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Themotor clinical hallmarks of Parkinson’s disease (PD) are usually quantified by physicians using validated clinimetric scales such
as the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS). However, clinical ratings are prone to subjectivity and inter-rater
variability. The PD medical community is therefore looking for a simple, inexpensive, and objective rating method. As a first step
towards this goal, a triaxial accelerometer-based systemwas used in a sample of 36 PD patients and 10 age-matched controls as they
performed theMDS-UPDRSfinger tapping (FT) task. First, raw signals were epoched to isolate the successive single FTmovements.
Next, eighteen FT task movement features were extracted, depicting MDS-UPDRS features and accelerometer specific features. An
ordinal logistic regressionmodel and a greedy backward algorithmwere used to identify themost relevant features in the prediction
of MDS-UPDRS FT scores, given by 3 specialists in movement disorders (SMDs). The Goodman-Kruskal Gamma index obtained
(0.961), depicting the predictive performance of the model, is similar to those obtained between the individual scores given by the
SMD (0.870 to 0.970).The automatic prediction ofMDS-UPDRS scores using the proposed systemmay be valuable in clinical trials
designed to evaluate and modify motor disability in PD patients.

1. Introduction

The most important functional disturbance in patients with
Parkinson’s disease (PD), a chronic neurodegenerative condi-
tion, is a disorder of voluntary movement prominently char-
acterized by slowness. This phenomenon is generally called
bradykinesia [1]. Tremor and muscle rigidity are also part
of the motor phenotypic spectrum [2]. Although it has not
been possible to define a single underlying pathophysiologic
mechanism that explains everything, bradykinesia and other
motor symptoms seem to be related to a progressive loss of
dopaminergic neurons in the substantia nigra [2, 3].

Since decades, themedical community has been develop-
ing clinical tools such as rating scales to quantify the severity

of motor and other symptoms in PD. Despite the various
attempts to use instruments and devices for quantification,
clinical scales remain the preferred method because they are
easy to administer and widely available.

In the late eighties, theUnified Parkinson’s Disease Rating
Scale (UPDRS) was proposed as the primary international
rating scale for PD clinical care and research and is still
anchored in the daily practice of MDs. The motor examina-
tion part of the UPDRS requires the Specialists in Movement
Disorders (SMDs) to score motor disturbances on a 5-point
scale ranging from 0 (normal performance) to 4 (severe,
unable to perform the task) on the basis of visual inspection.
In 2008, the Movement Disorder Society has published an
upgraded version of the original UPDRS [4], based on
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the critiques that were formulated by the Task Force for
Rating Scales in Parkinson’s disease [5].The new scale (MDS-
UPDRS) has been shown to be more sensitive for slight
impairments and to enable a more objective rating through
detailed instructions for all tasks. However, theMDS-UPDRS
still suffers from methodological limitations common to all
clinical rating scales including subjectivity and interrater
variability [6].

Objective quantitative measures usingmovement sensors
can assist clinicians in evaluating motor deficits. Inertial and
magnetic sensors have been proposed to quantify motor
performances in various medical applications [7], from
the distinction between normal and pathological walking
patterns [8] to the estimation of upper limb orientation
based on accelerometer and gyroscope measurements [9].
These sensors are small, low-cost, light-weighted, and can
record components of the movements as accelerations or
displacements. Their use is not restricted to laboratory
environments [8], and they do not suffer from occlusion
problems as expensive visual marker-based tracking systems
[10]. Accelerometers have therefore become a preferred
choice for continuous, unobtrusive, and reliable method
in human movement quantification [7]. In PD, inertial
sensors have been proposed to investigate the asymmetry
of tremor intensity and frequency [11], to quantify tremor
and bradykinesia [12], to study the dynamics of resting
and postural limb tremor [13], or to analyze the dynamic
voluntary muscle contractions [14]. Accelerometers have also
been used to quantify the impairment of finger tapping
(FT) movements [1, 15, 16], to study the effect of movement
frequency on repetitive finger movements [17], or to pro-
pose new parameters for the quantification of the FT test
[18].

The reason why those more sophisticated sensor systems
have not been adopted yet in daily clinical practices is that
those systems are too expensive, too sophisticated for clinical
needs, and too heavy to handle for patients. A way to improve
movement evaluation while still using clinical scales is to
develop systems that will assess movements during clinical
scale tasks and predict clinical scale scores automatically. A
first approach consists in evaluating the correlations between
kinematic measures from motion sensors and clinical scales,
which is a growing field of research. The reliability of a
Modified Bradykinesia Rating Scale and its correlation with
kinematic measures from inertial sensors has recently been
evaluated [19]. Giuffrida et al. have evaluated the correlation
between a multiple linear regression model and original-
UPDRS scores for tremor tasks [6].

In order to improve the diagnosis accuracy of PD, a tool
to predict FT scores from MDS-UPDRS FT task movement
features is presented here.

2. Materials and Methods

2.1. Subjects and Materials. Thirty-six PD patients (mean
age ± SD = 63.9 ± 9.1 year, range 37–79; 28 males; mean
disease duration = 7.5 ± 4.0 year, total score of MDS-
UPDRS motor examination = 32 ± 10.8) and ten healthy

𝑥

𝑦
𝑧

Accelerometer

Figure 1: The accelerometers were placed on the tip of the index
finger of both hands. The 𝑧-axis of the accelerometer is vertically
perpendicular to the index finger, the 𝑥-axis is parallel, and the 𝑦-
axis is horizontally perpendicular.

volunteers (mean age ± SD = 59 ± 15.2 year, range 38–
87; 5 males) participated in the study to create a set of
observations with a range of FT scores between 0 and 4,
as rated by three SMDs, according to the MDS-UPDRS
criteria (Table 1). PD was diagnosed according to the UK
Parkinson’s Disease Society Brain Bank criteria [20]. The
on/offmedication statuswas not taken into consideration and
is irrelevant for the purpose of the present study. Subjects
were recruited at the Cyclotron Research Centre and at the
Department of Neurology, University Hospital Centre, Liege,
Belgium. All patients provided written informed consent.
This research protocol has been approved by the local ethical
committee.

The 3-axis accelerometers recording accelerations up to
±10 g (1 g = 9.81m/s2) were placed on the tip of the index
finger of both hands. The 𝑧-axis of the accelerometers was
vertically perpendicular to the index finger axis, the 𝑥-axis
was parallel, and the 𝑦-axis was horizontally perpendicular,
as presented in Figure 1. Accelerometers have been calibrated
using a minimization function based on the norm and
direction of the gravity field [21]. Data were recorded at the
sampling frequency of 167Hz and analyzed usingMatlab 7.6.0
(MathWorks, Natick, MA, USA).

All participants were administered the motor exam-
ination (part III) of the MDS-UPDRS. The instructions
were clearly explained and demonstrated to the subjects
before performing the task, according to the MDS-UPDRS
instructions. In the FT task, subjects were asked to tap the
index finger on the thumb 10 times as quickly and as big as
possible. If the patient did not stop, the examiner provided
a stop signal and only the first 10 movements were taken
into account for subsequent analysis. Subjects were instructed
to start with open fingers, at maximum amplitude. Each
hand was tested separately for the 46 subjects, leading to 92
observations. Three patients presented a score of 4 on both
hands. As by definition theywere not able to perform the task,
and their observations were removed for further analysis,
leading to a remaining set of 86 observations. The system
was immediately able to qualify the 6 excluded observations
as scores 4 (see Section 3.1). Each observation was video
recorded to allow scoring by three SMDs, according to the
MDS-UPDRS instructions presented in Table 1 [4]. For each
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Table 1: MDS-UPDRS instructions for FT task scoring [4] (instruct
the patient to tap the index finger on the thumb 10 times as quickly
and as big as possible. Rate each side separately, evaluating speed,
amplitude, hesitations, halts, and decrementing amplitude).

Score Scoring instructions
0 No problems

1

Any of the following:
(a) the regular rhythm is broken with one or two
interruptions or hesitations of the tapping movement;
(b) slight slowing;
(c) the amplitude decrements near the end of the 10
taps.

2

Any of the following:
(a) 3 to 5 interruptions during tapping;
(b) mild slowing;
(c) the amplitude decrements midway in the 10-tap
sequence.

3

Any of the following:
(a) more than 5 interruptions during tapping or at least
one longer arrest (freeze) in ongoing movement;
(b) moderate slowing;
(c) the amplitude decrements starting after the 1st tap.

4 Cannot or can only barely perform the task because of
slowing, interruptions, or decrements.

observation, the SMD consensus score was defined as the
mean score rounded to the nearest integer.

2.2. Signal Epoching. The first processing step was to epoch
the recorded data in order to isolate the first 10 consecutive FT
movements or samples. A single FT movement was defined
as the interval between two taps, that is, when the index
tapped the thumb, which resulted in a high frequency and
high amplitude peak in the 𝑧-axis signal. These peaks were
identified using the high frequency output of the Daubechies
wavelet transform (db4) of the recorded 𝑧-axis signal. The 𝑧-
axis recorded accelerations and their epoching are presented
for an SMD consensus score of 0 obtained in a healthy
volunteer (Figure 2) and for an SMD consensus score of
3 obtained in a PD patient (Figure 3). Another important
landmark in each FT movement is the time for maximum
opening acceleration that is represented by a low frequency
but high amplitude peak in themidst of the 𝑧-axismovement,
which occurs when the subject splits off his/her fingers.

2.3. Feature Definition and Extraction. According to the
MDS-UPDRS, bradykinesia during the FT task is clinically
characterized bymovement slowness, and/or a decrementing
speed and/or amplitude of repetitive movements, and/or
hesitations [22]. Hesitations can occur at the initiation of
the opening/closing movement (initiation hesitation) or dur-
ing the finger opening movement (execution hesitation or
hypometria).

After epoching, 8 MDS-UPDRS features were defined
from the 10 consecutive FT movements to capture these
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Figure 2: 𝑧-axis raw signal for an SMD consensus score of 0
obtained from a healthy volunteer performing 10 FT movements.
The bullets topped by numbers represent the beginning of a new
tappingmovement, that is, when the index taps the thumb.The peak
in the midst of each movement depicts the finger opening phase.
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Figure 3: 𝑧-axis raw signal for an SMD consensus score of 3
obtained from a PD patient performing 10 FT movements. The
bullets topped by numbers represent the beginning of a new tapping
movement, that is, when the index taps the thumb. The peak in the
midst of each movement depicts the finger opening phase.

clinical characteristics on the basis of the computed move-
ment frequency, the opening angle, the level of hypometria,
and their linear changes across the 10 FT movements. Ten
accelerometer-specific features were also extracted on the
basis of the percentage of movement time for maximum
opening acceleration,maximumclosing and opening acceler-
ations, and their linear changes across the 10 FT movements.
Table 2 gives a summary of the features along with their
minimum and maximum values across the 86 observations.

Among the MDS-UPDRS features, the movement speed
was expressed through themeanmovement frequency (Freq)
which was computed from the inverse of each movement
time. In order to depict the prospective decrementing speed
(Dfreq), we estimated the number of movements executed
before the decrement started using a statistical t-test. For
each FT movement in a given series, we compared the
mean FT frequency of the remaining movements with the
mean frequency of FT movements already completed. We
examined whether this difference was significant using a
t-test (𝑃 < 0.05). If the difference in frequency for two
consecutive t-tests was significant, the FT movement leading
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Table 2: Features summary with minimum and maximum values
across the 86 observations. The 8 MDS-UPDRS features are pre-
sented first.

Feature Feature definition Min Max
Freq Mean movement frequency (Hz) 0.367 5.106
Dfreq Index for decrementing frequency (—) 2 10
Afreq Index for augmenting frequency (—) 2 10
Angle Mean opening angle (∘) 5.139 117.8
Dangle Index for decrementing angle (—) 2 10
Hypom Hypometria (—) 0 10
Hesits Number of hesitations (—) 0 5
Halts Number of halts (—) 0 1
Topen Mean, standard deviation, and slope

of percentage of movement time
for maximum opening
acceleration (—)

0.191 0.533
sdTopen 0.017 0.232
slTopen −0.031 0.032
Aclose

Mean, standard deviation, and slope of
maximum closing acceleration (g)

1.131 9.676
sdAclose 0.338 3.145
slAclose −0.448 0.603
Aopen

Mean, standard deviation, and slope of
maximum opening acceleration (g)

0.761 10.81
sdAopen 0.054 1.483
slAopen −0.304 0.364
RMS Root mean square (g) 0.942 4.047

to the first significant difference was used to determine
the prospective decrementing speed onset. Therefore, if no
decrement was observed, a value of 10 was obtained for that
feature. The same method was used to detect an increase in
movement speed (Afreq).

The possible presence of halts in the movement (Halts)
was also a clinical characteristic. Halts were detected if the
difference between a movement frequency and the frequency
slope (linear changes among the 10 samples, computed with
the robustfit Matlab function) was above a given threshold.

The number of hesitations was also computed (Hesits).
A sample was defined as a hesitation if its frequency or per-
centage movement time for maximum opening acceleration
was outside a range defined from the mean, the standard
deviation, and the slope. Each sample with a hesitation
increments the value of the Hesitation feature.

The level of hypometria can be depicted by the smoothness
of the opening movement (Hypom). For a healthy subject,
this movement is composed of one acceleration and one
deceleration, which gives the lower frequency but high
amplitude peak in the midst of the FT movement. In PD
patients, this opening movement could be a mix of multiple
accelerations and decelerations, due to execution hesitations,
which are reflected by multiple peaks in the recorded 𝑧-
axis acceleration. Indeed, bradykinesia is characterized by the
inability to energize the appropriate muscles to initiate and
maintain large and fast movements. PD patients therefore
need series of multiple agonist bursts to accomplish a larger
movement [22]. Here, these bursts were detected using the
findpeaksMatlab function. Each sample with more than two

peaks was used to increment the value of the Hypometria
feature.

In order to express the amplitude of the movement
(Angle) and its possible decrementation (Dangle), themean of
the opening angles was computed. An attribute of accelerom-
eters is that static acceleration due to gravity is recorded as
well as inertial components ofmovements [8]. Under static or
quasistatic conditions, that is, when the recorded acceleration
is mainly due to gravity, the accelerometer can be used as an
inclinometer and basic trigonometry gives the angle of tilt.
The opening angle is based on the value of the gravity in the𝑥-
axis when the fingers are open (𝑎𝑥

2
) and closed (𝑎𝑥

1
), according

to (1). During these two periods, the recorded acceleration is
only due to gravity and tremor. As tremor is minimum in the
𝑥-axis, the parallel direction to the finger, the mean gravity
is computed on that axis. The detection of open and closed
fingers is based on the variance of the 𝑥-axis processed signal.
In order to depict the prospective decrementing amplitude,
the same t-test method as presented before is used. Consider

opening angle = 𝜃open − 𝜃closed

= arcsin (𝑎𝑥
2
) − arcsin (𝑎𝑥

1
) .

(1)

Among the accelerometer-specific features, we defined
the mean (Topen), standard deviation (sdTopen), and slope
(slTopen) of the percentage of movement time when maxi-
mum opening acceleration occurred across the 10 FT move-
ments.

The mean, standard deviation, and slope of maximum
closing accelerations (Aclose, sdAclose, and slAclose) andmax-
imum opening accelerations (Aopen, sdAopen, and slAopen)
were also extracted from the 𝑧-axis recorded accelerations.
The features associated with the maximum closing accel-
eration express the strength of the finger tap while the
features associated with the maximum opening acceleration
represent the speed of the opening movement. Since the
Aclose and Aopen features are based on the amplitude of
the accelerations, the gravitational artifact due to the gravity
component in the recorded acceleration must be considered.
TheDC component of gravitational acceleration can easily be
removed by high-pass filtering. However, the task of separat-
ing the gravitational and inertial components of acceleration
at the frequency of rotation is impossible unless multiple
sensors are used [23]. As feature extraction is performed,
the gravitational artifact is no longer a problem as long as it
remains constant or negligible as compared with the range
of the feature. When the fingers are closed, the gravity field
is parallel to the 𝑧-axis and its value is about 1 g. As the
subject splits off its fingers, the 𝑧-axis component of the
gravity varies as 𝑔 cos𝛼, where 𝛼 is the angle between the 𝑧-
axis and the gravity field. The maximum closing acceleration
is extracted as the peak acceleration when the index taps
the thumb, that is, when the 𝑧-axis is parallel to the gravity
field, according to the instructions given to the subjects.
Therefore, the gravitational artifact is nearly constant at
this time. The maximum opening acceleration occurs at the
beginning of the opening movement, that is, when 𝛼 ≤ 45∘.
The gravitational artifact has then a maximum variation of
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0.292 g, which is negligible as compared with the range of the
feature value (9.538 g—Table 2).

The last extracted feature was the root mean square
(RMS) that gives a measure of the signal magnitude, as used
in [6].

Altogether, theMDS-UPDRS features and the accelerom-
eter-specific features formed a set of 18 FT task movement
features.

2.4. Construction of the Predictive Model. The main goal of
this work was to develop a tool to predict objective MDS-
UPDRS scores from FT task movement features and to
identify which of these features best predicted MDS-UPDRS
FT scores given by 3 SMDs independently, on the basis of the
corresponding video recordings. As the outcome is discrete
and has a natural order, the MDS-UPDRS score prediction
problem was addressed using an ordinal logistic regression
model.

2.4.1. Ordinal Logistic Regression Model. Logistic regression
is a statistical tool used to predict a discrete outcome, such
as group membership, from a set of predictor variables that
may be continuous or discrete. If the outcome is binary (𝑦 =
0, 1) and if we have 𝑝 predictor variables 𝑥

1
, 𝑥
2
, . . ., 𝑥

𝑝
,

the systematic part of the binary logistic regression model is
defined as follows:

log (𝜃) = 𝛼 + 𝛽
1
𝑥
1
+ 𝛽
2
𝑥
2
+ ⋅ ⋅ ⋅ + 𝛽

𝑝
𝑥
𝑝
, (2)

with

𝜃 =

𝑃 (𝑦 = 1 | 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑝
)

1 − 𝑃 (𝑦 = 1 | 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑝
)

. (3)

The logit of the probability of the outcome 𝑦 (i.e., the
logarithm of the odds 𝜃 of event 𝑦) is modeled as a linear
combination of the predictor variables. When the outcome
is discrete but not binary as in this study (𝑦 = 0, 1, 2 or 3),
the binary logistic regression model can be extended into
an ordinal logistic regression model, by taking into account
the ordinal nature of the outcome. Here, the probability that
a subject belongs to one of the categories equal or ordered
before 𝑗 (𝑃(𝑦 ≤ 𝑗)) is compared to the probability that
the patient belongs to one of the categories ordered after
𝑗 (𝑃(𝑦 > 𝑗)). The systematic part of the ordinal logistic
regression model is defined as follows:

log (𝜃
𝑗
) = 𝛼
𝑗
− 𝛽
1
𝑥
1
− 𝛽
2
𝑥
2
− ⋅ ⋅ ⋅ − 𝛽

𝑝
𝑥
𝑝
, (4)

with

𝜃
𝑗
=

𝑃 (𝑦 ≤ 𝑗 | 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑝
)

𝑃 (𝑦 > 𝑗 | 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑝
)

with (𝑗 = 0, 1, 2) . (5)

The 𝛼
𝑗
and 𝛽 coefficients are estimated from the data by

using a maximum likelihood procedure. In these equations,
we observe that each of the three logit log(𝜃

𝑗
) has its own 𝛼

𝑗

term but the same 𝛽 coefficients. It means that the effect of

the predictor variables is the same for the three logit or, equiv-
alently, for each odds 𝜃

𝑗
. We also observe a minus sign before

the predictor variables coefficients because probabilities in
the ordinal logistic regressionmodel are defined in a different
way from those in the binary logistic regression model.
A positive estimation of a parameter therefore indicates a
positive correlation between its associated variable and the
SMD consensus score.

In order to use this ordinal regression model as a
prediction tool, the model must first be trained on a training
dataset. In this training dataset, each observation is associated
with the FT task movement features (considered as predictor
variables in the model) as well as an SMD consensus score
(considered as the outcome variable in the model). Then,
the ordinal logistic regression model can be applied to new
observations with unknown MDS-UPDRS scores in order to
predict these scores from their FT task movement features.
The probability to belong to each ordered class 𝑃(𝑦) can
indeed be computed for a single observation from the 𝜃

𝑗

values.Then, a continuous score can be obtained by summing
the values of the outcome (0, 1, 2, or 3) multiplied by the
estimated 𝑃(𝑦). This continuous score ranges between 0 and
3 and can be discretized, if necessary, by using thresholds.

A global model was trained on the 86 observations
(Figure 4). It is of note that all eighteen features may not
be useful in building the model. A subset of features can be
selected to try to maximize the predictive performance of the
model. Here, we used a greedy backward algorithm to select
the subset of features that best predicted MDS-UPDRS FT
scores (Figure 5). Then, since the global model was trained
on all the observations, its predictive performance could not
be evaluated on an independent dataset. Therefore, in order
to estimate the predictive performance of the global model, a
leave-one-out cross-validation approach was used (Figure 6).
Construction of the global model, feature selection, and
performance evaluation were performed using the Design,
vcdExtra, and Zelig R packages (The R Project for Statistical
Computing).

2.4.2. Feature Selection. For the global model construction,
feature selection was performed once on the 86 observations.
Indeed, a subset of the 18 features extracted from the FT task
only could be useful to build the ordinal logistic regression
model in order to maximize the predictive performance of
the model. The selection of the variable set maximizing the
predictive performance of the model is known as a variable
selection problem [24]. In order to take into account the
interaction effect between the predictor variables, we used a
wrapper technique for variable selection. Various subsets of
variables, that is, features, are generated and evaluated [25].
The various subsets of features are generated using a greedy
backward selection. Greedy search strategies are computa-
tionally advantageous and robust against overfitting [24].The
idea is to start with a model containing all the features and
to evaluate its predictive performance.Then, the less relevant
features are removed iteratively. The predictive performance
associated to a subset of features was evaluated in two steps.
First, an inner cross-validation loop was performed in order
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86 observations

18 features

No performance
evaluation

Global model
construction

Figure 4: A global model was trained based on the 86 observations,
each one of them being associated with 18 features as well as one
SMD consensus score. Since all the observations were used for the
construction of the global model, the predictive performance of the
model could not be evaluated on an independent dataset.

86 observations

18 features

No performance
evaluation

Global model
construction

Feature selection

Figure 5: Not all 18 features may be useful in building the model.
A subset of features can be selected to maximize the predictive
performance of the model.

86 observations

18 features
Feature selection

Model
construction

Performance
evaluation

Leave-one-out cross-validation

Figure 6: In order to evaluate the predictive performance of the
global model, a leave-one-out cross-validation approach was used.

to obtain a prediction score for each observation. Second, the
Goodman-Kruskal Gamma index between the predictions
and the SMD consensus scores was computed and defined
as the performance criterion. This index tests the strength
of association of cross-tabulated data when both variables
are measured at the ordinal level [26]. At each iteration, the
feature elimination conducting to the highest improvement
of the Goodman-Kruskal Gamma index was performed. The
backward elimination stops when any feature elimination
leads to a decrease of this index.

2.4.3. Predictive Performance Evaluation. Leave-one-out
cross-validation, with an inner and outer loop, was per-
formed to estimate the predictive performance of the global
model. At each iteration of the outer loop, the dataset was
separated into a learning part and a test part. The learning
part contained 85 observations while the test part only
contained the remaining observation. The learning part was
used to select the relevant predictor variables through a
wrapper technique (using an inner cross-validation loop as
explained in Section 2.4.2) and to train the ordinal logistic
regression model. The selection of the relevant variables
was performed only on the training part in order to avoid
overestimation of predictive performance. After the training
step, the model was used to predict the MDS-UPDRS score
of the remaining observation in the test part. This procedure
has been repeated 86 times in order to have predictions for
all the observations. Eighty-six subsets of relevant features
were therefore obtained during cross-validation. Finally,

each observation was associated to a continuous prediction
between 0 and 3 as well as a discrete SMD consensus score
(0, 1, 2, or 3). Various performance indexes were computed
in order to evaluate the predictive performance of the
model.

The area under the curve (AUC) of the receiver operating
characteristic (ROC)was computed.TheROC curve plots the
sensitivity (true positive rate) against 1− specificity (false pos-
itive rate) for consecutive thresholds used to define predicted
positives and negatives from the continuous scores [27]. An
AUC of 0.5 corresponds to a noninformative model while an
AUC of 1 corresponds to a perfect model. The accuracy was
defined as the proportion of correct classifications among all
the classifications. Sensitivity, specificity, and consequently
AUC, as well as accuracy, can only be computed for binary
classification tasks. As the outcome is discrete with four
ordered classes, the problem had to be reformulated into the
three following binary classification problems:

(i) first classification task: separate observations with a
score of 0 from observations with a score greater than
0;

(ii) second classification task: separate observations with
a score of 0 or 1 from observations with a score greater
than 1;

(iii) third classification task: separate observations with a
score of 0, 1 or 2 fromobservationswith a score greater
than 2.

In order to compute the next performance indexes,
discretized scores were necessary. Thresholds were used to
discretize the continuous scores into the four ordered classes.
The sensitivity, specificity, and accuracy defined in (6) were
then computed as follows:

sensitivity = TP
TP + FN

,

specificity = TN
TN + FP

,

accuracy = TP + TN
TP + TN + FP + FN

,

(6)

where TP, TN, FP, and FN denote the number of true
positives, true negatives, false positives, and false negatives,
respectively.

The discretized predictions were also used to compute the
Goodman-Kruskal Gamma index between the predictions
and the SMD consensus scores. The values of Goodman-
Kruskal Gamma index range from −1 (negative association)
to 1 (perfect agreement).

3. Results

3.1. SMDConsensus Scores. According to the SMDconsensus
scores, 12 observations led to a score of 0, 32 observations
led to a score of 1, 31 observations led to a score of 2, and 11
observations led to a score of 3. Three patients also obtained
a score of 4 in both hands. However, those patients were not
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included in the analysis since they could not perform the
task. No movement features could be extracted from their
movements and the system immediately gave them a score
of 4 based on the low variance of the recorded signals, with
a 100% accuracy. The Goodman-Kruskal Gamma indexes
obtained between the individual scores given by the three
SMD and the SMD consensus scores are 0.922, 0.982, and
0.992, respectively. The Goodman-Kruskal Gamma index
obtained between the individual SMD scores varies between
0.870 and 0.970.

3.2. Signal Epoching and Feature Extraction. Visual inspec-
tion of epoched signals showed a very high accuracy (99%).
Two parameters expressing the position and the width of the
peak detection windows had to be adapted for the epoching
of signals recorded on tremulous PD patients and for those
with a score of 3, who typically have hesitations or halts in
movements.

After signal epoching, 18 features were extracted from
the MDS-UPDRS FT task on the basis of the computed
movement frequency, percentage ofmovement time formax-
imum opening acceleration, maximum closing and open-
ing accelerations, opening angle, and level of hypometria
as described in Section 2.3. The minimum and maximum
values obtained for each feature across the 86 observations
appear in Table 2. The raw signal and extracted features
are presented for a SMD consensus score of 0 obtained
from a healthy volunteer (Figures 2 and 7) and an SMD
consensus score of 3 obtained from a PD patient (Figures 3
and 8). The healthy volunteer showed steady performance
over repetitive FT movements. The movement amplitude is
big and constant. The PD patient performed the FT task at
a slower frequency but there was no sign of decrementing
or augmenting frequency. The mean opening angle is quite
lower and decrements over time, reflected by aDangle feature
value of 2. So, the patient managed to keep a constant
frequency, but performed smaller and smaller movements.
Three hesitations are also detected. These interpretations of
movement features have been validated by examination of the
corresponding video recordings.

3.3. Ordinal Logistic Regression Model and Feature Selection.
Feature selection was performed on the 86 observation in
order to build the global model. This model included 12 fea-
tures as predictor variables. The model parameter estimates
appear in Table 3. The 𝛼 parameters have no particular inter-
pretation.The positive (negative)𝛽 parameters correspond to
variables that are positively (negatively) correlated with the
SMD consensus scores. For example, as the 𝛽

11
coefficient is

negative, an increase of Aopen tends to conduct to a lower
SMD consensus score. This is illustrated in Figure 9. The
absolute value of these parameters have to be carefully inter-
preted by taking into account the range of the corresponding
variables. The very high 𝛽

9
coefficient is partially due to

the very small range (0.063) of slTopen. As all observations
were used to train this model, its performance could not be
evaluated on an independent test dataset. Nevertheless, it was
estimated with a cross-validation strategy.

Table 3: Model parameter estimates.

Parameter Estimation
𝛼
0

−18.768

𝛼
1

−11.989

𝛼
2

−4.066

𝛽
1
(Freq) −0.647

𝛽
2
(Dfreq) −0.726

𝛽
3
(Afreq) −0.238

𝛽
4
(Dangle) −0.411

𝛽
5
(Hesits) 1.398
𝛽
6
(Halts) 16.653
𝛽
7
(Topen) 5.858
𝛽
8
(sdTopen) 25.089
𝛽
9
(slTopen) 112.52
𝛽
10
(slAclose) 3.966
𝛽
11
(Aopen) −1.171

𝛽
12
(slAopen) −9.711

Table 4: SMD consensus scores versus predicted scores.

SMD consensus scores

Pr
ed
ic
te
d
sc
or
es 0 1 2 3

0 9 3 0 0
1 3 24 6 0
2 0 5 24 2
3 0 0 1 9

Table 5: AUC of the ROC, sensitivity, specificity, and accuracy for
each binary classification task.

Groups AUC Sens. Spec. Acc.
0 versus 123 0.945 0.750 0.959 0.930
01 versus 23 0.919 0.886 0.900 0.872
012 versus 3 0.970 0.986 0.818 0.965

3.4. Predictive Performance Evaluation. After the nested
(inner and outer loop) cross-validation, each observationwas
associated with a prediction score. As these scores are on a
continuous scale between 0 and 3, thresholdsmust be defined
in order to classify the observations in the different ordered
classes and compute some of the performance indexes. As a
first approximation, thresholds of 0.5, 1.5, and 2.5 were used.
A Goodman-Kruskal Gamma index of 0.961 was obtained
between the predictions and the SMD consensus scores.
The ordered contingency table (Table 4) indicates the joint
frequency distribution of both the predictions and the SMD
consensus scores. We observed that the maximum deviation
between the predictions and the SMD consensus scores is 1
and that most observations are on the diagonal.

The sensitivity, the specificity, the accuracy, and the AUC
of the ROC were computed using the predictions obtained
with the nested cross-validation for each binary classification
task and appear in Table 5. The ROC curve obtained for the
second classification task is presented in Figure 10.
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Figure 7: Typical features for an SMD consensus score of 0. Plot (a) gives themovement frequencies (circles). Plot (b) gives the percentages of
movement time for maximum opening acceleration. Plot (c) gives the maximum closing accelerations. Plot (d) gives the maximum opening
accelerations. Plot (e) gives the opening angles. Plot (f) gives the level of hypometria (circles) and the possible presence of initiation hesitations
(triangles). For each plot except (f), the mean is in dotted line, the linear regression among points is in continuous line, and the limits for the
detection of hesitations are in dashed lines (plots (a) and (b) only). The healthy volunteer performed repetitive FT movements at a low and
slowly growing frequency and did not have any hesitations or halts. The percentage time for maximum opening acceleration is steady over
samples, as maximum closing and opening accelerations.Themovement amplitude is big and constant, showing no decrementing amplitude.
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Figure 8: Typical features for an SMD consensus score of 3. Plot (a) gives themovement frequencies (circles). Plot (b) gives the percentages of
movement time for maximum opening acceleration. Plot (c) gives the maximum closing accelerations. Plot (d) gives the maximum opening
accelerations. Plot (e) gives the opening angles. Plot (f) gives the level of hypometria (circles) and the possible presence of initiation hesitations
(triangles). For each plot except (f), the mean is in dotted line, the linear regression among points is in continuous line, and the limits for the
detection of hesitations are in dashed lines (plots (a) and (b) only). The PD patient performed the FT task at a slower frequency, but there
was no sign of decrementing or augmenting frequency. Maximum closing acceleration strongly decreases over samples, as for the maximum
opening acceleration, which reflects a decrementing performance of the FT movement. Compared to the healthy volunteer, the mean values
are lower, suggesting more difficulties in performing the movement. The mean opening angle is quite lower and decrements over time,
reflected by aDangle feature value of 2. So, the patient managed to keep a constant frequency but performed smaller and smaller movements.
The patient does not present signs of hypometria. Three hesitations but no halts are detected. According to the analysis of the movement
frequencies, the 3rd movement is abnormally fast, reflecting a jerky movement, the 8th movement is too slow, reflecting a hesitation while
closing the fingers (lower value of percentage time for maximum opening acceleration), and the 4th movement is detected as an opening
hesitation because the maximum opening acceleration occurs too late in the movement. On the frequency plot, this last movement is among
the slowest.
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Figure 9: Plot of Aopen values according to SMD consensus scores.
An increase of Aopen tends to conduct to a lower SMD consensus
score, as reflected by the negative 𝛽
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coefficient.
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Figure 10: ROC curve obtained for the second classification task.
ROC curves are used to optimize sensitivity and specificity and to
compute AUC.

During the nested cross-validation, feature selection was
performed 86 times, that is, one time for each iteration of the
outer loop. Table 6 summarizes the frequency of selection for
each variable. The eight variables (Dfreq, Afreq, Hesits, Halts,
slTopen, slAclose, Aopen, sand slAopen) selected as relevant in
most iterations (at least 90%of the time) are presented in bold
in Table 6. These features are all among the features selected
during the construction of the global model presented in
Section 3.3.

4. Discussion

We have presented here a new system designed to predict
MDS-UPDRS scores on the basis of features extracted from

Table 6: Number of selection of each feature during the leave-one-
out cross-validation.

Nb Feature Occur.
1 Freq 72
2 Dfreq 84
3 Afreq 83
4 Angle 53
5 Dangle 64
6 Hypom 49
7 Hesits 83
8 Halts 86
9 Topen 49
10 sdTopen 54
11 slTopen 85
12 Aclose 18
13 sdAclose 27
14 slAclose 86
15 Aopen 83
16 sdAopen 29
17 slAopen 78
18 RMS 20

signals recorded during the FT task.The FT task is commonly
used to assess movement bradykinesia in PD patients. In this
task, subjects are asked to repetitively tap their index finger
on their thumb as quickly as possible.The first 10 movements
are used for scoring.

The presented method was developed on data obtained
from 10 healthy volunteers and 36 PD patients to create a
set of 92 observations with a range of FT scores between
0 and 4—as rated by three SMDs—according to the MDS-
UPDRS criteria (Table 1). However, patients with a score of
4 at the MDS-UPDRS FT task were immediately detected
as so by the system as they were not able to perform the
task. It was neither possible nor necessary to include them in
subsequent analyses. Removing those 6 observations led to a
set of 86 observations used for further analyses. The healthy
volunteer/PD patient status and the on/off medication status
were not relevant for the purpose of this study.

An SMD consensus score has been defined for each
observation by taking the average score of three SMD
rounded to the nearest integer. There was a good level of
agreement between the individual scores given by the three
SMDs and the SMDs consensus scores, as reflected by the
Goodman-Kruskal Gamma indexes (0.922, 0.982, and 0.992).
However, all SMDs were not always in agreement with each
other, as reflected by some of the Goodman-Kruskal Gamma
indexes obtained between the individual scores (0.870),
which confirms the need of a SMD consensus score. We
acknowledge that a higher number of SMDmay help refining
SMD consensus scores.

The raw accelerometer signals were first epoched auto-
matically to decompose the accelerometer signals into succes-
sive single FT movements. The success rate of this epoching
was 99%. However, two parameters had to be adapted
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manually for tremulous PDpatients and for thosewith a score
of 3, who typically have hesitations or halts in movements.
This problemcould be eventually addressed by including con-
tact switches to demonstrate a physical contact between the
index and the thumb fingertips during each trial. However,
using this approach, some adjustment would still be required
for trial identification when the patient has difficulties in
splitting fingers apart (i.e., freezing). Therefore, while the
current system can identify individual fingermovementswith
a 99% accuracy in the population under consideration, we
acknowledge that achieving a 100% accuracy would require
additional development both at the hardware and software
levels. This is a necessary step to make this tool available for
daily clinical practices. 𝑧-axis raw signals and their epoching,
obtained for SMD consensus scores of 0 and 3, are presented
in Figures 2 and 3, respectively.

Eighteen FT task movement features have been defined
and extracted on the epoched acceleration signals to capture
most of the FT movement characteristics. Among those
features, eight features were based on MDS-UPDRS clinical
characteristics and ten were accelerometer-specific features
that cannot be easily assessed by visual inspection. The
minimum and maximum values obtained for each feature
across the 86 observations are presented in Table 2. Figures
7 and 8 illustrate the features obtained for SMD consensus
scores of 0 and 3, respectively.

The main goal was to develop a tool to predict objective
MDS-UPDRS scores from FT task movement features and to
identify which of the eighteen features best predicted MDS-
UPDRS FT scores given independently by the three SMDs
on the basis of the corresponding video recordings. Since
the global model was trained on all the observations, its
predictive performance could not be evaluated. In order to
estimate it, a leave-one-out cross-validation approach was
used and a prediction score was obtained for each of the 86
observations.The predictive performance of the globalmodel
was estimated by comparing these continuous predictions to
the SMD consensus scores. In order to compute some of the
performance indexes, the continuous predictions were dis-
cretized using thresholds (0.5, 1.5, and 2.5). These discretized
scores were first used to compute the Goodman-Kruskal
Gamma index that tests the strength of association between
the SMD consensus scores and the prediction scores. A value
of 0.961 was obtained, which is similar to the ones obtained
between the individuals scores given by SMD, that ranged
from 0.870 to 0.970. The ordered contingency table between
SMD consensus scores and score predictions is presented
in Table 4. Most observations are on the diagonal, which
corresponds to the same value for both the prediction and
the SMDconsensus score.Moreover, themaximumdeviation
between the predictions and the SMD consensus scores is 1
meaning that a patient with an SMD consensus score of 2 was
sometimes misclassified in class 1 or 3 but never in class 0.

In order to compute the sensitivity, the specificity, the
accuracy, and the AUC of the ROC, the ordinal classifica-
tion problem was redefined into three binary classification
problems. An ROC curve as well as its AUC were computed
for each binary classification. Figure 10 presents the ROC
curve obtained for the second classification task (i.e., to

distinguish between FT scores 0-1 and 2-3). AUCs between
0.919 and 0.970 were obtained. It means that an observation
with a given SMD consensus score will obtain a higher
predicted score than observations associated with lower
SMD consensus scores in most cases (>92%). Sensitivity
and specificity were computed from the discretized scores
for the three binary classification problems. In a future
work, these thresholds could be optimized by including
more observations.The identification of these thresholds can
indeed be performed on smooth ROC curves obtained for
numerous observations, by optimizing the sensitivity and the
specificity. These thresholds could also be chosen by taking
the “cost” of the different misclassifications into account.
Including more observations will also probably increase the
predictive performance of the model. However, in this paper,
the goal was to show that this technique is adapted and
works for the prediction ofMDS-UPDRS scores. Future work
will increase the number of observations to improve the
predictive performance of the model.

During the cross-validation, feature selection was per-
formed 86 times. The features that were selected as relevant
in most iterations (Table 6) are all among the ones chosen
to build the global model. Some of these features are the
same as those proposed in the MDS-UPDRS, asDfreq, Afreq,
Hesits, and Halts. According to the instructions, SMDs have
to quantify a possible slowing on the basis of a visual analysis
of the patient’s motor performance, for example. The Dfreq
feature describes this possible slowing and can, in addition,
give the index where the slowing occurs. slTopen, slAclose,
Aopen, and slAopen are accelerometer-specific features that
cannot be easily quantified by visual inspection. The possible
decrementing amplitude (Dangle) has not been selected as
a relevant feature for score prediction while it is one of the
three main criteria that should be considered for scoring
according to theMDS-UPDRS scoring instructions (Table 1).
To better interpret this finding, it would have been useful to
assess how often the amplitude decrement criterion was used
by SMD to score the FT task. The data available here does
not allow testing for this. Indeed, the score given by SMD
was based on the presence of any of the three criteria, but
SMDs were not asked to report which criteria was (were)
selected for each given score. Thus, it is conceivable that the
weight of the decrementing amplitude criteria for FT scoring
is relatively low for both SMD and the proposed algorithm.
The alternative explanation is that this feature is differentially
considered by SMD and the computer-based method. In this
case, one should consider inadequate computation in case of
tremor or too fast movements or that it may be represented
inside another accelerometer-specific feature such as slAopen
since the intrinsic nature of the accelerometer measurements
is different from the one of the human eye. It is not because
the prediction algorithmdoes not use the decrementing angle
as a predictive variable that this feature should not be used
by MDs during their assessment. The accelerometer-based
device is possibly not able to represent this feature in a way
that can help to predict the UPDRS score. This is why other
features are also used, as they may have a greater intrinsic
ability to represent motor features used to predict MDS-
UPDRS scores. The difference between the MDS-UPDRS
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features and those selected by the model can therefore be
explained. First, the system allows the quantification of
features that cannot be detected by visual analysis where; on
the other hand, visual analysis allows taking into account
the whole movement while accelerometers only summarize
it into eighteen features. Second, the statistical predictive
model objectively combines all the relevant features while it
is difficult to simultaneously focus on all movement features
by simple visual inspection.

Since the developed tool is low-cost, easy-to-use in
daily clinical practices and as it shows very good predictive
performance, it may be used as a support decision tool. The
other tasks of the MDS-UPDRS can easily be integrated in
the tool since only the feature extraction algorithm has to
be adapted for each task while the model is automatically
computed based on the new data sets. For every new patient
performing anMDS-UPDRS task, the relevant featureswould
be extracted using the observations returned by the tool. The
ordinal logistic regression model would then compute an
MDS-UPDRS score from the values of these features. Since
the prediction of the model is continuous, it is more sensitive
than a 5-point scoring system. It could therefore be a valuable
asset to assess the evolution of the disease and treatment
efficacy and could help SMD take a decision in ambiguous
cases.
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