate LNM before

making treatment decisions (11, 12).

Non-invasive imaging modalities, including computed

tomography (CT), functional magnetic resonance imaging

(fMRI), and B-ultrasonography, have been widely applied for

the evaluation of lymph node status in GC patients. However,

the performances of these techniques remain controversial due

to their sensitivity, specificity, and accuracy (13–19). Sentinel

lymph node (SLN) biopsy is an invasive approach that has also

been adopted for LNM detection in GC (20), while is still in

debates on its effectiveness. Kitagawa et al. (21) and Miyashiro

et al. (22) applied two different SLN biopsy methods, but reached

different false negative rates (7% and 46.4%, respectively).

Endoscopic ultrasonography combined with fine needle

aspiration can be used for local lymph node staging and LNM

diagnosing, while the former fails to detect distant metastases

(23). Several new molecular biomarkers have been found to be

useful for predicting LNM of GC, but the application of these

agents is limited due to high cost and complex technological

requirements (24, 25). There are indeed multiple methods that

have potential to diagnose LNM, whereas their performances are

tied down by so many limitations and uncertainties, making it an

urgent need to find a more applicable and effective method for

the identification of LNM status.

Machine learning (ML) algorithm is a newly emerged

technique that is capable of accurate raw data-processing,

important data connections-analyzing, and accurate decision-

making (26, 27). Compared with conventional statistical

methods, ML model has higher prediction accuracy (28, 29). It is

of critical application value in assisting disease-diagnosing and

prognosis-predicting through processing massive and complex

medical data (30, 31). Currently, ML has been increasingly
02
applied for LNM prediction in GC patients (32–72). However,

different types of ML prediction models have great differences in

both included predictors and calculation methods of the models

(73, 74), the results produced by different models are far from

unanimous (75). More importantly, there is no systematic review

and meta-analysis conducted to assess ML for LNM prediction in

GCpatients. Therefore, we reviewed and synthesized all the related

studies published previously to evaluate the accuracy ofMLmodels

for LNM prediction in GC patients.
Methods

This systematic review and meta-analysis was performed

following the Preferred Reporting Items for Systematic Reviews

and Meta-Analyses (PRISMA) guidelines (76). The study was

registered on PROSPERO (Registration No. CRD42022320752).
Literature retrieval strategy

PubMed, EMBASE, Web of Science, and Cochrane Library

were systematically searched from inception toMarch 16, 2022 for

all the related published articles. Search items mainly contained:

“stomach neoplasms,” “machine learning,” and “lymphatic

metastasis.” References of included articles were also searched

manually for potential eligible studies. Detailed search procedures

and strategy are presented in Supplemental File 1.
Inclusion criteria

The studies were selected according to the following criteria:
(1) Patients were diagnosed with GC based on

histopathological examination;

(2) Cohort study published in English, with the full-text

available;

(3) Reported assessment of the performance of ML

algorithm for LNM prediction;
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Fron
(4) Clearly description for ML models and predictor

variables used

(5) Reported the prediction performance indices of ML

models and included sufficient data to infer the c-index

and/or accuracy.
Studies meeting the following criteria were excluded:
(1) Limited sample size (less than 100);

(2) Letter, editorial, animal study, review, conference

summary, consensus, case report, and guidelines;

(3) Research focusing on identifying or analyzing individual

predictors, rather than the development and/or

verification of models;

(4) Model performance measurements were not reported;

(5) Model building process or method was not described.
Data extraction

Data extraction was processed by two reviewers

independently (YL and FX). The list of extraction items was

designed based on the modified version of Checklist for Critical

Appraisal and Data Extraction for Systematic Reviews of

Prediction Modelling Studies (CHARMS) (77). Discrepancies

were resolved by a third reviewer (PF). The following data

were extracted:
(1) study characteristics (authors, publication date, study-

design, and country or region);

(2) cohort characteristics (number of participants, number

of patients with positive LNM, and cancer stages);

(3) Feature selection algorithms, number and types of

predictor in final model, types of ML prediction

model, and model validation and application;

(4) prediction outcomes, including c-index, accuracy,

sensitivity, and specificity.
Risk of bias assessment

Risk of bias assessment and applicability of included studies

were performed using the Prediction Model Risk of Bias

Assessment Tool (PROBAST) (78), which includes four

domains; participants, predictors, outcomes, and analysis. Risk

of bias in each study was assessed based on the four domains,

while the applicability was evaluated based on the first three

domains. Each study was graded as “high risk”, “low risk”, or

“unclear risk” (78). This process was conducted and cross-
tiers in Oncology 03
checked by two reviewers (YL and FX) independently.

Discrepancies were settled by the third reviewer (PF).
Statistical analysis

Data analysis was performed using R Statistical Software

(version 4.1.1) with ‘matrix’, ‘metafor’ and ‘meta’ packages (79,

80). Subgroups were set based onML algorithms. The c-index and

accuracy for LNM prediction in GC patients, which were obtained

from each study included, were measured with 95% confidence

intervals (95% CIs) in the final analysis. For studies that did not

report c-index, we calculated it via plotting receiver operating

characteristic (ROC) curves based on reported probability

distributions. The results from all included studies were pooled,

and an overall estimated effect was evaluated using random-effect

model which processed heterogeneity among studies (81).Weused

one-wayANOVAtodiscuss thedifferences inc-index andaccuracy

between the training group and the test group.
Results

Study selection

There were 2582 articles identified through searching the

four databases, in which 1210 were excluded after duplicate-

checking, 1126 excluded via browsing titles and abstracts. Full-

texts of the remaining 246 articles were read, and 205 articles

were excluded for reasons specified in Figure 1. Finally, a total of

41 studies were included (32–72).
Characteristics of included studies

There were 35 studies (85.4%) that were conducted in China

(32, 33, 35–43, 45–49, 51–54, 56–63, 65–69, 71, 72), 5 (12.2%) in

Korea (34, 44, 50, 55, 64) and 1 (2.4%) in Germany (70), with the

publication date ranged from 2004 to 2022. The number of

studies using ML for LNM prediction has gradually increased

since 2018 (Figure 2). There were 35 retrospective studies (33,

35–53, 56–59, 61–70, 72) and 6 prospective studies (32, 34, 54,

55, 60, 71), with a total of 56182 participants, in which the

number of patients with LNM was 12031. Characteristics of

included studies are presented in Table 1.
Characteristics of machine learning in
included studies

A total of 61 models were retrieved from included studies

(ranged from 1 to 7 models in each study), with various

modelling methods applied. The most frequently used ML
frontiersin.org
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algorithms were logistic regression (LR) (n=30; 49.18%), support

vector machine (SVM) (n=5; 8.2%), deep learning (DL) (n=4;

6.56%), and random forest (RF) (n=4; 6.56%) (Table 1). Feature

selection is an important step for ML training. The number of

features used in the models varied from 2 to 21, and Figure 3

summarizes the 15 most common features. The most commonly
Frontiers in Oncology 04
used predictors were tumor size (n=35; 14.96%), depth of tumor

invasion (n=32; 13.68%), histology differentiation (n=20;

8.55%), imaging techniques (n=17; 7.26%), lymphovascular

invasion (n=17; 7.26%), tumor location (n=14; 5.98%), CT-

reported LN (n=11; 4.7%), age (n=8; 3.42%), macroscopic

features (n=8; 3.42%), and CA199 (n=7; 2.99%).
FIGURE 2

Distribution of studies by the year of publication.
FIGURE 1

The PRISMA flow diagram for study selection.
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TABLE 1 Characteristics of included studies.

Study Country Study
design

Stage No. patients in
the train set

No. patients
in the test set

Technique used for
feature selection

Types of machine
learning

Data
source

Xiao-Peng
Zhang (2011)

China Retro Early GC
Borrmann
I-IV

175 NA LR SVM Single
institution

Song Liu (2021) China Retro Stages I-
IV

122 41 LASSO SVM, LR Single
institution

C Jin (2021) China Retro Stages I-
IV

1172 527 LR, RF DL Multiple
institution

Xiaoxiao Wang
(2021)

China Retro T1-2 80 79 LR LR Single
institution

Xiao-Yi Yin
(2020)

China Retro T1a, T1b 596 227 LR LR Single
institution

Bang Wool Eom
(2016)

Korea Retro T1a, T1b 336 NA LR LR Single
institution

Zhixue Zheng
(2015)

China Retro T1a, T1b 262 NA LR LR Single
institution

Jing Li (2020) China Retro Borrmann
I-IV

136 68 LR DL Single
institution

Zhengbing
Wang (2021)

China Retro T1a, T1b 363 140 LR LR Single
institution

HuaKai Tian
(2022)

China Retro T1a, T1b 2294 227 LR GLM, RPART, RF, GBM,
SVM, RDA, ANN

Multiple
institution

Zhixue Zheng
(2016)

China Retro T1a, T1b 597 NA LR LR Single
institution

Yu Mei (2021) China Pros T1a, T1b 794 418 LR LR Single
institution

Jing Li (2018) China Retro Borrmann
I-IV

140 70 LR LR Single
institution

Su Mi Kim
(2020)

Korea Pros T1a, T1b 10579 2100 LR LR Single
institution

Miaoquan
Zhang (2021)

China Retro T1a, T1b 285 NA LR LR Single
institution

Yuming Jiang
(2019)

China Retro Stages I-
IV

312 1377 LR LR Multiple
institution

Qiu-Xia Feng
(2019)

China Retro Stages I-
IV

326 164 SVM SVM Single
institution

Jianfeng Mu
(2019)

China Retro T1a, T1b 746 126 LR LR Single
institution

Shilong Li
(2021)

China Retro Stages I-
IV

144 151 LR LR Single
institution

Yue Wang
(2020)

China Retro NA 197 50 LR RF Single
institution

Chun Guang
Guo (2016)

China Retro T1a, T1b 256 1273 LR LR Multiple
institution

Cheng-Mao
Zhou (2021)

China Pros T1a, T1b 818 351 GBDT GBDT, XGB, RF, LR, XGB
+LR, RF+LR, GBDT+LR

Single
institution

Xujie Gao
(2021)

China Retro T1a, T1b 308 155 LR LR Single
institution

Xujie Gao
(2020)

China Retro Stages I-
IV

486 240 LR LR Single
institution

Xu Wang (2021) China Retro T1-4 250 99 LR LR Single
institution

Siwei Pan (2021) China Retro T1a, T1b 1274 637 LR LR Multiple
institution

(Continued)
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ology
 05
 fron
tiersin.org

https://doi.org/10.3389/fonc.2022.946038
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Li et al. 10.3389/fonc.2022.946038
FIGURE 3

15 most frequently used predictors in 61 prediction models for gastric cancer patients.
TABLE 1 Continued

Study Country Study
design

Stage No. patients in
the train set

No. patients
in the test set

Technique used for
feature selection

Types of machine
learning

Data
source

Wujie Chen
(2019)

China Retro T2-4 71 75 LR LR Single
institution

Bong-Il Song
(2020)

Korea Retro T1-4 377 189 LR LR Single
institution

Chao Huang
(2020)

China Retro NA 466 NA RF DT Single
institution

Lili Wang
(2021)

China Retro T2-4 340 175 LR LR Single
institution

Seokhwi Kim
(2021)

Korea Retro T1a 28 108 LR Bayesian Multiple
institution

Qiufang Liu
(2021)

China Retro NA 185 NA RF DL Single
institution

Wannian Sui
(2021)

China Retro T1a, T1b 1496 246 LR LR Multiple
institution

Dexin Chen
(2019)

China Retro T1a, T1b 232 143 LR LR Multiple
institution

Lingwei Meng
(2021)

China Retro T1-4 377 162 LASSO LR Multiple
institution

D Dong (2020) China Retro T2-4 225 505 Multivariable linear
regression analysis, SVM

DL Multiple
institution

Zepang Sun
(2021)

China Pros T1-4 531 1087 LR LR Multiple
institution

Ji-Eun Na
(2022)

Korea Pros T1a, T1b 10332 4428 LR, SVM, RF LR, SVM, RF Single
institution

Haixing Zhu
(2022)

China Retro T1a, T1b 1878 470 DT, GBM, LR,
ANN, RF, XGBOOST

DT, GBM, LR, ANN, RF,
XGBOOST

Multiple
institution

Elfriede H
Bollschweiler
(2004)

Germany Retro Stages I-
IV

135 NA ANN ANN Single
institution

Yinan Zhang
(2018)

China Pros T1a, T1b 272 81 LR LR Single
institution
Frontiers in Onc
ology
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ANN, artificial neural network; DL, deep learning; DT, decision tree; GBM, gradient boosting machine;GC, gastric cancer; GLM, generalized linear model; LASSO, Least Absolute Shrinkage
and Selection Operator; LR, logistic regression; NA, not available; No., number; Pros, prospective; RDA, regularized dual averaging; Retro, retrospective; RF, random forest; SVM, support
vector machine; XGBOOST, extreme gradient boosting;
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Risk of bias and applicability assessment

All the included studies were of low risk of bias with respect

to the domain of participants and outcome, 19 (46.34%) studies

had low risk of bias in predictors (32, 34, 37, 38, 40, 42, 44, 54–

56, 60, 62, 63, 66–71), 22 (53.66%) had unclear risk of bias due to

that the prediction assessment was performed in the know of

outcome data (33, 35, 36, 39, 41, 43, 45–53, 57–59, 61, 64, 65, 72).

As for the domain of analysis, the risk of bias in 16 studies was

considered high (33, 35, 41, 43, 47, 50, 51, 53, 58, 59, 61, 63, 65,

68, 70, 71), and the reasons were that (1): Insufficient sample

size. Eight of the studies did not meet the standard of including

at least 100 participants (2). Selection of predictors based on

univariable analysis (3). Lack of external validation techniques.

Eight studies lacked external validation in model development

(35, 50, 51, 53, 59, 63, 65, 70). Concern regarding ‘overall

applicability’ was rated as low in 15 studies (36.59%) (32, 34,

37, 38, 40, 42, 44, 54–56, 60, 62, 66, 67, 69), high in 16 studies

(39.02%) (33, 35, 41, 43, 47, 50, 53, 58, 59, 61, 63, 65, 68, 70, 71)

and unclear in the remaining 10 (24.39%) (36, 39, 45, 46, 48, 49,

52, 57, 64, 72). Risk of bias and applicability assessment were

shown in Table 2.
C-index

There were different numbers for training and test models

because there were five studies which only reported the training

results (35, 50–53). The overall c-index for ML in training group

was 0.837 [(95%CI (0.814, 0.859)] (Table 3; eFigure 1). LR, one of

the most commonly used ML methods, resulted in an overall

pooled c-index of 0.838 [(95%CI (0.812, 0.865)] (eFigure 2), while

non-logistic regression (non-LR) model resulted in an overall

pooled c-index of 0.83 [(95%CI (0.786, 0.877)] (eFigure 3).

Furthermore, the pooled c-index in test group was 0.811

[(95%CI (0.785, 0.838)] (Table 3; eFigure 4), which was similar

with the result in training group. Subgroup analysis showed that

21 models in LR subgroup had a pooled c-index of 0.824 [95%CI

(0.791, 0.858)] (eFigure 5), and 13 models that used non-LR

model assessment had a pooled c-index of 0.789 [95%CI (0.747,

0.833)] (eFigure 6).
Accuracy

There were different numbers of training and test models

because there were ten studies which only reported the results of

training group (35, 50–53, 59, 63, 65, 70, 71), whereas two other

studies only reported that of test group. The ML models for

LNM in training group showed an overall pooled accuracy of
Frontiers in Oncology 07
0.781 [95%CI (0.756-0.805)] (Table 4; eFigure 7). Subgroup

analysis showed no significant difference in different ML

algorithms. LR algorithms had a pooled accuracy of 0.792

[95%CI (0.761-0.82)] (eFigure 8) and non-LR algorithms had

that of 0.768 [95%CI (0.725, 0.805)] (eFigure 9).

In test group, the accuracy of the pooled 41 models was 0.753

[95%CI (0.721-0.783)] (Table 4; eFigure 10). Subgroup analysis

was conducted based on LR and non-LR algorithms assessment.

The pooled accuracy for the 23 models that used LR was 0.787

[95%CI 0.745, 0.824] (eFigure 11). The overall pooled accuracy

f o r n on - LR mod e l s w a s 0 . 7 0 7 [ 9 5%CI ( 0 . 6 6 5 ,

0.746)] (eFigure 12).
Subgroup analysis for early-gastric
cancer and advanced gastric cancer

Of the 41 included studies, 21 were early-gastric GC (EGC)

(T1) studies (32, 34, 35, 37, 39, 42, 46, 48–53, 55, 56, 60, 64, 65,

69, 71, 72) and 3 were advanced GC (T2-4) studies (43, 45, 67).

In EGC, there was a pooled c-index of 0.832 [95%CI (0.804,

0.860)] (Table 5; eFigure 13) and 0.795 [95%CI (0.755, 0.838)]

(eFigure 14) for the training and test groups, respectively. As for

advanced GC, the pooled c-index for the training and test groups

was 0.849 [95%CI (0.801-0.900)](eFigure 15) and 0.804 [95%CI

(0.778-0.830)](eFigure 16), respectively.

Thirty-one models evaluated the accuracy of ML for EGC,

and their pooled accuracy was 0.765 [95% CI (0.730-0.796)]

(eFigure 17) for the training group. In terms of test group, the

pooled accuracy for EGC was 0.731 [95%CI (0.686-0.773)]

(eFigure 18). As for advanced GC, the training group had a

pooled accuracy of 0.821 [95%CI (0.737-0.882)] (eFigure 19)

while the test group had a pooled accuracy of 0.844 [95%CI

(0.794-0.884)] (eFigure 20).
Subgroup analysis for predictors

Furthermore, we reviewed the predictors in the included

original studies and we found three cases: Group A included

only clinical predictors, Group B included only radiomic

predictors, and Group C included both clinical and

radiomic predictors.

In the training group, the c-index of groups A, B, and C was

0.822 ± 0.079 (n = 25), 0.852 ± 0.072 (n = 8), and 0.847 ± 0.063

(n = 8), respectively, with no significant difference between them

(F = 0.604, p=0.552) (Table 6). In the test group, the c-index of

groups A, B, and C was 0.792 ± 0.092 (n = 20), 0.83 ± 0.07 (n =

8), and 0.817 ± 0.043 (n = 6), respectively, and there was also no

significant difference between them (F = 0.664, p = 0.522).
frontiersin.org
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In the training group, the accuracy of groups A, B, and C

were 0.75 ± 0.087 (n=34), 0.811 ± 0.066 (n = 9), and 0.822 ±

0.073 (n = 7), respectively, and there was a significant difference

between them (F = 3.546, p = 0.037) (Table 6), and the model
Frontiers in Oncology 08
containing radiomics had better accuracy. In the test group, the

accuracy of groups A, B, and C were 0.722 ± 0.098 (n = 28), 0.799

± 0.075 (n = 8), and 0.795 ± 0.04 (n = 5), respectively, although

there was no significant difference between them (F = 3.224,
TABLE 2 Risk of bias and applicability assessment by PROBAST criteria.

Author Year Risk of bias Overall applicability rating

Participants Predictors Outcome Analysis

Xiaoxiao Wang 2021 low unclear low high high

Xiao-Yi Yin 2020 low unclear low low unclear

Bang Wool Eom 2016 low unclear low high high

Zhixue Zheng 2015 low unclear low high high

Zhengbing Wang 2021 low unclear low low unclear

Zhixue Zheng 2016 low unclear low high high

Yu Mei 2021 low low low low low

Jing Li 2018 low unclear low high high

Su Mi Kim 2020 low low low low low

Miaoquan Zhang 2021 low unclear low high high

Yuming Jiang 2019 low unclear low low unclear

Jianfeng Mu 2019 low low low low low

Shilong Li 2021 low low low low low

Chun Guang Guo 2016 low unclear low low unclear

Xujie Gao 2021 low unclear low low unclear

Xujie Gao 2020 low low low low low

Xu Wang 2021 low unclear low high high

Siwei Pan 2021 low low low low low

Wujie Chen 2019 low unclear low high high

Bong-Il Song 2020 low low low low low

Lili Wang 2021 low unclear low low unclear

Wannian Sui 2021 low unclear low low unclear

Dexin Chen 2019 low unclear low low unclear

Zepang Sun 2021 low low low low low

Xiao-Peng Zhang 2011 low unclear low high high

Song Liu 2021 low unclear low high high

C Jin 2021 low low low low low

Jing Li 2020 low low low high high

HuaKai Tian 2022 low low low low low

Qiu-Xia Feng 2019 low unclear low low unclear

Yue Wang 2020 low unclear low high high

Cheng-Mao Zhou 2021 low low low low low

Chao Huang 2020 low low low high high

Seokhwi Kim 2021 low unclear low low unclear

Qiufang Liu 2021 low unclear low high high

Lingwei Meng 2021 low low low low low

D Dong 2020 low low low low low

Ji-Eun Na 2022 low low low low low

Haixing Zhu 2022 low low low low low

Elfriede H Bollschweiler 2004 low low low high high

Yinan Zhang 2018 low low low high high
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p=0.051), the significance probability p-value was close to the

critical value of 0.05. The mean value of accuracy was higher for

models containing radiomics in the test cohort than for models

containing only clinical predictors.

In summary, the model covering radiomics and its machine

learning algorithms has better accuracy for the risk of lymph

node metastasis in gastric cancer.
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Discussion

The number of studies that apply ML to LNM prediction has

been gradually increasing since 2018, making it important to

systematically review the published studies so as to provide

guidance for future research. To our knowledge, this is the first

systematic review and meta-analysis that evaluated ML
TABLE 4 Results of meta-analyses of accuracy for prediction models for gastric cancer patients.

Model Train Test

No. model accuracy 95%CI No. model accuracy 95%CI

LR 28 0.792 0.761-0.820 23 0.787 0.745-0.824

Non-LR 22 0.768 0.725-0.805 18 0.707 0.665-0.746

ANN 2 0.707 0.574-0.812 1 0.634 0.589-0.678

DL 2 0.818 0.755-0.868 1 0.765 0.646-0.859

DT 1 0.794 0.754-0.830 1 0.632 0.587-0.676

GBDT 1 0.835 0.808-0.860 1 0.815 0.770-0.854

GBDT+LR 1 0.903 0.881-0.923 1 0.573 0.519-0.625

GBM 1 0.618 0.597-0.638 1 0.687 0.643-0.729

GLM 1 0.667 0.647-0.686 NA NA NA

RDA 1 0.668 0.649-0.688 1 0.700 0.636-0.759

RF 4 0.793 0.710-0.858 4 0.723 0.678-0.764

RF+LR 1 0.644 0.610-0.677 1 0.578 0.525-0.631

RPART 1 0.625 0.604-0.645 NA NA NA

SVM 4 0.765 0.678-0.835 2 0.789 0.693-0.861

XGB 1 0.863 0.838-0.886 1 0.678 0.626-0.727

XGB+LR 1 0.806 0.777-0.832 1 0.581 0.528-0.633

Bayesian NA NA NA 1 0.824 0.739-0.891

XGBOOST NA NA NA 1 0.691 0.648-0.733

Overall 50 0.781 0.756-0.805 41 0.753 0.721-0.783
fron
No. model indicates the number of prediction models. ANN, artificial neural network; DL, deep learning; DT, decision tree; GBM, gradient boosting machine; GLM, generalized linear
model; LR, logistic regression; NA, not available; No., number; Non-LR, non logistic regression; RDA, regularized dual averaging; RF, random forest; SVM, support vector machine;
XGBOOST, extreme gradient boosting.
TABLE 3 c-index for prediction models in gastric cancer patients.

Model Train Test

No. model c-index 95%CI No. model c-index 95%CI

LR 26 0.838 0.812-0.865 21 0.824 0.791-0.858

Non-LR 13 0.83 0.786-0.877 13 0.789 0.747-0.833

DL 3 0.866 0.799-0.938 3 0.835 0.780-0.895

GBDT 1 0.798 0.714-0.892 1 0.788 0.688-0.902

GBDT+LR 1 0.626 0.529-0.740 1 0.65 0.557-0.759

RF 3 0.893 0.817-0.977 3 0.848 0.829-0.868

RF+LR 1 0.691 0.594-0.804 1 0.678 0.584-0.787

SVM 2 0.847 0.804-0.894 2 0.817 0.728-0.917

XGB 1 0.881 0.786-0.987 1 0.762 0.673-0.863

XGB+LR 1 0.739 0.648-0.842 1 0.619 0.521-0.736

Overall 39 0.837 0.814-0.859 34 0.811 0.785-0.838
No. model indicates the number of prediction models. DL, deep learning; LR, logistic regression; No., number; Non-LR, non logistic regression; RF, random forest; SVM, support vector
machine.
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performance in the assessment of LNM in GC patients. ML-

related studies can be methodologically categorized into LR and

non-LR study. Several included studies were assessed to be of

high or unclear risk of bias in the domains of prediction, analysis

and overall applicability, which highlighted the current state of

technology, as well as the need for methodological

quality improvement.

This study demonstrated that ML had an excellent

diagnostic performance in predicting LNM with great

repeatability, which was in consistence with other studies. The

pooled c-index and accuracy were 0.837 [95%CI (0.814,0.859)]

and 0.781 [95%CI (0.756–0.805)], respectively. Significant

heterogeneity existed between the studies, which could be

caused by multiple factors. EGC is defined as a tumor limited

to the mucosa and submucosa, regardless of the LNM (82). A

subgroup analysis was performed since the difference in the

order of magnitude characteristics of LNM between EGC and

advanced gastric cancer may have a certain impact on the results

of machine learning. It showed no significant difference in c-

index or accuracy between EGC and advanced gastric cancer. In

addition, since the included studies used LR or non-LR,

subgroup analysis based on this variable was conducted to

observe the changes in heterogeneity between the two groups.

There was also no significant difference in c-index or accuracy

among different ML algorithms. The type of ML algorithm had

no effect on LNM prediction. Most importantly, this study was

not designed to identify one superior algorithm from the

other ones.

Feature selection was also critical to the performance and

interpretation of the model. The most commonly used variables

in the model development were tumor size, depth of tumor
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invasion, histology differentiation, imaging techniques,

lymphovascular invasion, tumor location, CT-reported LN,

age, macroscopic features, and CA199. These variables are

either anthropometric characteristics serving as markers of

disease severity, or important factors contributing to the

natural disease progression. These predictive indicators are

easy to measure. Another merit of these predictors is the low

risk of bias in measurement, resulting in a minimal possibility of

exposure misclassification. Previous studies have revealed that

the size of tumor is closely related to the incidence of LNM in

patients with GC (83–85). Larger tumor typically indicates a

higher risk of LNM (86–88), which might be attributed to

easiness of invasion for larger tumor to the surrounding

tissues. Depth of tumor invasion was found to be a strong

predictor in 32 models (32, 34–37, 39, 41, 42, 46, 49, 50, 52,

54–56, 62, 69–71), which is in consistence with substantial

evidence supporting its use as a predictor of LNM (36, 63, 89–

91). There were 20 models considered histology differentiation

as a vital factor for predicting LNM (34–37, 41, 42, 48–55, 61–

63). Deeply infiltrated and poorly differentiated tumors might

have sufficient nutritional support to facilitate its invasion to

tissues, capillaries and lymphatic vessels, and thus to have the

potential to grow and metastasize faster (69).

The novel PROBAST was applied for assessment of risk of

bias and applicability of included prediction model studies,

which allowed more details of the model, such as data source,

processing, number of events per variable, feature selection,

model development, and model validation, to be checked

intensively (92–95). The PROBAST quality assessment

revealed some other issues that could be avoided in future

studies. First, external validation is rarely performed, which
TABLE 5 Subgroup analysis for early-gastric cancer and advanced gastric cancer.

Stage Train Test Train Test

No.
model

c-index(95%
CI)

No.
model

c-index(95%
CI)

No.
model

Accuracy(95%
CI)

No.
model

Accuracy(95%
CI)

EGC 24 0.832
(0.804-0.860)

19 0.795
(0.755-0.838)

31 0.765
(0.730-0.796)

26 0.731
(0.686-0.773)

Advanced
GC

3 0.849
(0.801-0.900)

3 0.804
(0.778-0.830)

2 0.821
(0.737-0.882)

2 0.844
(0.794-0.884)
No. model indicates the number of prediction models. EGC, early-gastric cancer; GC, gastric cancer.
TABLE 6 Subgroup analysis for predictors.

Model Indicator CP RP CP+RP F P

n mean(sd) n mean(sd) n mean(sd)

Train c-index 25 0.822(0.079) 8 0.852(0.072) 6 0.847(0.063) 0.604 0.552

accuracy 34 0.75(0.087) 9 0.811(0.066) 7 0.822(0.073) 3.546 0.037

Test c-index 20 0.792(0.092) 8 0.830(0.07) 6 0.817(0.043) 0.664 0.522

accuracy 28 0.722(0.098) 8 0.799(0.075) 5 0.795(0.04) 3.224 0.051
frontiersin.
n indicates the number of prediction models. CP, Clinical Predictors; RP, Radiomics Predictors.
org

https://doi.org/10.3389/fonc.2022.946038
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Li et al. 10.3389/fonc.2022.946038
might be a primary limitation in studies of this field. Simple

determination of samples for modeling would lead to an

overestimation for the model performance (96), and further

accuracy verification for these models would be advisable.

Guidelines that include external validation should be followed

when reporting ML models (97). On the other hand, most of the

included studies were retrospective design, leading to

confounding and selection bias. More prospective studies are

needed to produce evidence of high quality. The included studies

also demonstrated another roadblock to the clinical

implementation of ML. The data used in most of the included

studies were from single institution, which resulted in limited

datasets for training and failed to exert the advantage of ML that

it is effective in processing large samples on multiple dimensions

(98). Also, limited number of studies were less likely to be of

broad public health significance. Future studies should take into

accounts the expansion of datasets from multiple centers to

increase the sample size and to improve classifier performance.

We also note the importance of preoperative assessment of

peritoneal metastasis of GC for prognosis. Currently, the

assessment of peritoneal metastases is mainly in the form of

radiomics, but the data obtained by radiomics is obtained from

a variety of sources, usually by CT, which may affect the results

obtained (99–106). The heterogeneity of the results can be

brought about by the different parameters and bits of CT and

the artificial partitioning by different investigators through

their own experience, so that the prediction of preoperative

peritoneal metastases based on radiomics can be highly

heterogeneous. At the same time, the application of

radiomics generates a large amount of high-dimensional

data, and the screening of these high-dimensional data is a

great challenge in clinical practice. Therefore, although the

prediction of preoperative peritoneal metastasis based on

radiomics has been favored by a large number of researchers

in recent years, these studies have not reached a clear

consensus, thus resulting in a great variation in C-index (C-

index ranged from 0.712 to 0.981) (99–106). We also expect

subsequent studies based on radiomics to guide preoperative

peritoneal metastases.

There were several limitations in this study. The first

limitation was the significant heterogeneity. The sample sizes

and distributions varied in different studies, as well as

heterogenous variety of feature selection methods and ML

algorithms, which compromised the performance and

applicability of each model. However, such heterogeneity

could be deemed as a key finding that should be addressed by

future studies. Second, the estimation for prediction

performance was based on limited data due to the incomplete

reports of the results in several studies. Third, most of the

reviewed studies included GC patients in different cancer

stages, which might represent a possible confounding factor

that disrupted ML performance in differential diagnosis. Fourth,
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our findings should be interpreted prudently considering the

potential significant publication bias. It is not suggested for

investigators to report a test of unsatisfactory prediction values.

It is probable that there might be instances in which ML might

not have optimal prediction accuracies and so that has not been

published yet (107). Last but not least, eight of the included

studies that did not report the test set also affected the robustness

of this study by causing a false high-performance result. It would

be even better if all the studies provided external test results.
Conclusion

ML has shown excellent diagnostic performance for LNM

prediction in GC patients, and ML models based on radiomics

and clinical features could be a better potential prediction

method. However, there were some methodological limitations

in their development, and there is still room for improvement in

predictive value. Future studies are needed to explore efficient,

minimally invasive, and easily collected predictors for LNM so as

to build more effective ML models and improve the accuracy of

LNM prediction.
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92. Palazón-Bru A, Mares-Garcıá E, López-Bru D, Mares-Arambul E, Folgado-
de la Rosa DM, Carbonell-Torregrosa M, et al. A critical appraisal of the clinical
frontiersin.org

https://doi.org/10.3978/j.issn.1000-9604.2015.12.06
https://doi.org/10.3978/j.issn.1000-9604.2015.12.06
https://doi.org/10.17235/reed.2020.7102/2020
https://doi.org/10.17235/reed.2020.7102/2020
https://doi.org/10.1186/s12885-016-2132-5
https://doi.org/10.1016/j.radonc.2021.11.003
https://doi.org/10.3390/cancers14051121
https://doi.org/10.3390/cancers14051121
https://doi.org/10.1016/j.surg.2021.12.015
https://doi.org/10.1016/j.jacr.2018.12.017
https://doi.org/10.1016/j.jacr.2018.12.017
https://doi.org/10.1007/s00330-019-06398-z
https://doi.org/10.1186/1471-2407-11-10
https://doi.org/10.1038/s41598-020-80582-w
https://doi.org/10.1016/j.acra.2021.01.011
https://doi.org/10.1002/bjs.11928
https://doi.org/10.3389/fonc.2020.01638
https://doi.org/10.1038/s41379-020-00681-x
https://doi.org/10.3389/fonc.2021.723345
https://doi.org/10.1109/JBHI.2020.3002805
https://doi.org/10.1016/j.annonc.2020.04.003
https://doi.org/10.1007/s00330-019-06621-x
https://doi.org/10.3389/fmed.2021.759013
https://doi.org/10.1245/ASO.2004.04.018
https://doi.org/10.21147/j.issn.1000-9604.2018.06.07
https://doi.org/10.21147/j.issn.1000-9604.2018.06.07
https://doi.org/10.1016/j.acra.2020.03.045
https://doi.org/10.7150/jca.30260
https://doi.org/10.3748/wjg.v25.i35.5344
https://doi.org/10.3748/wjg.v25.i35.5344
https://doi.org/10.1186/s13244-021-01034-1
https://doi.org/10.1136/bmj.b2700
https://doi.org/10.1371/journal.pmed.1001744
https://doi.org/10.7326/M18-1376
https://doi.org/10.1136/ebmental-2019-300117
https://doi.org/10.1136/ebmental-2019-300117
https://doi.org/10.18637/jss.v036.i03
https://doi.org/10.1016/0197-2456(86)90046-2
https://doi.org/10.1111/den.13883
https://doi.org/10.1002/jso.20951
https://doi.org/10.1007/BF02303796
https://doi.org/10.1245/s10434-009-0449-x
https://doi.org/10.1245/s10434-009-0449-x
https://doi.org/10.1007/s10120-008-0479-2
https://doi.org/10.1007/s10120-007-0442-7
https://doi.org/10.3389/fmed.2021.637875
https://doi.org/10.1016/S0002-9610(01)00860-1
https://doi.org/10.18632/oncotarget.14535
https://doi.org/10.18632/oncotarget.14535
https://doi.org/10.1186/s12885-015-1940-3
https://doi.org/10.1186/s12885-015-1940-3
https://doi.org/10.3389/fonc.2022.946038
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Li et al. 10.3389/fonc.2022.946038
applicability and risk of bias of the predictive models for mortality and recurrence
in patients with oropharyngeal cancer: Systematic review. Head neck (2020) 42
(4):763–73. doi: 10.1002/hed.26025

93. Di Tanna GL, Wirtz H, Burrows KL, Globe G. Evaluating risk prediction
models for adults with heart failure: A systematic literature review. PloS One (2020)
15(1):e0224135. doi: 10.1371/journal.pone.0224135

94. Nagendran M, Chen Y, Lovejoy CA, Gordon AC, Komorowski M, Harvey
H, et al. Artificial intelligence versus clinicians: systematic review of design,
reporting standards, and claims of deep learning studies. BMJ (Clinical Res ed).
(2020) 368:m689. doi: 10.1136/bmj.m689

95. Dretzke J, Chuchu N, Agarwal R, Herd C, Chua W, Fabritz L,
et al. Predicting recurrent atrial fibrillation after catheter ablation: a systematic
review of prognostic models. Europace Eur Pacing Arrhythmias Cardiac
Electrophysiology J Working Groups Cardiac Pacing Arrhythmias Cardiac Cell
Electrophysiology Eur Soc Cardiol (2020) 22(5):748–60. doi: 10.1093/europace/
euaa041

96. Bellou V, Belbasis L, Konstantinidis AK, Tzoulaki I, Evangelou E. Prognostic
models for outcome prediction in patients with chronic obstructive pulmonary
disease: systematic review and critical appraisal. BMJ (Clinical Res ed). (2019) 367:
l5358. doi: 10.1136/bmj.l5358

97. Bedrikovetski S, Dudi-Venkata NN, Kroon HM, Seow W, Vather R,
Carneiro G, et al. Artificial intelligence for pre-operative lymph node staging in
colorectal cancer: a systematic review and meta-analysis. BMC Cancer (2021) 21
(1):1058. doi: 10.1186/s12885-021-08773-w

98. Al-Jarrah OY, Yoo PD, Muhaidat S, Karagiannidis GK, Taha K. Efficient
machine learning for big data: A review. Big Data Res (2015) 2(3):87–93. doi:
10.1016/j.bdr.2015.04.001

99. Dong D, Tang L, Li ZY, Fang MJ, Gao JB, Shan XH, et al. Development and
validation of an individualized nomogram to identify occult peritoneal metastasis
in patients with advanced gastric cancer. Ann Oncol (2019) 30(3):431–8. doi:
10.1093/annonc/mdz001
Frontiers in Oncology 15
100. Xue B, Jiang J, Chen L, Wu S, Zheng X, Zheng X, et al. Development and
validation of a radiomics model based on (18)F-FDG PET of primary gastric cancer
for predicting peritoneal metastasis. Front Oncol (2021) 11:740111. doi: 10.3389/
fonc.2021.740111

101. Huang W, Zhou K, Jiang Y, Chen C, Yuan Q, Han Z, et al. Radiomics
nomogram for prediction of peritoneal metastasis in patients with gastric cancer.
Front Oncol (2020) 10:1416. doi: 10.3389/fonc.2020.01416

102. Chen Y, Xi W, Yao W, Wang L, Xu Z, Wels M, et al. Dual-energy
computed tomography-based radiomics to predict peritoneal metastasis in gastric
cancer. Front Oncol (2021) 11:659981. doi: 10.3389/fonc.2021.659981

103. Liu D, Zhang W, Hu F, Yu P, Zhang X, Yin H, et al. A bounding box-based
radiomics model for detecting occult peritoneal metastasis in advanced gastric cancer:
A multicenter study. Front Oncol (2021) 11:777760. doi: 10.3389/fonc.2021.777760

104. Liu S, He J, Liu S, Ji C, Guan W, Chen L, et al. Radiomics analysis using
contrast-enhanced CT for preoperative prediction of occult peritoneal metastasis in
advanced gastric cancer. Eur Radiol (2020) 30(1):239–46. doi: 10.1007/s00330-019-
06368-5

105. Mirniaharikandehei S, Heidari M, Danala G, Lakshmivarahan S, Zheng B.
Applying a random projection algorithm to optimize machine learning model for
predicting peritoneal metastasis in gastric cancer patients using CT images.
Comput Methods Programs Biomed (2021) 200:105937. doi: 10.1016/
j.cmpb.2021.105937

106. Wang L, Lv P, Xue Z, Chen L, Zheng B, Lin G, et al. Novel CT based clinical
nomogram comparable to radiomics model for identification of occult peritoneal
metastasis in advanced gastric cancer. Eur J Surg Oncol J Eur Soc Surg Oncol Br
Assoc Surg Oncol (2022) 30:S0748-7983(22)00539-X. doi: 10.1016/
j.ejso.2022.06.034

107. Iannattone PA, Zhao X, VanHouten J, Garg A, Huynh T. Artificial
intelligence for diagnosis of acute coronary syndromes: A meta-analysis of
machine learning approaches. Can J Cardiol (2020) 36(4):577–83. doi: 10.1016/
j.cjca.2019.09.013
frontiersin.org

https://doi.org/10.1002/hed.26025
https://doi.org/10.1371/journal.pone.0224135
https://doi.org/10.1136/bmj.m689
https://doi.org/10.1093/europace/euaa041
https://doi.org/10.1093/europace/euaa041
https://doi.org/10.1136/bmj.l5358
https://doi.org/10.1186/s12885-021-08773-w
https://doi.org/10.1016/j.bdr.2015.04.001
https://doi.org/10.1093/annonc/mdz001
https://doi.org/10.3389/fonc.2021.740111
https://doi.org/10.3389/fonc.2021.740111
https://doi.org/10.3389/fonc.2020.01416
https://doi.org/10.3389/fonc.2021.659981
https://doi.org/10.3389/fonc.2021.777760
https://doi.org/10.1007/s00330-019-06368-5
https://doi.org/10.1007/s00330-019-06368-5
https://doi.org/10.1016/j.cmpb.2021.105937
https://doi.org/10.1016/j.cmpb.2021.105937
https://doi.org/10.1016/j.ejso.2022.06.034
https://doi.org/10.1016/j.ejso.2022.06.034
https://doi.org/10.1016/j.cjca.2019.09.013
https://doi.org/10.1016/j.cjca.2019.09.013
https://doi.org/10.3389/fonc.2022.946038
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

	Machine learning for lymph node metastasis prediction of in patients with gastric cancer: A systematic review and meta-analysis
	Background
	Methods
	Literature retrieval strategy
	Inclusion criteria
	Data extraction
	Risk of bias assessment
	Statistical analysis

	Results
	Study selection
	Characteristics of included studies
	Characteristics of machine learning in included studies
	Risk of bias and applicability assessment
	C-index
	Accuracy
	Subgroup analysis for early-gastric cancer and advanced gastric cancer
	Subgroup analysis for predictors

	Discussion
	Conclusion
	Data availability statement
	Author contributions
	Funding
	Supplementary material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


