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A B S T R A C T

3D printing/bioprinting are promising techniques to fabricate scaffolds with well controlled and patient-specific
structures and architectures for bone tissue engineering. In this study, we developed a composite bioink con-
sisting of silk fibroin (SF), gelatin (GEL), hyaluronic acid (HA), and tricalcium phosphate (TCP) and 3D bio-
printed the silk fibroin-based hybrid scaffolds. The 3D bioprinted scaffolds with dual crosslinking were further
treated with human platelet-rich plasma (PRP) to generate PRP coated scaffolds. Live/Dead and MTT assays
demonstrated that PRP treatment could obviously promote the cell growth and proliferation of human adipose
derived mesenchymal stem cells (HADMSC). In addition, the treatment of PRP did not significantly affect al-
kaline phosphatase (ALP) activity and expression, but significantly upregulated the gene expression levels of late
osteogenic markers. This study demonstrated that the 3D printing of silk fibroin-based hybrid scaffolds, in
combination with PRP post-treatment, might be a more efficient strategy to promote osteogenic differentiation
of adult stem cells and has significant potential to be used for bone tissue engineering.

1. Introduction

Currently, autologous bone graft is the clinical gold standard
treatment for bone repair. The obvious disadvantages of autologous
bone graft are their insufficient availability of donor grafts, as well as
donor site complications [1]. Tissue engineered grafts provide some
attractive insights into practicable approaches for bone tissue repair
and are promising substitutes for autologous bone grafts [2].

3D printing techniques have been developed and implemented to
generate engineered tissues and organs to facilitate tissue regeneration
[3,4]. In addition, they can also be used to fabricate medical devices,
such as stents and splints, for clinical use [5,6]. 3D bio-printed scaffolds
have many advantages, such as customized and precise architecture,
interconnected pore structures, and controllable shapes and sizes [7].

These beneficial properties facilitate potential patient-specific graft
fabrication and also promote in vitro and in vivo cell growth and pro-
liferation [8–10]. Currently, the most commonly-used polymers include
hydrogels (e.g. alginate [11], gelatin [12], hyaluronic acid [13]) and
polyesters (e.g. polycaprolactone (PCL) [14,15], poly-lactic-co-glycolic
acid (PLGA) [16], and polylactic acid (PLA) [17]). More novel and
green natural bioink systems are still required for 3D printing appli-
cation. In addition, apart from biomaterial choices, other bioactive
factors also need to be incorporated to promote tissue regeneration.

Silk fibroin (SF) has attracted a great deal of attention in the tissue
engineering field over the last 30 years [18]. It exhibits great me-
chanical properties and biodegradation properties. In addition, SF is
nontoxic, nonimmunogenic, and has been approved by the United
States Food and Drug Administration to fabricate some medical
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products for human applications [19,20]. Moreover, SF has successfully
been processed into various types of scaffolds, such as films, nanofibers,
gels, and sponges [21–23]. Therefore, SF has been widely used in bone
tissue engineering applications [24–27]. In this work, the SF based
composite bioink mixture was prepared by adding gelatin (Gel), hya-
luronic acid (HA), and beta tricalcium phosphate (β-TCP), and its 3D
printability was further explored.

Among various bioactive factors, platelet-rich plasma (PRP) is a
therapeutic agent used to promote tissue regeneration [28]. PRP is an
autologous concentration of human platelets with a cocktail of growth
factors, including platelet-derived growth factors (PDGF-AA, PDGF-BB,
and PDGF-AB), transforming growth factors (TGF1 and TGF3), vascular
endothelial growth factor (VEGF), and basic fibroblast growth factor
(bFGF) [29–31]. In previous reports, PRP treatments have been de-
monstrated to improve the healing outcome of injured tissues, including
tendons and ligaments [32–34]. Recently, some other studies indicated
that PRP treatment is instructive to enhance the osteogenic differ-
entiation of adipose-derived stem cells and promote bone regeneration
[35,36].

In this study, we aimed to fabricate a novel SF/GEL/HA/TCP based
composite scaffold by employing a 3D bioprinting technique. PRP was
further isolated and implemented to treat the 3D printed scaffolds. We
seeded human adipose derived mesenchymal stromal cells (HADMSC)
on the scaffolds with and without PRP treatment and investigated the
effects of PRP treatment on the growth, proliferation, and osteogenic
differentiation of HADMSC.

2. Materials and methods

2.1. Preparation of aqueous silk fibroin solution

Aqueous SF solution was fabricated according to a previous report
[23], with minor changes. To be brief, silk cocoons (Mulberry Farms)
were cut into small pieces and further added into boiling water with
0.02M Na2CO3 (Sigma) for 30min to remove sericin. The degummed
SF fibers were washed three times to remove residual Na2CO3 and air-
dried in the hood for 24 h. The aqueous SF solution was fabricated by
dissolving the SF fibers in 9.3M lithium bromide (LiBr, Alfa Aesar)
solution in the oven at 120 °C for 4 h until all the fibers completely
dissolved, forming a yellow, transparent solution. This yellow, trans-
parent solution was dialyzed in deionized water using a dialysis bag
(Pierce, MWCO 3500). The final concentration of the aqueous SF so-
lution was calculated to be 6.8% (w/v).

2.2. Fabrication of the SF-based composite scaffold by 3D printing

The SF-based composite bioink was prepared by adding GEL
(Bovine skin type B, Sigma), HA (~1200 kDa, NovaMatrix), and β-TCP
(nanocrystals, Berkeley Advanced Biomaterials) into aqueous SF solu-
tion. First, 0.4 g GEL was added into 10ml 6.8% (w/v) aqueous SF
solution and magnetically stirred at 37 °C until the GEL completely
dissolved. After that, 0.2 g HA and 1 g β-TCP were added into the SF/
GEL solution and stirred continuously at 37 °C for 3 h to generate the
SF/GEL/HA/TCP bioink mixture. Before 3D printing, the bioink mix-
ture was placed in a 4 °C atmosphere for 10min. A 3D Bioplotter (3D-
Bioplotter® Manufacturer Series, EnvisionTEC) was used to 3D bioprint
the SF/GEL/HA/TCP composite gel bioink, which has a printing axis
resolution of 0.001mm. To create the printed scaffold, the bioink was
extruded through a 22-gauge needle (0.413mm inner diameter) using a
pressure of 1.8–2.2 bar and a print head movement speed of 5–8mm/s.
The scaffold was printed as a 20× 20mm square with a 3-layer
thickness (≈1.25mm). In this pattern, the layers were printed in an
alternating pattern, in which each one was aligned 90° from the layer
below it. The obtained scaffolds were placed in 6-well culture plates for
further crosslinking. First, 4 ml of 90% (v/v) ethanol was added into
each well to crosslink the SF for 10min. Then the ethanol solution was

removed, and 4ml of 0.6% (w/v) genipin (Challenge Bioproducts Co.,
Ltd.) ethanol solution was added into each well. The well plates were
then placed in the 37 °C atmosphere for 72 h to crosslink the gelatin.
Thus, a structure-stable SF/GEL/HA/TCP composite scaffold was fab-
ricated. The mechanical properties of the scaffolds were also in-
vestigated (Supporting information). The fabrication process is sum-
marized in Fig. 1.

2.3. PRP isolation and elisa analysis for growth factor contents

Human PRP was prepared by sequential centrifugation (Fig. 2 (a))
and was provided by the Elutriation Core Facility at the University of
Nebraska Medical Center. PRP was further activated by freeze/thaw
cycles, and the released VEGF, bFGF, PDGF-AA, and TGFβ3 were
measured using Elisa kits (RayBiotech).

2.4. PRP treatment for SF-based composite scaffolds

PRP post-treatment was employed to modify the composite scaf-
folds. The composite scaffolds were punched into small discs with a
diameter of about 7mm, sterilized for 2 h using ultraviolet lamp, and

Fig. 1. Schematic illustration of the fabrication of the SF-based hybrid scaffold.

Fig. 2. (a) Schematic diagram of preparation process of PRP, (b) The con-
centration of different growth factors in PRP (n= 3).
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immersed 70% ethanol overnight. These sterilized scaffolds were
transformed to place in a 24-well culture plate. Then 500 μl of PRP was
added into each well, and the samples were placed in 4 °C overnight.
The 3D printed composite scaffolds without PRP treatment were used as
control group.

2.5. Surface morphology of SF-based composite scaffolds

The morphologies of two types of composite scaffolds, with and
without PRP treatment, were examined by using a scanning electron
microscope (SEM, FEI Quanta2000).

2.6. Cell seeding on SF based composite scaffolds

HADMSC (Lonza) were utilized to conduct all cell-related experi-
ments. HADMSC were cultured in growth medium with DMEM/F12
(Life Technologies), 10% fetal bovine serum (FBS, Sigma Aldrich), and
1% penicillin/streptomycin (P/S, GE Healthcare Life Sciences). Before
cell seeding, the scaffolds were sterilized by exposure to an ultraviolet
lamp for 2 h and immersion in 70% ethanol overnight, and then they
were washed three times in sterilized PBS. The HADMSC were seeded at
a density of 5×104 cells per scaffold. For all of the cell culture ex-
periments, cells were cultured in 5% CO2 at 37 °C, and the medium was
replaced every 2 days. For osteogenic differentiation, osteogenic dif-
ferentiation medium consisting of DMEM/F12 medium, 10% FBS, 1%
P/S, 100 nM dexamethasone (Sigma), 10mM β-glycerophosphate
(Sigma), and 50 μM ascorbic acid (Sigma) was used [37].

2.7. Cell viability

The viability of HADMSC seeded on both PRP non-treated and PRP
treated composite scaffolds was evaluated by using a Live/Dead assay
[38]. A confocal laser scanning microscope (CLSM, LSM 710, Carl Zeiss)
was used to obtain fluorescent images. The cell proliferation of
HADMSC on the two scaffold groups was examined at days 7 and 14 by
using an MTT assay [39].

2.8. Alkaline Phosphatase (ALP) staining and ALP activity assay

ALP staining was carried out by using an ALP leukocyte kit (Sigma
Aldrich), according to the manufacturer's instructions. The ALP activity
was operated based on our previous report [40].

2.9. RNA isolation and qPCR

Total RNA was extracted from the HADMSC seeded on the two
composite scaffold groups at day 14 by using QIA-Shredder and RNeasy
mini-kits (QIAgen). Total RNA was synthesized into first strand cDNA
by using an iScript cDNA synthesis kit (BioRad Laboratories). Real-time
PCR analysis was performed in a StepOnePlus™ Real-Time PCR System
(Thermo Scientific) using SsoAdvanced SYBR Green Supermix (Bio-
Rad). The cDNA samples were analyzed for the genes of interest and for
the housekeeping gene 18S rRNA. The level of expression of each target
gene was calculated using the comparative Ct (2−ΔΔCt) method. The
primers used were summarized in Table 1.

2.10. Statistical analysis

All quantitative data is expressed as mean ± standard deviation
(SD). Pairwise comparisons between groups were conducted using
ANOVA with Scheffé post hoc tests in statistical analysis. A value of
p < 0.05 was considered statistically significant.

3. Results and discussion

3.1. Preparation of PRP

Fig. 2a shows the schematic diagram of the preparation process of
PRP. Human whole blood was subjected to two sequential centrifuga-
tion steps (i.e. separation and concentration). The first centrifugation
separated pellet plasma, leukocytes, and platelets from the ery-
throcytes. The second centrifugation collected concentrated platelets in
a small volume of plasma (designated as PRP). Fig. 2b shows the con-
centration of various growth factors in PRP after activation. The results
showed that PRP contained VEGF, bFGF, PDGF-AA, and TGFβ3. The
PDGF-AA exhibited the highest concentration. All of these growth fac-
tors are helpful for the growth and proliferation of osteoblasts and MSC
during the bone tissue regeneration process.

3.2. Surface morphology of the SF-based composite scaffolds with and
without PRP treatment

The morphologies of composite scaffolds with and without PRP
treatment were shown in Fig. 3a–d. Some morphological differences
between the material surfaces of the two scaffold groups were observed.
For the PRP treated composite scaffold, more small pores were found on
the scaffold surface. In addition, both of these two scaffolds presented
rough surface morphology.

3.3. PRP treated composite scaffold enhanced HADMSC proliferation

A Live/Dead assay was implemented to evaulate HADMSC viability
on the SF-based composite scaffolds. As shown in Fig. 4a–b, most of the
HADMSC were alive after 14-day culture on the scaffolds with and

Table 1
Primer sequences for qPCR.

Gene
symbol

Genbank ID Primer sequences (5′→3′) Product size
(bp)

18S NR_003286 F: GAGAAACGGCTACCACATCC 170
R: CACCAGACTTGCCCTCCA

ALP NM_000478 F: CCACAAGCCCGTGACAGA 127
R: GGGCGGCAGACTTTGGTT

Runx2 NM_001024630 F: TACCTGAGCCAGATGACG 145
R: AAGGCCAGAGGCAGAAGT

OCN NM_199173 F: GGCAGCGAGGTAGTGAAGA 148
R: CCTGAAAGCCGATGTGGT

OPN NM_001040058 F: AAATTCTGGGAGGGCTTGG 117
R: TTCCTTGGTCGGCGTTTG

Fig. 3. SEM images of SF-based composite scaffolds: (a, b) composite scaffold
without PRP treatment, (c, d) the PRP treated composite scaffold.
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without PRP treatment. The quantitative evaluation of HADMSC pro-
liferation was presented in Fig. 4e. The MTT assay result demonstrated
that the cell proliferation rate on the PRP treated composite scaffold
was significantly higher than those on the untreated scaffolds from 3
days to 14 days. Several other studies also demonstrated that PRP
promoted MSC growth [41,42]. The supportive effects were also de-
pendent on PRP concentration [43] and preparation methods [44]. One
of the potential reasons for the benefecial effects of PRP in improving
the cell proliferation is that the PRP contained various growth factors,
such as VEGF, bFGF, PDGF-AA, and TGFβ3. However, we also found
that there was a decreasing trend for the growth speed of HADMSC
from 7 days to 14 days. One potential reason was that the growth and
proliferation of HADMSC reached confluence on the scaffolds after 14-
day culture.

3.4. ALP staining and activity

Fig. 5a and b showed the ALP of staining images of composite
scaffolds with and without PRP treatment. After 14 days of osteogenic
differentiation, HADMSC were positive to ALP staining on both scaffold
groups, but no significant differences were observed between the two
different groups. In addition, Fig. 5c showed the ALP activity for the
composite scaffolds with and without PRP treatment. The result was in
agreement with the ALP staining .

3.5. Gene expression of osteogenic markers of HADMSC cultured on the
composite scaffolds with and without PRP treatment

QPCR measurement was employed to compare the osteogenic gene
expression level of HADMSC seeded on the two different scaffold groups
after 14 days of osteogenic differentiation (Fig. 6). Both early (i.e. ALP

and Runx2) and late (OCN and OPN) stage markers were selected. We
found that there was no significant difference in ALP and Runx2 ex-
pression, whereas the PRP treatment significantly upregulated the ex-
pression of OCN and OPN. Together with previous cell proliferation and
ALP staining and activity results, these results indicated that the com-
posite scaffolds with PRP treatment promoted HADMSC proliferation
and late osteogenic marker expression. Similarly, Kastern et al. also
demonstrated that PRP treatment did not affect ALP activity for bone
marrow derived MSC during osteogenic differentiation [45]. One pos-
sible reason is probably because the growth factors in PRP do not have
long-term effects. This is consistent with our current results. The in-
crease of late stage of osteogenic gene expression is probably due to the
higher density of HADMSC, which is the indirect effect of PRP treat-
ment.

4. Conclusions and future perspectives

SF-based composite scaffolds were fabricated by using a 3D printing
technique. PRP post-treatment was utilized to modify the 3D-printed
composite scaffolds and significantly promoted the HADMSC growth
and proliferation, as well as their late-stage gene expression after

Fig. 4. HADMSC viability and proliferation tests on the SF-based composite
scaffolds with and without PRP treatment. Live/Dead images at (7 days, 14
days) of HADMSC seeded on the composite scaffold (a, c) and PRP treated
scaffold (b, d). Scale bar: 100 μm. (e) MTT assay for HADMSC proliferation
seeded on the two scaffold groups with and without PRP treatment (n = 6;
**p < 0.01).

Fig. 5. ALP staining images of the two different SF-based hybrid scaffolds: (a)
the pristine SF/GEL/HA/TCP hybrid scaffold, (b) PRP treated SF/GEL/HA/TCP
hybrid scaffold, and (c) ALP activity test. Scale bar= 200 μm (n=6).

Fig. 6. qPCR analysis of ALP, Runx2, OCN, and OPN genes on HADMSC seeded
on the two different SF-based hybrid scaffolds after 14 days culture (n = 6;
*p < 0.05, **p < 0.01).
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osteogenic differentiation. Future efforts should be made to explore
strategies to effectively incorporate PRP and control the sustained re-
lease of growth factors. In addition, we will further investigate the ef-
fects of different PRP concentrations on the HADMSC osteogenic dif-
ferentiation and the regenerative efficacy after implantation in the bone
defect animal models.
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