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Introduction

Combination antiretroviral therapy (cART) has transformed the outcome of human immunodefi-
ciency virus-1 (HIV-1) infection from a severe immunodeficiency syndrome to a chronic clinically
manageable disease. However, patients require lifelong therapy and are at risk of developing non-
AIDS complications (1, 2). Despite viral suppression in patients on cART, HIV-1 persists via the
establishment of a latent reservoir. The adverse aspects and burden of lifelong cART together with
the establishment of HIV-1 latency substantiate the need for an HIV-1 cure. A cure will either
require complete eradication of the latent HIV-1 reservoir (termed “sterilizing cure”), or a sufficient
reduction of HIV-1 levels wherein long-term viral suppression can be achieved without cART
(termed “functional cure”). A key barrier to an HIV-1 cure is the persistence of latent replication-
competent HIV-1 within long-lived resting CD4+ T cells (3). Without active HIV-1 replication or
antigen expression, these latently infected cells are hidden from cART and are not eliminated by
immune responses.

HIV-1 Cure Strategies

The Berlin patient is widely regarded as a proof-of-concept for an HIV-1 cure (4–6). The patient
received a bone marrow transplant from a donor with the homozygous CCR5 ∆32 mutation,
which confers high resistance to most strains of HIV-1 (7). Remarkably, viremia has remained
undetectable for 6 years in the absence of cART. Two additional patients (the “Boston patients”),
who received transplants from non-HIV-1-resistant donors, only had non-sustained remission
periods (3–8months) where HIV-1 viremia remained absent after cessation of cART before HIV-1
rebounded to high levels (8). Until very recently, early and intense cART intervention during acute
HIV-1 infection was postulated to be a feasible cure approach. The “Mississippi baby” was thought
cured of HIV-1 after receiving intense cART during acute HIV-1 infection (9). However, HIV-1
rebounded in the baby after 27months of viral remission in the absence of cART, implying that
HIV-1 latency was established early after infection and that latent cells can remain dormant for long
periods prior to becoming reactivated (10, 11).

An alternative method for eliminating the latent reservoir is the “shock and kill” approach where
latently infected cells are reactivated to express the HIV-1 genome (“shock”) and are subsequently
killed by the immune system or viral cytopathic effects (“kill”) (12). cART administered alongside
virus reactivation by latency-reversing agents (LRAs) should impede the infection of new cells.
Clinical studies are now beginning to understand how to disrupt the HIV-1 latent reservoir.
Several histone deacetylase inhibitors (HDACi) have been studied in vitro with promising results
(13). However, recently completed clinical trials examining the HDACi vorinostat, panobinostat,
and romidepsin as LRAs showed only partial success (14–16). Although these HDACi induced
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a significant and sustained increase in HIV-1 transcription
(mRNA) and/or plasma viremia from latency in the majority of
HIV-1-infected patients, they failed to decrease total integrated
HIV-1DNA– an indication that the viral reservoir did not change.
A more promising study showed that administration of a toll-
like receptor 7 agonist as an LRA to simian immunodeficiency
virus (SIV)-infected rhesus macaques treated with cART induced
transient plasma viremia and resulted in a decrease in total SIV
DNA levels (17).

Despite the large research effort investigating approaches to
reactivate HIV-1 expression in latently infected cells, there is
limited knowledge on the fate of these cells following reactivation.
Shan et al. demonstrated that latently infected cells derived from
HIV-1-infected subjects that were reactivated with the HDACi
vorinostat ex vivo did not die from viral cytopathic effects and
were not killed by autologous cytotoxic T lymphocytes (CTL),
which may have been relatively quiescent in the presence of cART
(18). The reactivated latently infected cells were, however, par-
tially killed by autologous CTLs that were pre-stimulated with
HIV-1 antigens. Consequently, there is a risk that the surviving
reactivated cells may revert back to latency and replenish the
latent reservoir. As such, HIV-1 reactivation from latency alone is
not sufficient to eliminate the latent reservoir. This suggests that
further immune modalities may need to be harnessed to purge
latently infected cells.While pre-stimulation of CTLs ex vivo could
lead to elimination of reactivated latently infected cells, protec-
tive CTL responses tend to be restricted by rather uncommon
HLA-I alleles (HLA-B27, HLA-B57) (19, 20). Also, a recent study
demonstrated that the majority of viruses in the latent reservoir
carry CTL escape mutations that render reactivated cells partially
resistant to elimination by immunodominant CTL responses (21).
Still, appropriate boosting of these CTL responses will most likely
be required for the elimination of the latent reservoir, which is
difficult with current HIV-1 therapeutic vaccine strategies that
have shown only modest success in vivo (22–24). Although there
may be vaccine strategies [such as cytomegalovirus vector vac-
cines (25)] that can induce CTLs to non-escaped, unusual and
diverse epitopes, thismay prove difficult. The efficacious potential
of non-CTL immune responses capable of eliminating the latent
reservoir needs to be explored.

Antibody-Dependent Cellular Cytotoxicity
Against HIV-1

We postulate that HIV-1-specific antibodies might be able to
mediate killing of reactivated latently infected cells through
antibody-dependent cellular cytotoxicity (ADCC). HIV-1-
specific ADCC involves the binding of antibodies to HIV-1
antigens expressed on the infected cell surface and the subsequent
recruitment of innate effector cells, such as natural killer (NK)
cells or monocytes (26). The cross-linking of Fcγ receptors on
these innate immune cells by the Fc region of IgG antibodies
results in the cytolysis of infected cells as well as the release of
cytokines and chemokines by the innate effector cells (26–28).
Numerous studies have suggested a protective role for ADCC
against HIV-1 infection. High levels of HIV-1-specific ADCC
antibodies have been correlated with slower disease progression

(29–31), and have been shown to play a role in controlling HIV-1
infection in elite controllers, a rare group of individuals able
to suppress viremia below detection limits without cART (32).
Furthermore, ADCC antibodies have been implicated as an
immune correlate in the moderately successful HIV-1 RV144
vaccine trial (33, 34).

Potential Barriers for ADCC-Mediated
Elimination of the Reactivated Latent
HIV-1 Reservoir

Although theoretically attractive, whether reactivated latently
infected cells can serve as targets for ADCC remains unclear. A
major determinant for ADCC responses against HIV-1-infected
cells is the availability of cell surfaceHIV-1 envelope (Env) protein
for the binding of ADCC antibodies. Even though results from
recent clinical trials of LRAs seem promising, it is not known
whether reactivated latently infected cells express sufficient Env
antigens on the surface for efficient binding of ADCC antibodies.
While the level of Env expressed on the surface is an important
factor for anti-HIV-1 ADCC, the conformation of Env and conse-
quent availability of epitopes for the binding of ADCC antibodies
might be even more critical. As reviewed in Kramski et al. (35),
several recent studies have shown that HIV-1-infected cells can
evadeADCC in vitro through the actions of the accessory proteins,
Vpu and Nef (36–38). Vpu and Nef can downregulate surface
CD4 expression, thereby preventing CD4–Env interactions on the
surface of infected cells. This leads to the concealment of many
ADCC antibody epitopes that are only exposed on CD4-bound
Env trimers, thus reducing the level of ADCC antibodies binding
to infected cells (38). Furthermore, a recent study reported that
the majority of anti-HIV-1 ADCC antibodies in sera from HIV-
1-infected individuals recognize CD4-induced epitopes on Env,
which are mostly concealed on HIV-1-infected cells (39). In addi-
tion,Vpu inhibits the host restriction factor tetherin, which tethers
nascent virions to the surface of infected cells. By doing so, Vpu
ensures the efficient release of virions and also reduces the level
of HIV-1 antigens available for ADCC antibody binding (36, 37).
Overall, sufficient HIV-1 antigen expression and epitope avail-
ability on reactivated cells through the use of potent LRAs, and
perhaps, the therapeutic inhibition of Vpu and Nef will be needed
to enhance ADCC antibody-binding to reactivated cells (40).

Another potential barrier for ADCC-mediated elimination of
the latent HIV-1 reservoir is that levels of HIV-1-specific ADCC
antibodies decline in HIV-1-infected individuals on long-term
cART (41). Similar to thewaning ofHIV-1-specific CTL responses
in patients on cART (42), the decline in HIV-1-specific ADCC
antibodies likely results from a lack of antigen stimulation as a
result of cART-mediated viral suppression. However, the decline
in ADCC antibodies is much less substantial than the decline in
CTL responses on cART. If ADCC antibodies are indeed capable
of eliminating reactivated latently infected cells, it is not known
whether the level of ADCC antibodies will need to be boosted
prior to latency reversal. Although antibody-inducing protein-
based HIV-1 vaccines may be more successful than CTL-based
vaccines, their efficacy in the context of HIV-1 cure strategies is
unknown. Therapeutic vaccines administered to HIV-1-infected
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individuals may also only expand pre-existing HIV-1-specific B
cells, which could have already induced viral escape from ADCC
in the earlier stages of infection (43), similar to that seen for CTLs
(21). Further activation of pre-existing B cell immunity toward
HIV-1 may also induce undesirable isotype switching, resulting
in a switch from ADCC-mediating isotypes (IgG) to non-ADCC-
competent isotypes (IgA) (34, 44). Thus, instead of attempting to
stimulate immune responses in HIV-1-infected individuals who
may have partially compromised immune systems, the passive
transfer of ADCC-mediating monoclonal antibodies might be a
more promising and easier approach.

Over the years, a series of potent and broadly neutralizing
Env-specific monoclonal antibodies (bNabs) have been isolated
from HIV-1-infected individuals (45–47). Many of these bNabs
have been shown to mediate ADCC as well. Barouch et al. and
Shingai et al. showed that the passive transfer of certain bNabs,
either individually or in combination, was able to induce suppres-
sion of viremia in macaques chronically infected with chimeric
simian-HIV (SHIV) (48, 49). Although not tested directly, the
demonstration by Barouch et al. (48) that these bNabs could
result in a reduction in proviral DNA suggests that ADCC against
SHIV-infected cellsmay have been important in reducing viremia.
Halper-Stromberg et al. demonstrated that administration of a
combination of bNabs followed by a combination of LRAs could
result in decreased viral rebound from HIV-1 latently infected
cells in a humanized mouse model of HIV-1 infection (50). These
results suggest that the passive transfer of ADCC-competent
antibodies to patients, along with LRAs, could result in ADCC-
mediated elimination of reactivated latently infected cells and
purge the latent reservoir. Similar to the use of multiple drugs
for cART, administration of a combination of multiple mono-
clonal antibodies is most likely to prevent emergence of viral
escape mutants. Since Env is likely to be in the native closed
trimeric conformation due to CD4-downregulation by Vpu and
Nef, and HIV-1-infected individuals predominantly have serum
ADCC antibodies that recognize CD4-induced epitopes on Env
(39), ADCC-competent monoclonal antibodies that bind to non-
CD4-dependent epitopes on Env are highly desirable. Future
studies need to assess whether (1) ADCC is a potential immune
mechanism to eliminate reactivated latently infected cells in vivo,
and (2) if native Env trimer-binding, ADCC-competent bNabs

can eliminate latently infected cells following administration
of LRAs.

Even if ADCC antibodies can efficiently recognize HIV-1-
infected cells, the demonstration that autologous CTLs from
patients on cART were unable to kill reactivated latently infected
cells without prior antigen stimulation raises concerns that NK
cells in these patients may not be able to eliminate the reacti-
vated reservoir either (18). While some studies have shown that
NK cells in HIV-1-infected patients remain capable of medi-
ating ADCC (51, 52), other studies demonstrate that the NK
cells may become “exhausted” and exhibit reduced functionality
due to chronic immune activation (53, 54). Exhausted NK cells
may express lower levels of CD16 (55), reduced levels of NK
cell activating receptors (53), and have impaired CD16 signaling
(54). Indeed, we have demonstrated that CD16-downregulation
is induced by activation of NK cells in an anti-HIV-1 antibody-
dependent manner (56, 57). This downregulation is mediated
by matrix metalloproteinases (MMPs) and inhibition of MMPs
can prevent CD16-downregulation or restore CD16 expression on
previously activated NK cells (55, 56) Thus, immune modulating
strategies including MMP inhibition, in vivo cytokine therapy, or
adoptive NK cell therapy may need to be implemented to boost
NK cell functionality before latency reversal to unleash the full
potential of ADCC antibodies in cure strategies.

Conclusion

Despite the increasing efforts funneled into HIV-1 cure research,
an HIV-1 cure still remains elusive. The relapse of the “Boston
patients” and the “Mississippi baby” after months of viral suppres-
sion emphasizes the difficulty of the task ahead. Recent studies
show the potential utility of CTL immune responses in clearing
reactivated latently infected cells. Moving forward, CTL function-
ality in cART-treated patientsmay need to be boosted anddirected
toward sub-dominant epitopes. In addition to CTL responses,
ADCC represents another immunemechanism and further inves-
tigation to assess its potential to clear reactivated latently infected
cells is warranted. Advances in HIV-1 cure strategies will require
an improved understanding of not only how to reactivate HIV-1
from latently infected cells, but also how to clear them with the
most effective immune responses.
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