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Abstract

While there have been many studies using machine learning (ML) algorithms to predict pro-

cess outcomes and device performance in semiconductor manufacturing, the extensively

developed technology computer-aided design (TCAD) physical models should play a more

significant role in conjunction with ML. While TCAD models have been effective in predicting

the trends of experiments, a machine learning statistical model is more capable of predicting

the anomalous effects that can be dependent on the chambers, machines, fabrication envi-

ronment, and specific layouts. In this paper, we use an analytics-statistics mixed training

(ASMT) approach using TCAD. Under this method, the TCAD models are incorporated into

the machine learning training procedure. The mixed dataset with the experimental and

TCAD results improved the prediction in terms of accuracy. With the application of ASMT to

the BOSCH process, we show that the mean square error (MSE) can be effectively

decreased when the analytics-statistics mixed training (ASMT) scheme is used instead of

the classic neural network (NN) used in the baseline study. In this method, statistical induc-

tion and analytical deduction can be combined to increase the prediction accuracy of future

intelligent semiconductor manufacturing.

1. Introduction

Currently, machine learning is widely applied to many fields, such as medical imaging

[1,2,3,4], financial crises [5,6], biology [7,8,9,10,11], and traffic classification [12,13,14].

Machine learning is utilized to predict the results of future experiments under various condi-

tions by incorporating a small amount of known or experimental data for training. Semicon-

ductor manufacturing is a complicated process that requires the monitoring of many of

parameters during the process steps such as deposition, lithography, and etching, as depicted

in Fig 1. A large number of input features can exist at a single instant of time during the pro-

cess cycle. Thus, the complexity of the irregular sample space together with the large number

of input features makes predicting the semiconductor process a very challenging problem.

This problem paves way for the use of machine learning in this area to find optimal solutions.

There have been some previous studies on machine learning applied to semiconductor
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manufacturing [15,16,17,18,19,20,21,22,23,24,25,26]. Duo Ding et al.[27] used machine learn-

ing to detect lithography hotspots on wafers. Park and Shin [28] tried to solve the issue of field

management in semiconductor manufacturing with the help of machine learning. Kim et al.

[29] proposed a generalized regression neural network (GRNN) in plasmon dry etching. All

these efforts have provided great insights into the possible implementation of machine learn-

ing in semiconductor manufacturing processes. One important issue in the case of using

machine learning for smart manufacturing is that to achieve increased model accuracy, more

training data are required. Nonetheless, more data mean a higher cost in the trial-and-error

stages, and this will further increase the cost of the expensive semiconductor flow cycles.

To accelerate the machine learning model construction and prediction within a reasonable

number of experimental runs, we use an analytics-statistics mixed trained (ASMT) neural net-

work (NN) using technology computer-aided design (TCAD). This kind of constraint-based

learning has been successful in many fields [30,31,32,33,34]. The constraints can be derived

from physics, chemistry, human sense, or a small pre-trained dataset to provide uniform con-

straints over a larger or multiple datasets. Different from the traditional supervised neural net-

work that uses only experimentally labeled data in the training process, analytics-statistics

mixed training (ASMT) uses both the experimentally labeled and TCAD-labeled data to

increase the model prediction accuracy or decrease the required amount of experimentally

labeled data to reduce the cost. Additionally, the methodology of using statistics and analytics

jointly can easily fit semisupervised learning (SSL) framework [31]. While there have been

many past efforts in smart semiconductor manufacturing, in this paper, we use the TCAD sim-

ulation results to label the unlabeled data by SSL, which has been thoroughly investigated in

this field. The application of TCAD-labeled analytics-statistics mixed training (ASMT) to

semisupervised learning (SSL) will be explained in the following paragraph.

Supervised learning constructs an input-output relationship with trained statistical models

and labeled data. With the help of SSL, the unlabeled data can effectively support the statistical

model prediction in some cases if an appropriate algorithm is used to incorporate the informa-

tion provided by the unlabeled data into the model. There has been much literature to date

showing that adding unlabeled data into the training procedure still improves the prediction

Fig 1. The traditional 90 nm standard CMOS process. This process requires more than one hundred steps. There can be

several hundred parameters in the fabrication flow. Abbreviations: Low-T—low temperature, LOCOS- local oxidation of

silicon, Halo+LDD—halo-type lightly doped drain, TEOS ILD-tetraethoxysilane interlayer dielectric, MSW- major sidewall

spacers, Vt/APT- threshold voltage for anti-punch through, poly- polysilicon, S/D- source/drain, RTA- rapid thermal

processing, PVD- physical layer deposition, and N+/P+—n-type /p-type dopants.

https://doi.org/10.1371/journal.pone.0220607.g001
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accuracy of statistical models even when the output is missing [35]. Semisupervised learning

can be implemented with various algorithms, such as self-training (ST), expectation maximiza-

tion (EM), transductive support vector machine (TSVM), cotraining, multiview, and graph-

based semisupervised learning. The self-training (ST) algorithm is used when the labeled data-

set has a smaller amount of data than the unlabeled dataset. It consists of a few steps, including

training, prediction, selection of proper labels for the unlabeled data, retraining an enlarged

labeled dataset, and continuation until convergence is achieved. ST is the earliest semisuper-

vised learning algorithm, in which the unlabeled data are gradually assigned a label (output)

during the training procedure [36]. The expectation-maximization (EM) algorithm assumes

initial values for the labels of unlabeled data. The prediction is made after training, and the

convergence is defined as the predicted labels being consistent with or within an error toler-

ance compared to the assumed labels [5]. In the case of a transductive support vector machine

(TSVM), maximizing the decision boundary margin in the input vector space is the ultimate

goal when labeling the unlabeled data. [37].

The TCAD-labeled analytics-statistics mixed training (ASMT) scheme can be used with

SSL in the sense that the unlabeled data in SSL can be labeled using analytical models, if they

exist, to enhance the accuracy of SSL. Specifically, the TCAD analytical model values can be

used as the initial guess in the expectation-maximization (EM) algorithm, or serve as the dis-

criminant to assist in the selection procedure to merge the likely to-be-true unlabeled data into

the labeled group.

Combining physics, chemistry, or biology with machine learning methods have been draw-

ing increased attention in recent years [30,31]. Here, we use an approach using the TCAD sim-

ulations so that the model can be trained using statistics and analytics. The idea is shown in

Fig 2. Using the deep reactive ion etching (DRIE) Bosch process [38,39,40] as an example, Fig

2 illustrates the concepts of our model. In this model, we utilized the experimental and TCAD

data simultaneously to attain accurate and faster predictions. First, we build a TCAD model to

predict the etching depth (d) with various input features: the pattern width (W), the etching

time (t), trench space (S), pressure main etch (P), SF6 flow main etch (F) and inductively cou-

pled plasma (ICP) RF power in main etch (IF). During the preprocessing of the input data,

space (S) is eliminated because we are using a constant space value in our experiment. The

other 5 input parameters are critical in determining the etching depths and are considered to

be independent. The etched patterns are designed with different line widths and spacing. After

the TCAD calculations, the TCAD results are used to label the unlabeled data. Thereafter, both

the experimentally labeled and TCAD-labeled data are supplied to the NN for optimal

training.

2. Methods

2.1 Analytics-Statistics Mixed Training (ASMT)

The first paper regarding including physical models into semi-supervised learning is by Ren

et. al[31]. The basic idea in this work is to regard the analytical technology computer-aided

design (TCAD) outputs as the target output values. Here, we used the aspect-ratio dependent

etching (ARDE) process to demonstrate the effectiveness of the TCAD-based analytics-statis-

tics mixed training (ASMT). Although the TCAD model is not entirely accurate, especially in

our case, we use a very simple analytical model to calculate the ARDE effect. The inclusion of

this additional unlabeled data still helps to improve the accuracy of the neural networks. This

improvement will be evident when the test set prediction is made.

The implementation of our work is demonstrated in Fig 3. The set of the experimentally

labeled data was divided into a training set (XTrain, YTrain) and a test set (XTest, YTest), and the

Analytics-statistics mixed training and its fitness to semisupervised manufacturing

PLOS ONE | https://doi.org/10.1371/journal.pone.0220607 August 13, 2019 3 / 18

https://doi.org/10.1371/journal.pone.0220607


Fig 2. TCAD-labeled analytics-statistics mixed training (ASMT) uses the experimentally labeled and analytically labeled data in

conjunction with the TCAD simulations. The model fits the into the SSL framework well since the unlabeled data can be labeled in

SSL using the analytical models and then be fed into supervised learning models. The analytics-labeled data can also serve as the

initial guess in the expectation-maximization algorithm under SSL or the selection criteria in self-training.

https://doi.org/10.1371/journal.pone.0220607.g002

Fig 3. Implementation of TCAD-labeled ASMT. (a) The dataset is split into the training set and test set. (b) The baseline model is trained

with the experimentally labeled data. (c) The TCAD-labeled ASMT model is trained with the experimentally labeled and TCAD-labeled

data. (d) The test phase of the baseline and TCAD-labeled ASMT models.

https://doi.org/10.1371/journal.pone.0220607.g003
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boundary is denoted by the partition parameter in this paper. The test set is reserved for testing

the prediction accuracy of the baseline and TCAD-labeled ASMT models. The baseline NN

model is trained with the experimentally labeled data in the training set. For the ASMT model,

the TCAD-labeled data, (XExtra, YExtra), can be added to the training set. Therefore, the

extended training set with the experimentally labeled and analytically labeled data is expected

to provide a better prediction accuracy. It is worth mentioning how to select the input parame-

ter values, XExtra, for the TCAD-labeled data to form the extended training set. In fact, the

selection can depend highly on the machine learning problem under investigation. In the case

of smart manufacturing, we can determine the input parameters that will be tried for future

experiments, and therefore, the selection of the input parameter values can be done in the

same way as the values in the test set. The same situation exists for algorithmic trading, where

the input parameter values, such as the historic high/low price and volume history, can be

known in advance. In some machine learning problems, such as natural language processing

or sentiment analyses, the future input parameter values may not be known in advance, and in

this case, the selection of the input parameter values in the ASMT can be made in as wide a

range as possible to cover the potential input parameter values in future experiments or equiv-

alently in the test set. We use maximum likelihood (MLE) inference during model training,

and we can locate the wij values of the NN using the stochastic gradient descent (SGD)

method.

2.2 Neural network (NN) structure

A neural network (NN) [41] is considered to be a computational model that produces out-

put data from input data and corresponding weights, wij, using a nonlinear activation func-

tion. Usually, monotonically increasing functions are used as activation functions in this

context. The purpose of using monotonically increasing activation functions is to generate a

generalized model for any complex interaction. Data preprocessing is considered an impor-

tant step before training the NN model and is done by normalizing the input data into a

consistent range of 0 to 1 so that the SGD method converges more easily. The normalization

is achieved by the min-max scalar. Different from conventional machine learning methods,

here, we have two datasets. The experimental dataset consists of the fabrication data, which

are divided into the training set (XTrain, YTrain) and the test set (XTest, YTest), and the TCAD

dataset (XExtra, YExtra) from the analytical modeling, as illustrated in Fig 3. The normaliza-

tion of the TCAD dataset is performed simply by extracting the minimum and maximum of

the dataset since the TCAD values are known in advance. In extracting of the minimum and

maximum of the experimental dataset, the estimate is made by multiplying the TCAD data-

set minimum and maximum by the ratio of the experimental etching depth value to the

TCAD calculation value of the first collected experiment data sample. When we denorma-

lize the normalized etching depth values back to the real etching depth values, for the pre-

diction or mixed experiment-TCAD data during training, the denormalization is uniformly

based on the min-max scalar derived from fitting the experimental dataset, as will be shown

in section 3.

The ReLU activation function has better convergence than the sigmoid and tanh activation

functions. Specifically, the cutoff at x<0 and the linearity at x�0 ensure a simple gradient for-

mulation, which prevents exploding gradient values and subsequent divergence during

training.

Consider an NN with an n-dimensional input vector with the input parameters X = {x1,

x2,. . ., xn}. It has two hidden layers with 50 neurons in each layer, and the ReLU activation

function is represented as h as shown in Fig 4. The output, g1
i , of the first hidden layer from
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any arbitrary neuron, I, is given as:

g1

i ¼
Xp

j¼1

hðw1

ij � xj þ b0Þ ð1Þ

where b0 is the bias in the first hidden layer, p is the total number of input data samples, w1
ij is

the weight between the jth node in the input layer and ith neuron in the hidden layer. xj is the

input vector of the jth feature.

The ReLu activation function used in this work since our dataset has positive real values,

and we need the etching depth to be a positive value in micrometers. The ReLU activation

function is

hðxÞ ¼ maxð0; xÞ ¼
x; if x � 0

0; Otherwise
ð2Þ

(

To calculate the output from the second hidden layer, the output of the first hidden layer is

considered as its input. Therefore, the output of any s neurons in the second hidden layer, g2
s ,

can be generalized as:

g2

s ¼ hð
Xk

i¼1

g1

i � w2

is þ b1Þ ð3Þ

where b1 is the bias for the second hidden layer, g2
, and k is the total number of neurons in the

first hidden layer.

The final output is the etching depth, which can be computed by summing all of the outputs

from the second hidden layer. The mathematical notation for the output, ypredict, is given as

ypredict ¼
Xk

j¼1

g2

j � w3

j1 þ b2 ð4Þ

where b2 is the bias, w3

j1 represents the weights, k is the total number of neurons, and ypredict is

the predicted etching depth.

Fig 4. General structure of a four-layer NN with 2 input features, two hidden layers with 50 neurons in each layer,

and one output layer.

https://doi.org/10.1371/journal.pone.0220607.g004
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In this paper, we have implemented the NN using a multilayer perceptron (MLP) by using

2-input and 5-input datasets. The corresponding features are illustrated in Figs 4 and 5,

respectively.

2.2.1 The NN loss function in a multilayer perceptron (MLP). In machine learning, the

loss function must be defined before the training procedure. The loss function is expected to

be minimized if convergence is observed. In the case of our regression problem, we have used

a squared error loss function. For the baseline algorithm, the experimental data were used to

train the NN model. The mathematical expression of the loss function for the baseline training

set is given as

lossðyTrain;wÞ ¼
1

2
kyTrain � ypredictk

2
þ
a

2
kwk2

ð5AÞ

where yTrain represents the experimentally labeled data, and w represents the corresponding

weights. For complex models, α||w||2 is the regularization term, where α cannot be negative,

and its value is 0.001 in our model. The predicted value of etching depth is ypredict.

As explained earlier, the TCAD-labeled data are added to the experimental dataset to better

train the NN model. The loss function for TCAD-labeled ASMT is given as

lossðyTrain; yExtra;wÞ ¼
1

2
kyTrain � ypredictk

2
þ

1

2
kyExtra � ypredictk

2
þ
a

2
kwk2

ð5BÞ

where α||w||2 is the regularization term, d is the predicted value of the etching depth, yTrain and

yExtra are the experimentally labeled and TCAD-labeled values, respectively.

2.2.2 The Adam optimizer. The minimization of the loss function is achieved with appro-

priate solvers or optimizers. From the Scikit-learn library for the Python language [42,43], we

Fig 5. General structure of a four-layer NN with 5 input features, two hidden layers with 50 neurons in each layer, and

one output layer.

https://doi.org/10.1371/journal.pone.0220607.g005
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utilized the Adam optimizer [44]. While it shares some similarity to the stochastic gradient

descent method, the Adam optimizer uses adaptive estimates and takes into account only the

lower-order moments during model parameter tuning. The neural network weights are

updated in the Adam optimizer as

wiþ1 ¼ wi � Zða
@hðwÞ
@w

þ
@Loss
@w
Þ ð6Þ

where wi+1 and wi are the updated and previous weights, η is the learning rate, @h(w)/ @w and

@Loss/@w are the derivatives of the activation function and the loss function with respect to the

weight, respectively.

For the sake of converged solutions, the optimizer, learning rate, activation function and

tolerance all play vital roles. Our model possesses an MLP regressor and a ReLU activation

function with a tolerance of 0.00001.

2.2.3 The mean square error (MSE). The mean squared error (MSE) metric is used to

assess the fitting or prediction accuracy in our case. The predicted output, ypredict, is compared

to the corresponding target values in the training and test datasets. The mathematical forms of

the MSE are given below for the training set. The MSE formulas are somewhat different for the

baseline model using a conventional NN and for TCAD ASMT:

MSEbaseline ¼
1

2
kyTrain � ypredictk

2
ð7AÞ

MSETCAD ASMT ¼
1

2
kyTrain � ypredictk

2
þ

1

2
kyExtra � ypredictk

2
ð7BÞ

The mathematical formulation of the MSE for the test set is uniformly defined as the differ-

ence between the predicted depth (ypredict) and the true experimental depth in the test set,

MSE ¼
1

2
kyTest � ypredictk

2
ð7CÞ

2.3 The TCAD model and BOSCH DRIE etching

A six inch (100) p-type B-doped Si wafer is used for this experiment. An automated spin-

coater, TEL CLEAN TRACK MK-8, and Leica Weprint 200 E-beam stepper are used for e-

beam resist patterning. There are two sets of experiments involving the DRIE Bosch process

[45] in this work. The first dataset [46] initially had three inputs, the etching time (t), trench

width (W) and trench space (S). However, during preprocessing, the trench space (S) is

excluded from the input parameters due to its small variations which have no effect on the

etching depth. The three input parameters are listed in Table 1 along with their corresponding

values and units.

In the second dataset, we originally had six input features. However, the trench space (S) is

eliminated due to the reason mentioned above. The variations of features in the 5-input dataset

are listed in Table 2.

Table 1. The input features for the aspect-ratio dependent etching (ARDE) experiments for the 2-input dataset

[46].

Parameters Value Units

Space 5, 1, 0.5 μm

Etching time 170, 68, 51, 34 μsec

Line width 1, 0.8, 0.5, 0.3 μm

https://doi.org/10.1371/journal.pone.0220607.t001
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The entire process flow of the machines used in this work is shown in Fig 6. In our BOSCH

DRIE process using the OxfordTM machine, the microloading is not very pronounced because

of our one-dimensional (1D) etch patterns. As a result, the spacing between adjacent trenches

is not taken into account in the machine learning models. If dense-pattern two-dimensional

(2D) etching is conducted, the microloading will be more pronounced. Nevertheless, we want

to emphasize that the same TCAD-labeled ASMT learning scheme can be easily employed to

predict the 2D etch by taking into account the spacing and other necessary input features.

The Bosch process [45] for Si DRIE is conducted using the OxfordTM Estrelas 100 induc-

tively coupled Plasmon (ICP) reactive ion etching (RIE) machine. Fig 7 illustrates the Bosch

etching process steps. A Hitachi SU-8010 scanning electron microscope (SEM) was used to

examine the etching line widths and depths for the etched trenches. A wavy sidewall, which is

a characteristic of the Bosch DRIE process, is evident in our SEM micrographs shown in Fig 8.

The etching depth, d = yTCAD, is computed by considering the gas flow conservation equa-

tion [38]

vt � ð1 � kð
dðtÞ
W
ÞÞvt � kð

dðtÞ
W
Þð1 � sÞvb ¼ svb: ð8Þ

The ARDE effect will be reflected in Eq 8. The transmission probability or Knudsen coefficient

is k; vt is the flux incidence of gas at the top of the etched feature; vb is the flux species at the

bottom of the trench; s is the reaction probability at the trench bottom; d(t) is the trench depth

at time t; and W is the trench width. The full model description can be referred to in the IBM

paper. The final etching depth predicted by TCAD is computed by numerical integration,

dðt ¼ tendÞ ¼
Z t¼tend

t¼0

Rð
dðtÞ
W
Þdt

¼

Z t¼tend

t¼0

Rð0Þ
kð

dðtÞ
W
Þ

kð
dðtÞ
W
Þ þ ð1 � kð

dðtÞ
W
ÞÞs

dt
ð9Þ

R(0) is the etching rate at the top of the trench; R(d(t) / W) is the etching rate at the bottom of

the trench; tend is the time when the Bosch process ends.

3. Results and discussion

In this section, the partition parameter assumes values of 15, 30 and 45 for the 2-input dataset

and 10, 20, 30, 40 for the 5-input dataset. After partitioning, a baseline NN is trained with the

training set of the experimental dataset (XTrain, YTrain), while the amount of experimental data

to be trained depends on the partition parameter. For the ASMT proposal, TCAD is used to

supplement machine learning by supplying the additional data (XExtra, YExtra) with the TCAD

calculated outputs/labels. An ASMT NN is trained with the experimental data (XTrain, YTrain)

Table 2. The input features for the aspect-ratio dependent etching (ARDE) experiments for the 5-input dataset

set.

Parameters Value Units

Pressure 20, 40, 60 mTorr

Trench Width 4.9~0.3 μm

Trench Space 10 μm

ICP RF power 1000, 1500, 1250 W

SF6 flow 150, 200, 250 sccm

https://doi.org/10.1371/journal.pone.0220607.t002
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plus the TCAD-labeled data (XExtra, YExtra), which is our TCAD-assisted ASMT model. After-

ward, the test dataset from the experiment (XTest, YTest) are used to verify the prediction accu-

racy of the baseline and TCAD-assisted ASMT models. The detailed model description,

dataset annotation, and normalization and denormalization procedures are clearly described

in sections 2.1 and 2.2. Fig 9 shows the experimental and TCAD datasets in this work.

In Fig 10(A), we show the results of the training set fitted by the baseline neural network

using partition = 15. There are 2 hidden layers with 50 neurons per hidden layer. The fit for

the training set is satisfactory with an MSE = 1.3×10−3, as shown in Table 3. Rather than using

only the experimental data, our TCAD-assisted analytics-statistics mixed training (ASMT)

model takes both the experimental and TCAD-labeled data for training to illustrate the effec-

tiveness of TCAD-assisted ASMT. With the help of the TCAD calculations, the effectiveness of

ASMT learning becomes very pronounced. For the TCAD-labeled data (XExtra, YExtra), the

TCAD value, YExtra, is calculated by the model in Eq 9.

Fig 6. Machines Used. (a) Wet bench (b)Track (c) Leica E-beam (d) In-line SEM (e) Deep RIE (f) SEM (g) Furnace (h)

Ellipsometry.

https://doi.org/10.1371/journal.pone.0220607.g006

Fig 7. Illustration of the trenching in the Bosch etching process [45,47].

https://doi.org/10.1371/journal.pone.0220607.g007
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The mixed model training with data from the real experimental outputs and TCAD-labeled

outputs is beneficial in terms of the accuracy of the NN, which is evident from Fig 11(A). Fig

11(A) plots the fit of NN to the dataset with mixed training, i.e., fitting to (XTrain, YTrain) and

(XExtra, YExtra). It can be seen from Table 3 that the MSE value for testing the mixed training

(ASMT) model decreased to 1.9×10−3 from 0.37 for the baseline NN model.

Fig 12(A) compares the prediction accuracy for the test set of the baseline supervised NN

and TCAD-labeled ASMT for partition = 15. The prediction of the TCAD-assisted ASMT

model is far more accurate than that of baseline supervised NN due to the incorporation of

TCAD to assign the partially correct output to the unlabeled data. This accuracy, in turn, helps

Fig 8. Scanning electron microscope images for different process conditions.

https://doi.org/10.1371/journal.pone.0220607.g008

Fig 9. Datasets (a) 2-input dataset; (b) 5-input dataset; both the experimental and TCAD datasets are shown.

https://doi.org/10.1371/journal.pone.0220607.g009
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the prediction, although the TCAD results have some inaccuracy because the TCAD outputs

are still better than totally missed outputs.

In Fig 10(B) and 10(C), we show the cases of partition = 30 and 45, respectively. With an

increased size in the training dataset, the baseline supervised NN, which fits to (XTrain, YTrain),

is more accurate because more data are sampled and more of the sample space information is

included in the baseline neural network. A significant improvement of the TCAD-labeled

ASMT over the baseline supervised NN is still clearly observed in the case of partition values of

30 and 45, as shown in Fig 12(B) and 12(C), respectively. However, the relative improvement

decreased for TCAD-assisted model relative to the baseline case for these partition values (par-
tition = 30 and 45) compared to partition = 15. Certainly, if the sampling is thorough over the

entire sample space, our model will not be effective since the baseline neural network can be

fully trained with the abundant training set data and the prediction on the test set will be very

accurate using a conventional NN method solely. In fact, if the sampling is done at a high fre-

quency and scattered all over the searching space, the machine learning algorithm is not neces-

sary at all since a look-up table is sufficient to determine Y(X) for a given X. Nonetheless, such

dense sampling is unattainable in many cases, such as in semiconductor manufacturing, due

to the lack of a large amount of data, as mentioned earlier. Therefore, a better prediction

scheme should be employed to supplement the classic NN methodology in semiconductor

manufacturing.

While semiconductor TCAD has been developed for many years, the information provided

by TCAD should not be abandoned completely. The motivation of this proposal is to provide a

seamlessly combined method to bring together the effectiveness of both the statistical and

physical methods. As far as the TCAD model is concerned, its accuracy is undoubtedly impor-

tant, which in turn will affect the accuracy of TCAD-labeled ASMT learning. In general, the

more sophisticated TCAD models require more computation and numerical grids. The trade-

Fig 10. Training dataset fitting for the 2-input dataset using the baseline conventional NN. The partition values, 15, 30, and 45, are

shown in (a), (b) and (c), respectively.

https://doi.org/10.1371/journal.pone.0220607.g010

Table 3. MSE values of the training and testing of the 2-input dataset for the TCAD-labeled ASMT algorithm.

Partition value 15 30 45

Baseline training 0.001324693 0.002322580 0.002385333

Baseline testing 0.371989519 0.007799815 0.005045482

Training of TCAD ASMT 0.002049355 0.002248726 0.002347590

Testing of TCAD ASMT 0.001940389 0.002230763 0.003246904

https://doi.org/10.1371/journal.pone.0220607.t003
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off normally needs to be made between the TCAD model accuracy and computational com-

plexity. In fact, even a rough TCAD model can help in the prediction compared to the baseline

in TCAD-labeled ASMT because the exact TCAD calculated values may deviate from the true

experimental values, but the trend in the TCAD model still guides the neural network in the

unsampled part of the search space. Unless the TCAD model is completely inaccurate and pro-

vides a wrong trend, which is unlikely, the incorporation of the TCAD information is always

beneficial for machine learning. This aspect highlights the wide applicability of TCAD-labeled

ASMT model. In most large-scale data mining problems, such as in semiconductor processing,

the vast sample space strengthens the importance of the TCAD-labeled ASMT model. In our

small-scale problem, where the sample space is not very large, the TCAD model can assist in

the initial solution search stage where not much data have been collected or little information

about the optimum place is certain. After the initial phase, the TCAD calculated values can be

gradually abandoned, which can be done by replacing the TCAD calculated outputs with real

sampled values or by abandoning the TCAD-labeled data directly without replacement. In

either case, the TCAD model still helps in the early solution search stage since the NN con-

structed by TCAD-labeled ASMT learning provides useful information on the sample space

based on the analytical models.

Fig 11. Training set fitting for the 2-input dataset using the TCAD-labeled ASMT algorithm. The partition values, 15, 30, and 45, are

shown in (a), (b) and (c), respectively.

https://doi.org/10.1371/journal.pone.0220607.g011

Fig 12. Comparison between the test set prediction using the baseline conventional NN and the TCAD-labeled ASMT algorithm for the

2-input dataset. (a), (b) and (c) show the predicted values for the partition values,15, 30, and 45, respectively.

https://doi.org/10.1371/journal.pone.0220607.g012
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To demonstrate the wide applicability of TCAD-labeled ASMT model, we use a different

dataset to repeat the algorithm. This dataset is more complex and has 5 input features: the

trench width (W), etching time (t), etching pressure (P), etching SF6 flow (F) and ICP RF

main etch (IF). In the DRIE Bosch process, these are all critical tuning parameters to attain an

optimal etched trench. Fig 13 plots the training set fitted by (XTrain, YTrain), and Fig 14 plots

the training set fitted by (XTrain, YTrain) and (XExtra, YExtra). Fig 15 shows a comparison of the

test set prediction results of the baseline NN and TCAD-labeled ASMT model. Similar to the

previous dataset calculations, we have partitions of 10, 20, 30, and 40. Significant improvement

is evident in Fig 15, and the corresponding MSE values are presented in Table 4.

From the real fabrication and numerical experiments demonstrated through a DRIE

BOSCH process, it is shown that the TCAD-labeled ASMT is a more efficient algorithm refer-

ence to conventional neural networks. In fact, the physical models have already been devel-

oped in the early days of many fields, including geography, astrophysics, climate, and biology.

While machine learning has become more prominent in these fields in recent years, we suggest

that the incorporation of well-developed physical and analytical modeling is always beneficial.

4. Conclusions

In this work, we use a TCAD-labeled analytics-statistics mixed training (ASMT) model and

apply it to an ARDE problem. The effectiveness of machine learning in intelligent semiconduc-

tor manufacturing can become more pronounced by incorporating TCAD analytical models

in terms of cost-efficiency, prediction accuracy, and reduced trial-and-error cycles. The

Fig 13. Training set fitting for the 5-input dataset using the baseline conventional NN. The partition values, 10, 20, 30

and 40, are shown in (a), (b), (c) and (d), respectively.

https://doi.org/10.1371/journal.pone.0220607.g013
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Fig 14. Training set fitting for the 5-input dataset using the TCAD-labeled ASMT algorithm. The partition values,

10, 20, 30, and 40, are shown in (a), (b), (c)and (d), respectively.

https://doi.org/10.1371/journal.pone.0220607.g014

Fig 15. Comparison between the test set prediction using the baseline conventional NN and the TCAD-labeled

ASMT algorithm for the 5-input dataset. (a), (b), (c) and (d) show the predicted values for the partition values, 10,

20, 30 and 40, respectively.

https://doi.org/10.1371/journal.pone.0220607.g015
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TCAD-labeled ASMT is particularly effective when there is under sampling in the data mining

process, which inevitably happens due to unbounded and vast searching space. This case is the

typical scenario encountered in semiconductor processing since advanced IC technologies

require the optimization of hundreds of process steps with thousands or more input parame-

ters. Even when using a straightforward aerodynamic model for the DRIE Bosch process,

TCAD-labeled ASMT machine learning model demonstrates a significant reduction in the

MSE values relative to that of the conventional neural network methodology without the

TCAD labels. The underlying mathematical reasoning for the improvement is understood as

the partially correct TCAD labels assisting in the training procedure for the neural network

weights, and as a result, the statistical induction based on machine learning and analytical

deduction based on fluid dynamics and chemical process dynamics jointly improve the predic-

tion accuracy. Additionally, our TCAD-labeled ASMT algorithm can easily fit the semisuper-

vised learning (SSL) framework. A better, more sophisticated analytical model can further

improve the effectiveness of our methodology, while even simple models with correct trends

can already have a pronounced effect because they at least supplement the unlabeled data that

contain no relevant information at all. With over 30 years of TCAD model development in the

field of semiconductor physics, we suggest the combined TCAD and machine learning

approach, which is more effective, saves CPU runtime manufacturing costs, and does not

waste the prior contributions of the semiconductor device and process modeling.
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