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Abstract: Pogosta disease is a mosquito-borne infection, caused by Sindbis virus (SINV), which causes
epidemics of febrile rash and arthritis in Northern Europe and South Africa. Resident grouse and
migratory birds play a significant role as amplifying hosts and various mosquito species, including
Aedes cinereus, Culex pipiens, Cx. torrentium and Culiseta morsitans are documented vectors. As specific
treatments are not available for SINV infections, and joint symptoms may persist, the public health
burden is considerable in endemic areas. To predict the environmental suitability for SINV infections
in Finland, we applied a suite of geospatial and statistical modeling techniques to disease occurrence
data. Using an ensemble approach, we first produced environmental suitability maps for potential SINV
vectors in Finland. These suitability maps were then combined with grouse densities and environmental
data to identify the influential determinants for SINV infections and to predict the risk of Pogosta disease
in Finnish municipalities. Our predictions suggest that both the environmental suitability for vectors and
the high risk of Pogosta disease are focused in geographically restricted areas. This provides evidence that
the presence of both SINV vector species and grouse densities can predict the occurrence of the disease.
The results support material for public-health officials when determining area-specific recommendations
and deliver information to health care personnel to raise awareness of the disease among physicians.

Keywords: Pogosta disease; vector-borne disease; Sindbis virus infection; mosquitoes; predictive
mapping; disease modelling

1. Introduction

Mosquito-borne viruses are responsible for many notable human diseases world-
wide and their transmission is a result of complex interactions between climate, vectors,
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vertebrate hosts and human behaviour [1,2]. Spatial analysis and statistical modeling
approaches are commonly used to understand these interactions and their implications for
the spread of vector-borne diseases [3–6]. While high and low temperature extremes are
increasing, winter, in particular, may offer favourable conditions for the spread of exotic
vector-borne diseases. Endemic mosquito-borne pathogens including Sindbis virus (SINV)
are already circulating in northern Europe [7]. Sindbis virus circulates within an enzootic
transmission cycle involving mosquito vectors and avian hosts, but it is transmitted to
humans via bridge vector species in epidemic transmission events [8]. Spatial modeling
approaches can predict vector distributions and infectious disease risks, and therefore may
provide strategies for more efficient resource allocation regarding targeted surveillance,
prevention, and control [9,10].

Mosquito-transmitted SINV is a member of the Western equine encephalitis antigenic
complex of alphaviruses that was originally isolated from Culex pipiens Linneaus and/or Culex
univittatus Theobald collected in Sindbis village, Nile Delta (Egypt) in 1952 [11,12]. Pogosta
disease also known as Sindbis fever, Ockelbo disease in Sweden, and Karelian fever in Russian
Karelia, is the result of SINV infection in humans. It manifests with fever, rash, headache,
myalgia, arthralgia, nausea, conjunctivitis and pharyngitis. After the acute phase, long-lasting
joint pain and tendon insertions occur in 25% of infected individuals [13–16]. The incubation
period for SINV is 5–7 days before the onset of symptoms with IgM and IgG antibodies are
detectable within 8 and 11 days since onset, respectively, resulting a time lag of 2–3 weeks
from transmission to serological diagnosis [15,17]. As no vaccine or specific etiologic treatment
is available, clinical care is strictly symptomatic [17]. Infections are notifiable in Australia and
some European, Asian and African countries [18], but despite widespread circulation of SINV
in Australasia and Africa, human outbreaks are associated only with SINV genotype I (SINV-
I), and have only been documented in Northern Europe and South Africa [19–21]. In Finland,
tularemia and Pogosta disease are the two most common mosquito-borne diseases [22].
Pogosta disease cases are recorded annually, and the estimated seroprevalence of SINV was
5.2% between 1995–2003. A disease epidemic has been seen approximately every seven years,
where hundreds or even thousands of patients are infected, until 2009, when an anticipated
outbreak did not occur [23,24]. The majority of clinical cases in Northern Europe occur in
August and September [25], coinciding with the temporal distribution of the bridge vectors
Aedes cinereus Meigen, and Culex pipiens Linnaeus [8]. However, there is no national public
health surveillance for SINV in mosquitoes in Finland. Aedes cinereus and Culex pipiens are
abundant during the late summer and early autumn in Finland, a time when the relative
humidity increases throughout the country.

Sindbis virus mainly circulates in enzootic cycles between birds, which act as am-
plifying hosts, including both resident grouse (Galliformes) and migratory birds, mainly
passerines, such as thrushes (Turdidae) [21,23,26]. Ornithophilic mosquitoes, Culex pipiens,
Cx. torrentium Martini and Culiseta morsitans Theobald maintain the virus in these cy-
cles [26,27]. In addition, Aedes cinereus and Culex pipiens are bridge vectors, which transmit
the virus from birds to humans [13,28–30]. In recent studies, SINV-I has also been detected
in or isolated from Ochlerotatus species [31–33], which would implicate their potential
as additional bridge vectors. Females, which are zoophilic and anthropophilic, are mor-
phologically identical to Ae. geminus Peus, whose role in transmission cycles is poorly
understood. While both Cx. pipiens and Cx. torrentium are ornithophilic, Cx. pipiens is also
known to occasionally bite humans. In contrast, Cx. torrentium has been reported to not
bite humans, even in a laboratory setting [34]. Culiseta morsitans adults are ornithophilic,
but have occasionally been observed to bite reptiles, small mammals and humans [34]. The
overwintering mechanisms of SINV in bird hosts are largely unknown. Most of the studies
have detected SINV in mosquitoes, but some experimental vector-competence work has
been done on Culex pipiens and Cx. torrentium [35]. Although a mosquito could have picked
up the virus in its blood meal, and the virus from that blood meal could be detected, this
is usually considered in virus studies and the blood-fed individuals are sorted separately
from the rest of the specimens for processing and analysis. In Sweden, SINV has also been
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detected in hibernating, on-blood fed Cx. pipiens mosquitoes, suggesting that the virus also
overwinters in this vector species, which may be important mechanism for virus survival
and persistence in nature [36].

Climate plays an important role in the transmission of vector-borne diseases, since
arthropods, including mosquitoes, are sensitive to changes in environmental conditions.
Weather, climate change and the environment influence the habitat suitability, vector
activity and the rate of vector development [13,37–39]. The replication of pathogens within
vectors occurs faster at warm temperatures [40]. Temperature and precipitation patterns
also influence vector densities [41,42]. Generally, warm temperatures and increased rainfall
positively affect vector densities but extreme high temperatures combined with decreased
rainfall may reduce mosquito populations [43]. The duration of vector development is
also influenced by the thickness of snow cover, especially in the spring [44]. Outbreaks of
Pogosta disease have been strongly concentrated in primarily eastern and central regions in
Finland with dense forest cover and abundant lakes (Figure 1a), implying a good potential
for predicting and understanding the drivers of the observed spatial pattern. In an earlier
study, snow depth, air temperature in May–July and the proportion of regulated lakes have
been found to influence the number of SINV infections [21,45]. Despite these observations,
the presence or abundance of known vector and host species have not been studied to
determine their effects on the risk of human Pogosta disease infections in Finland.

Figure 1. (a) Human Pogosta disease cases registered in Finland during 2000–2019. (b) The average
incidence of Pogosta disease per 1000 inhabitants over a 20-year period in Finland. (c) Annual
number of Pogosta disease cases, and (d) mean monthly Pogosta disease cases notified in Finland in
2000–2019 [22]. An incidence rate below 0.48 was considered as absence of the disease.
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In this study, we apply spatial analysis—in particular geographic information system
(GIS) and species distribution modeling (SDM) techniques—to better understand how
biotic and environmental drivers contribute to the distinct distribution of the Pogosta
disease risk in Finland. More specifically, the objectives of this study were to (1) predict the
environmental suitability and spatial distribution of vectors known to transmit SINV, (2) to
use the resulting predictions together with host and environmental data to estimate the
risk of Pogosta disease across Finland, and (3) to identify the most influential predictors
driving the spatial patterns of this risk.

2. Materials and Methods
2.1. Pogosta Disease Data

Finland (59◦50′ N, 20◦38′ E, 70◦09′ N, 31◦30′ E), located in Northern Europe between
Sweden and Russia (Figure 1a,b), is subdivided at various administrative levels following
the Nomenclature of Territorial Units for Statistics (NUTS) system. Patient data was
obtained from the National Infectious Diseases Register [22], which included serologically
confirmed Pogosta disease cases (n = 1825) by municipality of residence from 2000–2019
(Figure 1a). Data on laboratory-confirmed SINV infections is collected routinely through the
NIDR. By law, Finnish laboratories are expected to notify findings of a number of microbes
specified in the Finnish Communicable Disease Act and Decree, including Sindbis virus
infection. A laboratory notification contains the following: identification information, place
of treatment, place of residence, specimen collection date, findings, laboratory method, and
reporting laboratory [22].

An average of 91 cases were reported annually (varying from 8 to 597) with an
incidence of 1.7/100,000. We calculated the incidences for each municipality per 1000 in-
habitants between 2000–2019 and calculated the average incidence of all municipalities
(0.48/1000) over a 20-year period (Figure 1b). Municipalities with incidence rates above
0.48 were set as a threshold for ‘presence’ municipalities (n = 97), and the rest were consid-
ered as ‘absence’ municipalities (n = 213; Figure 1b).

While cases of Pogosta disease were detected annually, outbreaks, defined in this
study as annual occurrence of over 100 cases, were reported in 2000, 2002, 2003, 2009, 2012
and 2013 (Figure 1c). Although no outbreaks occurred after 2013, 72 cases were registered
in 2018. Most diagnoses were made and notified in September (on average 48 annual
cases over the study period), but many were also notified in August and October (30 and
9 on average, respectively; Figure 1d). During the winter and summer months (excluding
August), the number of cases remained low.

2.2. Data of Potential SINV Vectors

Mosquito presence data were collected in Finland in 2009 [46], and presence/absence
data between 2012–2018 [47]; these were combined for potential SINV vectors. Due to the
lack of reliable identification methods to distinguish adult females of Cx. pipiens from Cx.
torrentium, and Ae. cinereus from Ae. geminus, data were combined to Cx. pipiens/torrentium
and Ae. cinereus/geminus. Presence data were considered as the actual locations of a given
species, and absence data were randomly selected from the more than 900 possible locations
where collections were made but the species of interest to this study were not found.
Altogether, there were 116 presence locations for Cs. morsitans, 144 for Cx. pipiens/torrentium
and 180 for Ae. cinereus/geminus. The number of absences was equally weighted to the
presences as recommended to build reliable species distribution models [48].

2.3. SINV Host Species Data

As SINV is known to circulate in both resident Galliformes and migratory birds, we
employed grouse abundance data from the Wildlife Triangle Census, coordinated by the
Natural Resources Institute Finland (LUKE). Birds are monitored by voluntary hunters
in late July and early August along 12 km–long triangle-shaped line transects [49]. The
transects are walked in three-man chains, with the aim to flush all birds from a 60 m wide
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belt, enabling the calculation of absolute density estimates (individuals/km2). Grouse
data were compiled by first calculating the average annual densities of willow grouse
(Lagopus lagopus Linnaeus), black grouse (Lyrurus tetrix Linnaeus), capercaillie (Tetrao
urogallus Linnaeus) and hazel grouse (Tetrastes bonasia Linnaeus) in Finnish municipalities
between 2000–2019. For each municipality, all triangles within a 100-km radius from the
geographical center of the municipality were included. Annual average densities were
further averaged across all years to create one average figure per municipality, for the
spatial analysis.

2.4. Environmental and Other Predictors

Environmental and other predictors were selected based on factors which are known
to influence the distributions of vectors and SINV infections [8,21,23,34]. Environmental
data for Finland were obtained from various sources and included interpolated data, data
directly obtained from satellite imagery or data derived from GIS layers or satellite imagery.
Details of the predictor data are provided in Table 1. Altogether, the vector dataset included
31 predictors, and the Pogosta disease dataset included 33 predictors before running a
multicollinearity analysis (Section 2.5).

Table 1. Description and source of all predictor data.

Data Source Data Layer(s) Modifications Year Spatial
Resolution References

FMI Wind speed 50 years return
interval (m/s)

Calculated mean wind speed 50 y interval
per municipality. 1979–2015 20 m [50]

FMI Mean monthly air
temperature (◦C)

Calculated mean monthly temperature per
municipality in 2000–2019 in

July–September, October–February and
March–June. Air temperature

measurement height was 2 m (FMI).

2000–2019 1000 m [51]

FMI Mean monthly precipitation
(mm)

Calculated mean monthly precipitation
per municipality in 2000–2019 in

July–September, October–February and
March–June.

2000–2019 1000 m [51]

FMI Mean monthly snow depth
(cm)

Calculated mean monthly snow depth per
municipality in 2000–2019 in

October–November, December–February
and March–April.

2000–2019 1000 m [51]

FMI Mean precipitation during
growing season (mm)

Calculated mean precipitation during
growing season per municipality.

averages for
1981–2010 1000 m [52]

FMI Mean heat summation during
growing season (◦C day)

Calculated mean heat summation during
growing season per municipality.

averages for
1981–2010 1000 m [52]

FMI Growing season length (GLS)
(day)

Calculated growing season length (GLS)
per municipality.

averages for
1981–2010 1000 m [52]

LUKE

Density (individuals/km2) of
willow grouse (Lagopus
lagopus), black grouse

(Lyrurus tetrix), capercaillie
(Tetrao urogallus) and hazel

grouse (Tetrastes bonasia)

Average annual densities at a 100 km
radius from the municipality center,

further averaged over the years. Based on
wildlife triangle census.

2000–2019 Municipality [49]

SYKE, EEA,
EU/

Copernicus
programme

CORINE land cover 2018

Euclidean distances to selected land cover
types from mosquito species PA point

were calculated in ArcGIS. Proportion (%)
of chosen land cover types were derived
by calculating percentage of each land

cover type for municipality.

2018 20 m [53]

Statistics
Finland

Human population density
(persons/km2) Calculated as sum per municipality. 2019 1000 m [54]

Statistics
Finland

Summer cottage density
(cottages/km2)

Calculated in ArcGIS in order to present
summer cottages per area (km2) of

municipality.
2019 Municipality [54]

Kurkela et al.
2008

Mean seroprevalence of SINV
in human population in

Finland

Seroprevalence rate was taken from the
hospital district in which municipality

belongs to.
1999–2003 Hospital

districts [23]
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Table 1. Cont.

Data Source Data Layer(s) Modifications Year Spatial
Resolution References

NLS of
Finland

Topographic wetness index
(TWI) Calculated mean TWI per municipality. 2016 16 × 16 m [55]

NLS of
Finland Digital elevation model (m) Calculated mean elevation per

municipality. 2019 10 × 10 m [56]

WorldClim-
Global

climate data

Solar radiation
(kJ m−2 day−1)

Calculated mean solar radiation in
May–September.

averages for
1980–2000 ~1000 m [57]

WorldClim-
Global

climate data
Water vapor pressure (kPa) Calculated mean water vapor pressure in

May–September.
averages for
1980–2000 ~1000 m [57]

NASA
Earthdata

Normalized Difference
Vegetation Index (NDVI)

(MOD13A3)

Calculated mean NDVI in June 2000–2019
per municipality.

in June,
2000–2019 1000 m [58]

NASA
Earthdata

Land surface temperature
(◦C) (MOD11C3)

Calculated mean monthly LST per
municipality in 2000–2019 April–May,
June–August and September–October

2000–2019 5600 m [59]

Lorna
Culverwell,

Jenny
Hesson

The distribution data of Cs.
morsitans,

Cx.pipiens/torrentium and Ae.
cinereus/geminus

The occurrence data of Cx. pipiens and Cx.
torrentium, and Ae. cinereus and Ae.

geminus, were unified to Cx.
pipiens/torrentium and Ae. cinereus/geminus

due to the lack of reliable identification
methods to distinguish them to either of

the species.

2009–2018
Location

(Longitude,
Latitude)

[46,47]

THL, NIDR Patient Pogosta disease data
Pogosta disease average incidence per
1000 inhabitants during 2000–2019 per
municipality was calculated in ArcGIS.

2000–2019 Municipality [22]

FMI = Finnish Meteorological Institute; LUKE = Natural Resources Institute Finland; SYKE = Finnish Environment Institute;
EEA = European Environment Agency; EU = European Union; THL = Finnish Institute for Health and Welfare; NIDR = National
Infectious Disease Register.

2.5. Data Analysis

We used the biomod2 platform in R [60] and VECMAP software to create species
distribution models in order to identify areas with suitable habitat conditions for potential
SINV vectors and human SINV infections [61–63]. All geospatial datasets, including
environmental and other data, were processed in ESRI ArcGIS (version 10.3.1) (ESRI,
Redlands, CA, USA), and were set to the same spatial extent, geographic coordinate
system (EUREF FIN TM35FIN, epsg:3067) and resolution (1 km × 1 km). To model vector
distributions, the dataset comprised potential vectors’ presence/absence data, and climatic
and environmental predictors. The dataset compiled to model for Pogosta disease included
the presence/absence data of Pogosta disease by municipality, and outputs of the vector
models, host density data, and environmental data. As Pogosta disease data was obtained
per municipality, the zonal mean values of predictor data per municipality were calculated.
Multicollinearity of the variables was investigated using Variance Inflation Factors (VIFs)
as implemented in R package usdm [64,65]. The VIFs of the predictors were calculated
and correlated variables were excluded in a stepwise procedure using a commonly applied
threshold value of 5 [66]. The resulting dataset included 21 predictors in the SINV vector
modeling (Table 2a), and 19 predictors in the Pogosta disease modeling (Table 2b).
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Table 2. Final environmental and other predictors used in (a) potential SINV vector species modeling, and (b) Pogosta disease modeling with value ranges.

(a) Ae. cinereus/geminus Cx. pipiens/torrentium Cs. morsitans

Predictor Min. Max. Avg. Min. Max. Avg. Min. Max. Avg.

Wind speed 50 years interval 10.5 41.3 14.4 10.5 14.6 14.6 10.5 36.9 14.6

Topographic wetness index (TWI) 4269 65,535 16,708 4617 65,535 15,261 4617 65,535 15,261

Mean snow depth in October–November 2009–2019 x x x 0.2 12.4 2.3 0.2 12.6 2.3

Mean precipitation in October–February 2009–2019 26.3 68.8 47.4 26.3 49 49 26.8 68.8 49

Mean precipitation in March–June 2009–2019 33.5 54.7 42.2 33.5 54.3 41.9 33.5 54.3 41.9

Mean precipitation in July–September 2009–2019 55.8 85.3 67.5 54.7 84.7 67.1 56.6 84.7 67.1

Mean normalized difference vegetation index
(NDVI) in June 2009–2019 0.4 0.8 0.7 0.4 0.8 0.7 0.5 0.8 0.7

Mean water vapor pressure
in May–September 2009–2019 x x x 0.8 1.21 1.04 x x x

Human population density 0 4281 141.9 0 4281 73.4 0 4281 73.4

Euclidean distance to water courses 0 19,194.3 2485.6 0 20,634.4 2884.2 0 19,194.3 2884.2

Euclidean distance to water bodies 0 4628.9 665.8 0 4628.9 757.1 0 4628.9 757.1

Euclidean distance to peatbogs 0 4891.8 1021.5 20 4303.6 1093.1 0 4891.8 1093.1

Euclidean distance to inland marshes 0 12,041.4 2155.2 0 12,041.4 2182.8 44.7 12,041.4 2182.8

Euclidean distance to coniferous forest 0 2272.7 98.2 0 3217.6 76.3 0 570.1 76.3

Euclidean distance to broad-leaved forest 0 2062.4 201.6 0 906.9 170.4 0 1063.2 170.4

Euclidean distance to mixed forest 0 1724.1 136.6 0 3265 119.3 0 1668.8 119.3

Euclidean distance to transitional woodland/shrub 0 1073.6 141.9 0 1073.6 135.3 0 738.2 135.3

Mean land surface temperature
in June–August 2009–2019 13.3 24 18.4 12.4 23.9 18.7 14.7 22.6 18.7

Mean precipitation during growth season 1981–2010 93.1 190.3 157.8 184.1 378.5 326.5 101.9 190.3 162.6
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Table 2. Cont.

(a) Ae. cinereus/geminus Cx. pipiens/torrentium Cs. morsitans

Predictor Min. Max. Avg. Min. Max. Avg. Min. Max. Avg.

Mean solar radiation in May–September 13,718 17,526 15,460 x x x 13,639 17,526 15,662

Elevation 0.1 116.5 564.6 x x x x x x

(b) Pogosta disease

Predictor Min. Max. Avg.

Black grouse density 0 11.6 6.9

Capercaillie density 0 4.9 3.2

Hazel grouse density 0 10 7.3

Willow grouse density 0 3.3 0.3

Elevation (m) 4.9 471.3 94.2

Human population density (persons/km2) 0 1177 36.7

Percentage of inland wetlands (%) 0 0.9 0.1

Percentage of mixed forest in mineral soil (%) 0 20.9 10.4

Percentage of mixed forest in peatlands (%) 0 9.3 2

Percentage of mixed forest in rocky soil (%) 0 0.7 0.1

Percentage of lakes (%) 0 54.4 8.4

Mean precipitation in July–September in 2000–2019 (mm) 54.8 82.8 68.2

Mean seroprevalence of SINV in human population 0 9.9 3.5

Summer cottage density 0.1 9.1 1.8

Topographic wetness index (TWI) 7751 65,535 17,062

Suitability for Cx. pipiens/torrentium (%) 10.6 78.7 41.3

Risk for Cs. morsitans (%) 8.3 85.9 36.2

Percentage of peatbogs (%) 0 19.1 2.1

Risk for Ae. cinereus/geminus (%) 8.5 78.7 50.9

x = Predictor not included in the final dataset.
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The workflow to analyse (a) potential SINV vectors and (b) Pogosta disease is pre-
sented in Figure 2a,b. We first applied the ensemble approach, which combines predictions
across different modeling methods, in the biomod2 package (version 3.4.6) [62] in R to
model the distribution of SINV vectors and Pogosta disease risk in Finland. The fol-
lowing eight predictive modeling techniques were employed: generalized linear models
(GLM) [67], generalized additive models (GAM) [68], classification tree analysis (CTA) [69],
artificial neural networks (ANN) [70], multivariate adaptive regression splines (MARS) [71],
generalized boosting models (GBM) [72], random forest (RF) [73], and maximum entropy
(MAXENT) [74]. Flexible discriminant analysis (FDA) and surface range envelope (SRE)
were excluded due to generally poor predictive performance [75–77]. Models were mostly
run using the default settings of biomod2 with the following exception: we used the func-
tion GAM in mgcv package, with k = 3 as the basis dimension for the thin plate smoothing
terms [78]. We used a cross-validation technique where we split the dataset into two
subsets, one to calibrate the models (70%) and another to evaluate the models (30%). We
repeated the calibration and evaluation sets 10 times (80 model evaluation runs in total)
for vector modeling, and 50 times (400 model evaluation runs in total) for Pogosta disease
modeling [79]. The area under the receiver operating characteristic (AUC) value was used
to assess the model performance in the analyses; scores range from 0 to 1, with 0.5 being
the threshold for predictions better than random [80,81]. Sensitivity (the proportion of
observed presences) and specificity (the proportion of observed absences) were calculated
to quantify the omission errors [80]. Standardized values for relative contribution of the
predictors were extracted from the biomod2 output and compared to assess the most pow-
erful variables. Partial dependency plots were generated to show the predictors’ estimated
effects on the species and disease distributions. To reduce the uncertainty related to the
choice of a single modeling technique, we built ensemble predictions using the weighted
mean method. This approach produces the ensemble prediction by averaging predictions
across the best-performing individual models (0.7 < AUC < 1.0) and weights them based on
their cross-validation performance. Predictions based on weighted mean ensemble models
were used as an input for habitat suitability maps of SINV vectors and the Pogosta disease
risk map.

Second, we used VECMAP (version 2.2.2.4503) [63] software in order to test the
consistency of the results. In VECMAP, we used GLM and RF models to estimate the
disease risk. GLM and RF models were processed using the default settings of VECMAP.
In the GLM model, 100 repetitions of bootstrap resampling were run for both presence and
absence datasets. The top 10 ranked variables were selected based on the best performing
model number in terms of the Akaike information criterion (AIC). In the RF model, variable
reduction forest was run with 500 trees and prediction forest with 100 trees. Variable
contribution in RF was measured with a mean decrease in accuracy and a mean decrease
in Gini. The model performance was assessed as described above when using the biomod2
package. Prediction maps were first created by using R or VECMAP, and afterwards
modified in ArcGIS.
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Figure 2. Workflow of modeling the spatial distribution of (a) potential SINV vectors with biomod2
approach, and (b) Pogosta disease with biomod2 and VECMAP approach.
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3. Results
3.1. Modeling of SINV Mosquito Vector Distributions
3.1.1. Predictive Performance

From 80 model runs for Ae. cinereus/geminus, the GAM, GBM, MARS and RF models
provided AUC values higher than the reliability threshold 0.70, but below 0.75, and comprised
the final ensemble model. Similarly, for Cx. pipiens/torrentium, the GAM, GBM, CTA, MARS
and RF models resulted in AUC values above 0.70, but below 0.78. All models resulted in high
AUC values (0.71–0.90) for Cs. morsitans suggesting fair to good predictive power. Sensitivity
and specificity rates (by AUC) for estimating the distribution of potential vectors based on
weighted mean ensemble model resulted in rates above 85.0%. To estimate Ae. cinereus/geminus
and Cs. morsitans distributions, a better ability to identify suitable environments (sensitivity
93.4% and 96.6%) than unsuitable environments (specificity 88.6% and 87.5%) was presented.
In contrast, when estimating Cx. pipiens/torrentium distributions, the ensemble model better
identified unsuitable environments (sensitivity = 89.5%, specificity = 93.3%).

3.1.2. Predictor Contributions to the Distribution of SINV Vectors

The relative contribution of influential predictors (%) based on the weighted mean
ensemble model varied between mosquito species (Figure A1 in Appendix A). The predictions
for Ae. cinereus/geminus with the highest relative contribution were the Euclidean distance to
river (21%), wind speed (17%), mean land surface temperature in June–August (11%), mean
solar radiation in May–September (9%) and normalized difference vegetation index (NDVI)
(7%). For Cx. pipiens/torrentium, mean water vapor pressure (29%), mean precipitation in
October–February (23%), wind speed (15%), mean precipitation during growing season (9%),
NDVI (5%) and human population density (4%) were the most important predictors. Mean
solar radiation in May–September (53%), mean growing season length (GLS) (15%), mean
precipitation in October–February (11%) and the Euclidean distance to coniferous forest (5%)
had the highest contribution when predicting Cs. morsitans distributions.

Partial dependency plots for each vector species are shown in Figure A2a–c. High
mean temperatures in June–August during 2000–2019, high NDVI and a long growing
season in a municipality indicated high probability of Ae. cinereus/geminus presence
(Figure A2a). Low wind speed, low solar radiation in May–September and short distances
to coniferous and mixed forest in the locations were associated with the high probability of
an occurrence of Ae. cinereus/geminus (Figure A2a). High water vapor pressure and high
land surface temperatures in June–August were positively correlated with the probability
of Cx. pipiens/torrentium occurrence (Figure A2b). The probability of Cx. pipiens/torrentium
occurrence was also high in locations with low wind speed and sparse vegetation. A
long growing season, high precipitation in March–June and high solar radiation in May–
September positively influenced Cs. morsitans presence (Figure A2c). However, high mean
precipitation in July–September and October–February, long distances to coniferous forests
and mixed forests indicated a lower probability for Cs. morsitans to occur.

3.1.3. Prediction Maps for SINV Vectors

Suitability maps for potential SINV vectors are shown in Figure 3a–c. In this study,
low probability of presence/risk is interpreted as 0–30%, moderate probability/risk as
31–60%, and high probability/risk as 61–100%. The areas with high probability for Ae.
cinereus/geminus to occur were located in central, eastern and western Finland (Figure 4a).
The probability of Ae. cinereus/geminus presence was also high in Lapland, excluding the
northernmost Lapland (0–30%). The areas with moderate probability of Ae. cinereus/geminus
presence were predicted to occur throughout Finland (30–70%). Southwestern Finland,
including the majority of the Åland Islands, was predicted to have low probability for Ae.
cinereus/geminus presence. High probability for Cx. pipiens/torrentium presence was found
in central Lapland and most of southern and central Finland, including the Åland Islands
and the coastal areas (Figure 3b). In contrast, eastern Northern Ostrobothnia, southern
and northern Lapland, and a narrow area in western Finland, were estimated to have a
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low probability for Cx. pipiens/torrentium occurrence. High suitability for Cs. morsitans was
estimated across southern Finland, including coastal areas, the Åland Islands, and sporadic
areas in western and eastern Finland (Figure 3c). Most of central and northern Finland
was estimated to have a low probability for Cs. morsitans presence, however, excluding
sporadic regions with a moderate suitability.

Figure 3. Prediction maps for (a) Ae. cinereus/geminus, (b) Cx. pipiens/torrentium, and (c) Cs. morsitans in Finland based on
weighted mean ensemble model.
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Figure 4. (a) Model performance comparison of 8 model algorithms by area under the receiver
operating characteristic curve (AUC) and true skill statistics (TSS) values of 50 model runs in biomod2.
The points represent the mean values and the solid lines represent the 95% range of variation.
ANN = artificial neural networks; CTA = classification tree analysis; GAM = generalized additive
models; GBM = generalized boosted models; GLM = generalized linear models; MARS = multivariate
additive regression splines; MAXENT = maximum entropy models; RF = random forest model.
(b) Model performance based on weighted mean ensemble model (EMwMean) in biomod2 and GLM
and RF models in VECMAP.

3.2. Pogosta Disease Modeling
3.2.1. Predictive Performance

Model performances of the eight modeling approaches and weighted mean ensemble
model (biomod2), as well as the generalized linear model (GLM) and random forest (RF)
model (VECMAP), are presented in Figure 4. In the biomod2 package, all models provided
reasonable estimates (AUC > 0.70) for the distribution of SINV infections resulting in a
minimum mean AUC of 0.78 over 50 model runs (0.78 < mean AUC < 0.90). RF and
GBM models were the best performing models in biomod2 (0.89 < mean AUC < 0.90,
respectively). The weighted mean ensemble model (biomod2), produced by the best-
performing model algorithms, yielded the mean AUC of 0.98 with good sensitivity and
specificity rates (Figure 4b). In VECMAP, the GLM model resulted in a mean AUC of
0.93 over 100 bootstrap resampling events and a RF model mean AUC of 0.91.

3.2.2. Predictor Contributions to the Distribution of Pogosta Disease Distribution

The relative contribution of predictors (%) based on the weighted mean ensemble
model in biomod2 varied considerably (Figure A3a). The highest relative contribution was
provided by the habitat suitability of Cs. morsitans (53%), the proportion of mixed forest in
peatlands (10%), hazel grouse (9%) density, the habitat suitability of Ae. cinereus/geminus
(7%), the number of lakes (5%), capercaillie (4%) and black grouse (3%) density per munici-
pality. Based on variable contributions in GLM (VECMAP), all variables were included
in the 10 most important variables except for the proportion of mixed forest in peatlands.
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Furthermore, the habitat suitability for Cx. pipiens/torrentium, the proportion of inland
wetlands, elevation and human population density were important predictors based on
GLM model in VECMAP. The contributions of predictors in the RF model (VECMAP) were
mainly consistent in the weighted mean ensemble model and GLM model (VECMAP)
(Figure A3b–c).

Based on the partial dependency plots, high densities of black grouse, capercaillie and
hazel grouse indicated high probability of Pogosta disease occurrence (70–98%) (Figure 5).
The high willow grouse densities, however, were associated with lower risk for Pogosta
disease. A high proportion of mixed forest in peatland, peatbogs and lakes in the munici-
palities were associated with increased Pogosta disease risk (80–90%). In municipalities
at elevations lower than 200 m, the Pogosta disease risk was higher (80–90%), compared
to municipalities at higher altitudes. Furthermore, in municipalities at low to high to-
pographic wetness index (TWI) rates, Pogosta disease risk remained high (80–90%). In
the municipalities with a high probability of Ae. cinereus/geminus occurrence, Pogosta
disease risk was also high (80–98%), and remained high also in municipalities with low to
high suitability for Cx. pipiens/torrentium. In contrast, the disease risk decreased when the
habitat suitability for Cs. morsitans increased to 50%, whereas in municipalities with low to
moderate suitability (0–50%) for Cs. morsitans, the Pogosta risk was high (80–90%).

Figure 5. The partial dependency plots for Pogosta disease modeling based on the weighted mean
ensemble model produced by biomod2.

3.2.3. Pogosta Disease Risk Maps

The risk map generated from the weighted mean ensemble suggests that a high
risk (70–100%) for Pogosta disease occurs in municipalities located in eastern and central
Finland, but also in several municipalities along the western coast (Figure 6a). In munici-
palities bordering high-risk municipalities, the risk of SINV transmission was moderate
(30–70%) based on the GLM model (VECMAP, Figure 6b). In contrast, municipalities in
northern Lapland, southwestern Finland and the Åland Islands were estimated to be at a
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low risk (0–20%) for SINV transmission in all predictions (Figure 6a–c). The high-risk areas
of Pogosta disease were similar in all prediction maps. Similar results were obtained with
biomod2 and VECMAP analyses with the exception that moderate-risk areas in VECMAP
predictions were slightly larger to the prediction based on the weighted mean ensemble
model in biomod2 (Figure 6a–c).

Figure 6. Predicted risk of Pogosta disease in Finland by (a) weighted mean ensemble model produced by biomod2, and
(b) GLM model, and (c) RF model produced by VECMAP. The risk is expressed on a scale between 0 (low risk) to 100 (high
risk) and visualized with colours ranging from blue (low-risk area) and to red (high-risk area).
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4. Discussion
4.1. Validity of the Study

To our knowledge, only a handful of vector-borne disease modeling studies have
included suitability data for vectors to predict disease occurrence [6,82]. An ensemble
modeling approach was used to predict the potential SINV vectors occurrence and Pogosta
disease risk. Ensemble predictions generally yield more accurate estimates over single-
model estimates and are widely used to estimate the potential distributions of vectors and
vector-borne diseases [83,84]. In VECMAP, both the GLM model and RF models were used
to predict Pogosta disease risk. RF models are found to be one of the most accurate model
algorithms with high performance in predicting species distributions and are widely used
in the field [84–86].

Some uncertainty arose from mosquito absences, which were randomly selected from
the points where collections were made for a whole-country study [47]. Since collection
data covered so many species with differing life histories, any points where potential
vectors were absent may not reflect true absences. Among other reasons, absences could
be explained by having visited sites when one or more life stages was not active or to be
collected or by using collection methods or traps which excluded some species.

There may be also differences in species-specific factors between Cx. pipiens and Cx.
torrentium and between Aedes cinereus and Ae. geminus, which were pooled in this study.
The distribution of Cx. pipiens extends to southern Lapland but Cx. torrentium is the more
dominant of the two species across the whole country. If Cx. torrentium truly is the more
dominant of the two species in Lapland, then it is unlikely to be involved in bird to human
transmission of the virus since it is not reportedly a species which bite humans. Far less
is known about the differences between Ae. cinereus and Ae. geminus, either for biting
preferences, or for other behavioral traits. Based on the mosquito collections, Ae. geminus
is by far the more dominant species of the two across the whole country [47]. Of all the
species that are included in the modelling experiment, Ae. cinereus/geminus are the most
common and voracious biters around the whole country. No experiments have sought to
determine if one or the other species is more of a human biter than the other. However,
based on the general biting habits of true Aedes (12 species), is can be assumed that they
would both be aggressive human biters, and as such they would both be involved in the virus
transmission. Furthermore, using presence-absence data instead of mosquito abundance data
loses information on the relative suitability of habitats when all presences are treated as equal,
regardless of the abundance of the individuals that the habitat supports [87]. Pogosta disease
patient data [22] are documented by the municipality of residence and may not reflect the
actual municipality where patients were infected. Data is also documented based on the date
of sample collection rather than the onset of symptoms, which may indicate that there is a time
lag of 2–3 weeks to serological diagnosis. Disease awareness among physicians has played a
significant role in whether Pogosta disease is diagnosed with serological evidence. As with
any infectious diseases with a heterogeneous clinical presentation, it is likely that milder cases
or patients that did not experience symptoms did not seek care, and hence would not have
been to the NIDR. However, the proportion of unreported cases should not differ regionally.
High-resolution data was utilized in the potential vector models, but as Pogosta disease data
was available at the municipality level, results were obtained at the same resolution, discarding
some of this high-resolution data. We note that other influential variables not considered in
this study may exist, such as the occurrence of migratory birds (e.g., passerines), which are
known to be associated with SINV infections [8,23,26,88]. However, the number of candidate
species of birds potentially involved is too large for all to be included in these models, and
a general index of bird abundance may be too nonspecific. In addition, species distribution
models (SDMs) of SINV vectors could benefit from micro-climate data or North-Atlantic
Oscillation (NAO) index and wind climate [89]. Micro-climate data (spatial resolution < 50 m)
better represents thermal and moisture conditions than coarse-scale gridded climate data
(≥1 km2) [90], but producing microclimate data is computationally intensive and thus it is
not yet feasible to apply in SDMs at the municipality scale. The North-Atlantic Oscillation
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(NAO) index captures the wide spectrum of conditions related to precipitation (water and
snow), winds and temperature. In our future studies, we aim to include migratory bird data,
the NAO index and future climate data in order to produce more accurate models to predict
the occurrence of SINV infections under changing climate conditions.

4.2. Influential Variables

Consistent with previous research, environmental and climatic variables were im-
portant determinants of SINV vector occurrence. In particular, locations with high mean
temperatures in June–August during the studied period, rich vegetation and a long grow-
ing season positively influenced the occurrence of Ae. cinereus/geminus (Figure A2a). Aedes
cinereus larvae are known to need a temperature of 12–13 ◦C to hatch and 14–15 ◦C to
develop, the optimum temperature being 24–25 ◦C [91]. Aedes cinereus is also an acidophilic
mosquito, most often found in acido-oligotrophic habitats [34]. Based on our results, short
distances to coniferous and mixed forest, low wind speed and low solar radiation in May–
September were also suitable habitat conditions for Ae. cinereus/geminus. Aedes cinereus
larvae mostly occur in semi-permanent, partly shaded pools of flood plains, in sedge
marshes or bogs, at the edges of lakes covered by emergent vegetation, and in woodland
pools [34]. Our study suggests that Cx. pipiens/torrentium favour locations with high water
vapor pressure, high land surface temperatures in June–August during the studied period,
low wind speed and barren vegetation (Figure A2b). Culex pipiens/torrentium are widely
distributed and able to survive in various habitats, including natural unpolluted and urban
polluted habitats close to humans [34,92]. We also found that high precipitation in March–
June, high solar radiation in May–September and a long growing season were associated
with higher Cs. morsitans occurrence (Figure A2c). Culiseta morsitans deposit their eggs
during early summer in the moist substrate above the residual water level [34,93]. Fur-
thermore, locations with moderate precipitation in July–September and October–February,
and with short distances to mixed or coniferous forests, had suitable conditions for Cs.
morsitans to be present. Suitable sites for Cs. morsitans are known to occur in both shaded
and open habitats in swampy woodlands and temporary water bodies in forests [34,94].

Our study demonstrates the combined effects of vector species, host species and environ-
mental factors to explain the occurrence of SINV infections. We found that in municipalities
with a high probability of Ae. cinereus/geminus to occur, the risk for SINV infections was also
high. To date, most SINV strains recovered by Swedish studies have been isolated from Cx. pip-
iens, Cx. torrentium and Cs. morsitans [8,28]. A recent study by Lundström et al. (2019) suggests
that the increased prevalence of SINV-I, especially in Ae. cinereus and Cx. pipiens/torrentium,
is a major cause of recent SINV outbreaks in Northern Europe. Our models suggested that
the habitat suitability for Cs. morsitans negatively influenced the risk of SINV infections. This
observation somewhat contradicts the notion that the presence of Cs. morsitans is linked to
SINV transmission elsewhere in Northern Europe [8,28]. The role of Cs. morsitans in SINV
transmission has not yet been studied in Finland, but would benefit from more mosquito
collection data to boost predictions of presence. The negative relationship may also be in part
due to correlation with unobserved variables or due to multicollinearity among predictors.

We found that high densities of hazel grouse, capercaillie and black grouse positively
influenced the occurrence of SINV infections, with very similar response functions, indicat-
ing the role of resident grouse in the epidemiology of SINV in humans. On the contrary, we
found that high willow grouse density was not associated with high Pogosta disease risk
as with other resident grouse. Historically the distribution of willow grouse extended from
southern Finland to Lapland, but as a result of population decline, the majority of the re-
maining willow grouse population is nowadays restricted to Lapland [95,96]. Outbreaks of
Pogosta disease have previously been reported to follow a 7-year cycle in Finland [21], and
were thought to be influenced by the resident grouse populations that also show 6–7-year
cycles [97]. Based on the Pogosta disease cases during recent decades (Figure 1a), distinct
epidemic cycles are no longer observed. This might be due, in part, to a reduction in the
Finnish grouse populations, which were at a record low in 2009, and subsequently reached
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similar low values during the summers of 2016–2017. Since 2018, however, the population
has shown some signs of recovery [23,96]. We also found that a high proportion of mixed
forest in peatland, peatbogs, inland wetlands and lakes was associated with increased
Pogosta disease risk. These findings that the natural foci of SINV infections mainly occur
in wetland ecosystems of diverse biomes, including lowland forested wetlands and humid
forests composed of deciduous and coniferous trees, are consistent with previous research
from other European locations [26,98].

4.3. The Suitability for Potential SINV Vectors and the Risk of Pogosta Disease in Finland

The modeling results suggest that suitable habitats for Ae. cinereus/geminus and Cx.
pipiens/torrentium occur throughout Finland demonstrating their widespread distribution in
Europe including Sweden, Finland´s neighboring country (Figure 3a,b) [34,99]. In contrast,
suitable habitats for Cs. morsitans occurred mainly in southern Finland including sporadic areas
in western and eastern Finland (Figure 3c). In part this will be due to the relatively low number
of collections made in these locations, and will be compounded by the collections frequently
being made at unsuitable times of the year to obtain these species, or by including absence
points in the dataset which were made at times when these species were inactive. However,
Cs. morsitans is found to be species whose distribution ranges from southern Scandinavia to
Northern Africa and, based on a Swedish study a majority of Cs. Morsitans, observations were
documented in the same latitude where their suitability was highest in Finland [99].

Our study results suggest that the highest risk for SINV infections occurs in municipalities
located in central, eastern, and western Finland, which is mainly consistent with previous
findings about the incidence of Pogosta disease [21,23,25]. However, when comparing the
prediction maps (Figure 6a–c) to the Pogosta disease incidence map 2000–2019 (Figure 1b),
several differences are evident. Even though a general trend of geographic distribution of
high-incidence municipalities was similar to high-risk municipalities, the geographical extent
of high-risk municipalities was much wider on the prediction maps produced in this study
(Figure 6a–c). Moderate-risk areas extended from southern Lapland to southern Finland,
excluding the southern coast. In comparison with the incidence map, the largest differences
occurred in western Finland, southern Lapland and Northern Ostrobothnia, where the risk
was either high or moderate in several municipalities based on the prediction maps. This
is an important detail when determining area-specific recommendations and delivering
information to health care personnel to raise awareness of the disease among physicians.
The locations with the highest environmental suitability for Ae. cinereus/geminus and Cx.
pipiens/torrentium overlap in geographical range with the municipalities at high risk for
SINV infections. In municipalities neighboring high-risk municipalities, the risk of SINV
transmission was moderate. We note that northern Lapland, southwestern Finland and the
Åland archipelago were estimated to be low-risk areas for SINV transmission. These areas in
Finland are also the most extreme ends in terms of wind speed, depth of snow cover or cold
air temperatures, and experience less severe heat extremes compared to elsewhere in Finland
where climate change impacts are increasing. In northern Lapland, low temperatures and a
long winter may halt viral replication and restrict vector populations, which may influence
the low probability of Pogosta disease occurrence [100].

5. Conclusions

Despite the wide distribution of SINV in the Old World, the reasons for such a distinct
geographical region and high numbers of cases in Finland have remained elusive. Our
results provide new evidence for the joint influence of vectors, host species and environ-
mental factors in shaping the pattern of SINV infections in Finland. Environmentally
suitable areas were identified for the potential SINV vectors Ae. cinereus/geminus, Cx.
pipiens/torrentium and Cs. morsitans. Municipalities with an increased risk of Pogosta
disease were characterized by high environmental suitability for Ae. cinereus/geminus; high
densities of black grouse, capercaillie and hazel grouse; a high proportion of mixed forest
in peatlands; and a high number of lakes. The risk of transmission was predicted to be
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greatest in eastern and central Finland, and in several municipalities in western Finland,
excluding the coastal areas. Future studies predicting the occurrence of Pogosta disease
in Finland should also include the temporal dimension, focusing on the occurrence of
potential SINV vectors under different scenarios of land use and climate change, as well as
the population dynamics of both host and vector species.
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Appendix A

Figure A1. Standardized values for relative contribution of predictors (%) used to predict the
distribution of potential SINV vectors in 2000–2019 in Finland. Bars represent the mean value of
relative contribution obtained from weighted mean ensemble model.
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Figure A2. Cont.
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Figure A2. The partial dependency plots for (a) Ae. cinereus/geminus, (b) Cx. pipi-
ens/torrentium, and (c) Cs. morsitans based on average mean ensemble models.
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Figure A3. (a) Standardized relative contribution of predictors (%) obtained from the weighted mean
ensemble model in biomod2, (b) variable selection rank order of bootstrap models based on GLM
model in VECMAP, and (c) variable contribution based on prediction forest in RF model (VECMAP).
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