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ABSTRACT: As a high-quality thermal barrier coating material, yttria-
stabilized zirconia (YSZ) can effectively reduce the temperature of the
collective materials to be used on the surface of gas turbine hot-end
components. The bonding strength between YSZ and the substrate is also
one of the most important factors for the applications. Herein, the
Gaussian mixture model (GMM) and support vector regression (SVR)
were used to construct a machine learning model between YSZ coating
bonding strength and atmospheric plasma spraying (APS) process
parameters. First, GMM was used to expand the original 8 data points to
400 with the R value of leave-one-out cross-validation improved from
0.690 to 0.990. Then, the specific effects of APS process parameters were
explored through Shapley additive explanations and sensitivity analysis.
Principal component analysis was used to explain the constructed model
and obtain the optimized area with a high bonding strength. After experimental validation, the results showed that under the APS
process parameters of a current of 617 A, a voltage of 65 V, a H2 flow of 3 L min−1, and a thickness of 200 μm, the bonding strength
increased by more than 19% to 55.5 MPa compared with the original maximum value of 46.6 MPa, indicating that the constructed
GMM−SVR model can accurately predict the bonding strength of YSZ coating.

■ INTRODUCTION
Gas turbines have been key heat-to-power conversion devices
in the field of power generation since their inception, and
improvement of their thermal efficiency has become an
important research direction for scientific researchers.1,2

However, the improvement of thermal efficiency of a gas
turbine requires a significant increase in the operating
temperature of the combustion chamber, which brings new
challenges to maximize the operating temperature of the gas
turbine components.3 Thermal barrier coatings (TBCs) have
been widely used for hot metal parts in advanced gas turbines
and diesel engines to improve thermal protection to improve
the thermal efficiency and performance.4−6 The TBC system
refers to a complex coating system composed of a metal
substrate, a bonding layer, and a surface ceramic coating.7,8 At
present, yttria-stabilized zirconia (YSZ) has been one of the
most widely used TBC materials.9,10 A stable or partially stable
structure can be formed at high temperatures with Y2O3 added
as a stabilizer to ZrO2 to effectively alleviate the thermal
mismatch problem of the ceramic layer and improve the
bonding strength between the ceramic coating and the
substrate.11 The bonding strength is an important indicator
to measure the bonding of the ceramic coating and the
substrate.12 Materials with higher bonding strength tend to
have a better ability to withstand temperature changes; the
higher the bonding quality, the less likely the cracking. In
addition, the bonding strength of YSZ coating and substrate

materials is closely related to the choice and process
parameters of the preparation process.13 The industrial
preparation of TBCs mainly adopts two technologies, plasma
spraying and electron beam-physical vapor deposition.14

Therefore, improving the bonding strength of the ceramic
coating and the substrate by optimizing the process parameters
of the YSZ coating spraying process is an effective and
meaningful work.
Machine learning is the core of artificial intelligence with the

ability to reorganize the existing knowledge structure and
figure out implicit relationships, and it has been applied in
many areas such as medical treatment, finance, materials, and
chemistry with significant progress.15−19 In materials design,
machine learning has occupied an important part in the
development and design of alloys, polymers, perovskites, and
other materials by virtue of the advantages of obtaining
performance and trends from available data without knowing
the underlying physical mechanism.20−24 Yang et al.25 used
machine learning combined with high-throughput screening
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and pattern recognition back-projection technology to break
the upper limit of the hardness of the existing high-entropy
alloys and designed the hardness of Co18Cr7Fe35Ni5V35 to be
1148 HV, which is 24.8% higher than the hardness of the alloy
with the highest hardness in the original data set. Chen et al.26

used a step-by-step screening method of the packaging
algorithm to screen out a subset of features for ridge
regression, XGBoost, and support vector regression (SVR)
models and integrated the three models to design low-melting-
point alloys. Zhang et al.27 proposed an interpretable strategy
based on machine learning combined with Shapley additive
explanations (SHAP) to accurately predict the formative
nature of organic−inorganic hybrid perovskites (HOIPs) and
screened out 198 non-toxic HOIP candidate materials with
formative probability >0.99. Meanwhile, Lu et al.28 collected
an imbalanced formability data set of synthesized HOIPs to
explore potential compositions, including 539 positive and 24
negative samples. The imbalanced machine learning was
applied in predicting the experimental formability, and the
classification model achieved a leaving-one-out cross-validation
accuracy of 100.0% and a test accuracy of 96.1%. The
important features, namely, A site atomic radius, A site ionic
radius, and tolerance factor, were drawn out to reveal their
relation to the formability. In the design of machine-learning-
aided materials, the descriptors used for modeling are usually
composed of structural and compositional information of
materials, while the influence of experimental parameters of
synthesis or characterization on the properties of materials
would be often ignored. For YSZ ceramic coating materials, the
bonding strength tends to vary under different spraying process
conditions. Construction of a quantitative model to map the
relationship between process parameters and bonding strength
through machine learning can effectively avoid the workload of
modifying materials, improving the bonding strength with the
optimized process parameters.
The flowchart of this work is shown in Figure 1. We

prepared and characterized the bonding strength of eight YSZ

coatings under different spraying process parameters through
experiments. With the process parameters as descriptors,
machine learning algorithms were used to construct a
prediction model of bonding strength. In order to improve
the accuracy of the model, a Gaussian mixture model (GMM)
was applied to expand the original data set from 8 to 400. After
model construction based on the data expansion, SHAP and
sensitivity analysis were applied to figure out specific effects of
atmospheric plasma spraying (APS) process parameters on the
bonding strength of YSZ. The optimized process parameters

that theoretically exceeded the maximum bonding strength of
the original data set were obtained after feature analysis, which
was validated by experiment with the determined bonding
strength in the corresponding process as high as 55.5 MPa.

■ MATERIALS AND METHODS
Experimental Methodology. The TBC system prepared

in the experiments includes a metal substrate, a bonding layer,
and a ceramic layer. A nickel-based superalloy was taken as the
substrate with the size being a cylinder of Φ 25 mm × 4 mm.
The bonding layer was prepared by spraying NiCrCoAlY
powder on the metal substrate with vacuum plasma spraying
(VPS, Oerlikon Metco AG, Switzerland). Tables 1 and 2,

respectively, list the chemical composition of the bonding layer
powder and the VPS spraying parameters. The ceramic layer
was prepared by spraying ZrO2-4 mol % Y2O3 on the bonding
layer using APS technology (Oerlikon Metco AG, Switzer-
land). Table 3 lists the APS spraying parameter settings,
including current, voltage, spraying power, the flow rate of Ar
and H2, Ar/H2, and spraying thickness. The quantitative
relationship between process parameters and YSZ bonding
strength was explored by using the process parameters of APS
as descriptors. Based on the ASTM C733-13 standard, the
bonding strength between the YSZ coating and the substrate
with a bonding layer (Φ 25 mm × 4 mm) was characterized by
a universal testing machine (Instron-5592), while E7 epoxy
resin with a bonding strength greater than 70 MPa was chosen
to be the adhesive. In the process of characterization, the
change of tensile force is recorded, and the bond strength is
calculated according to the formula P = F/S, where P is the
bonding strength (MPa), F is the maximum tensile force (kN),
and S is the coating area (×103 m2).

Algorithm Detail. In this work, there are only eight data
available for machine learning, which belong to a very typical
small dataset. There are generally two processing methods to
deal with the small data set. The first strategy is to choose a
machine learning algorithm suitable for small sample modeling,
such as support vector machines (SVMs). SVM is an algorithm
based on the kernel functions. The existence of kernel
functions enables SVM to determine the segmentation
hyperplane with less support vectors, which brings the good
performance of the constructed model even with small sample
data.29,30 The general idea of SVM is that it maps the input
vector into high dimensional space and finds a most optimal
hyperplane as the criterion to classify the samples. In
classification, SVM is named the support vector classifier
(SVC) as well. The target of SVC is to get the classification
line with the maximal margin hyperplane to make samples of
different types furthest from each other. In regression, SVM is
also called SVR. In SVR, the insensitive channels ε is used to
handle the problem of weighing empirical and structural risks.
Specifically, the error is ignored when the predicted value ŷi
meets |yi − ŷi| ≤ ε, otherwise, the error is |yi − ŷi| − ε. The
deviation is concerned only when it is greater than ε in the
empirical risk calculation. Similar to the constraint conditions

Figure 1. Flowchart of using machine learning to improve the
bonding strength of the YSZ coating in this work, including
preprocessing with feature selection, data expansion with a GMM,
machine learning with algorithms, and model application with
experimental validation.

Table 1. Chemical Composition of NiCrCoAlY Powder in
Bond Coat (wt %)

element Co Ni Cr Al Y

content bal. 29−35 29−35 5−11 0.1−0.8
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of SVC, SVR takes the value of margin as the standard to
improve the prediction accuracy of the model.
The second strategy is virtual sample generation. From the

perspective of the number of samples, the prediction accuracy
of the model could be improved by increasing the number of
samples. The GMM is a probabilistic model assuming that all
data points are generated from a limited number of Gaussian
mixtures.31,32 If n observations X = {X1, ···, Xn} are generated
by the mixed distribution P, each vector Xi is p-dimensional,
and the distribution P is composed of G components, then the
maximum mixed likelihood function of the distribution could
be obtained using eq 1
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where f k(xi|θk) represents the density function of k-th category;
θk is the corresponding parameter; and πk is the weight
parameter representing the probability that an observation
belongs to the k-th category. If f k(xi|θk) is a multivariate normal
distribution, then P is a Gaussian mixture distribution in which
θk is composed of the mean value μk and the covariance matrix
Σk. The density function f k(xi|θk) is shown in eq 2
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The Gaussian mixture distribution can be described by the
probability density function represented by the weighted
average of the Gaussian density functions, and the specific
description is shown in the following eq 3
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GMM is essentially a density estimation algorithm. It can be
seen from equation that by adjusting the weight πk, the
probability density function curve of the mixed model would
be greatly affected to fit the non-linear function of any shape.
The generation probability model describing the small sample
data of YSZ bonding strength can be constructed through
GMM. With the parameters solved by the expectation

maximization algorithm, the virtual samples meeting the
expectation could be generated through the obtained
generation model.

Computational Platform. The process of the machine
learning model construction was conducted on the machine
learning software package called ExpMiner and the online
platform called OCPMDM, both of which were developed in
our laboratory. The software of ExpMiner can be downloaded
from the website of the Laboratory of Materials Data Mining in
Shanghai University (http://materials-data-mining.com/
home#). OCPMDM can be accessed at http://materials-
data-mining.com/ocpmdm/.

■ RESULTS AND DISCUSSION
Data Generation. All data in this work were derived from

experiments. The experimental bonding strength of YSZ
coatings under different APS parameters is shown in Figure
2. Combining the figure with Table 3, it can be found that
when other process parameters remain unchanged, the
bonding strength is positively correlated with power and
negatively correlated with thickness. However, the detailed
influence of the process parameters on the bonding strength
could not be observed only from Figure 2 and Table 3 nor the

Table 2. VPS Parameters

current/A voltage/V thickness/μm Ar/L min−1 H2/L min−1 spay distance/mm

VPS−BC 700 65.5 100 50 9 120

Table 3. APS Parameters

sample current/A voltage/V power/KW Ar/L min−1 H2/L min−1 Ar/H2 thickness/μm

1 503 69.3 34.71 30.00 5.00 6 200
2 503 69.3 34.71 30.00 5.00 6 400
3 641 69.3 44.42 30.00 5.00 6 200
4 641 69.3 44.42 30.00 5.00 6 400
5 520 68 35.36 30.00 5.00 6 300
6 665 68 45.22 30.00 6.00 5 300
7 617 65 40.11 30.00 3.00 10 300
8 617 65 40.11 30.00 3.00 10 400

Figure 2. Experimental bonding strength of coating of eight samples
with different APS parameters. Direct modeling for bonding strength
prediction.
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optimal parameters can be obtained for the improvement of
bonding strength. Therefore, we have considered the bonding
strength as the target variable and the APS process parameters
as descriptors to construct a machine learning model to further
explore the specific relationship between the process
parameters and the bonding strength.
Using machine learning algorithms to construct a model is

divided into data collection, feature selection, model selection,
parameter optimization, and model evaluation. In data
collection, the bonding strength of the samples in Figure 2 is
set as the target variable, while the corresponding APS
parameters in Table 3 are set as the descriptors. Feature
selection aims to remove redundant variables and screen out
the descriptors strongly related to the target variable to reduce
the training time and improve prediction accuracy. Machine
learning algorithms for feature selection such as maximum
correlation and minimum redundancy, genetic algorithms, and
recursive elimination methods are generally used to select the
optimal descriptor subset for modeling. However, considering
the experimental feasibility because the descriptors in this work
are process parameters, it is more appropriate to use domain
knowledge to select descriptors for modeling. The column Ar
in Table 3 should be removed for the values are constant
throughout the column. Accordingly, the column Ar/H2
should also be removed for the values are completely linearly
related to the values in the column H2. The column power is
the product of current and voltage, and it could be removed
because the power could be controlled by adjusting the current
and voltage. After removing redundant descriptors, the
following descriptors are available for modeling: current,
voltage, H2, and thickness. Model selection refers to selecting
the algorithm with the highest prediction accuracy from many
modeling algorithms according to the evaluation functions. In
this part, algorithms including ordinary least square (OLS)
linear regression, random forest regression (RFR), decision
trees regression (DTR), partial least squares (PLS), multiple
linear regression (MLR), artificial neural network (ANN), and
SVR are carried out for comparison. Because the SVR is a
kernel-based algorithm, the choice of the kernel function will
greatly affect the model prediction accuracy. Hence, the
influence of different kernel functions on the SVR is also
considered. The correlation coefficient (R) and root mean
square error (RMSE) of leave-one-out cross-validation
(LOOCV) are adopted as evaluation functions to evaluate
the performance of the constructed model. The results are
shown in Table 4. It can be found that compared with other
algorithms, ANN performs the best with the highest R and
lowest RMSE to be the optimal algorithm for modeling. In the

algorithm of ANN, the parameters of the number of input layer
nodes (Ninput), the number of hidden layer nodes (Nhidden), the
number of output layer nodes (Noutput), the learning rate from
the input layer to hidden layer (rate 1), the learning rate from
the hidden layer to output layer (rate 2), and the momentum
term have a significant impact on the prediction accuracy of
the model. To further improve the performance of the ANN
model, grid search is used to optimize the ANN parameters
with the RMSE of LOOCV as the evaluation index. Grid
search refers to looping through all the candidate parameters,
trying every possibility to get the best performing parameters.
The starting value, ending value, step size of Nhidden, rate 1, rate
2, and momentum term in the grid search optimization of
ANN are shown in Table S1 of the Supporting Information.
The optimized parameters are shown in Table 5. After

parameter optimization, R of LOOCV has increased from
0.690 to 0.758, and the corresponding RMSE has also reduced
from 6.279 to 6.009. In model evaluation, the resubstitution
test and LOOCV are employed to further evaluate predictive
ability of the model. The resubstitution test aims to test the
self-consistency of the prediction method by predicting the
modeling data. LOOCV is to take a data set containing k
samples, of which k-1 is used as the training set, and the
remaining one is used as the test set. Then, select the next one
as the test set, and the remaining k-1 as the training set. The
results are obtained until all samples are predicted as the test
set. The evaluation result of LOOCV can be used to determine
whether the model has the situation of overfitting. In addition
to the resubstitution test and LOOCV, there should be data
exclusive to the modeling data as an independent test set to
test the predictive ability for external data. However,
considering that there are only eight data for modeling in
this work, if part of samples are taken as the test set, the data
would have a greater negative impact on the prediction
accuracy of the model. Moreover, LOOCV essentially
performed eight independent tests with the test sample size
of 1, which could also make up for the lack of independent test
evaluation. The results of the resubstitution test and LOOCV
are shown in Figure 3. Although R of the resubstitution test
can reach 1.000, R of LOOCV being 0.758 still indicates that
the ANN model constructed with eight samples is far from
satisfactory.
To improve the prediction accuracy of the model, GMM

was used to generate virtual samples. The Gaussian mixture
distribution that best fits the original eight samples was
calculated by GMM, while the corresponding descriptor values
of the virtual samples were obtained by sampling in the
obtained distribution, and the target variable of the virtual
samples was obtained by the nearest-neighbor regression
algorithm without weight. 50 virtual samples were generated
for each sample of the original data by GMM. After virtual
sample generation, a total of 400 samples were collected with
the data size increased by 50 times compared with the original
data set of only eight samples. The 400 virtual samples could
be available in the file named “dataset.txt” of the Supporting
Information to be directly used by ExpMiner, which were
randomly divided into a training set of 320 samples and a test

Table 4. R and RMSE of the Bonding Strength in LOOCV
of Different Algorithms Based on Original Eight Samples

algorithms R RMSE

OLS 0.580 7.183
RFR −0.005 8.362
DTR −0.116 10.705
PLS 0.483 12.045
MLR 0.544 10.854
ANN 0.690 6.279
SVR-linear kernel 0.475 8.738
SVR-Gaussian kernel −0.026 8.948
SVR-polynomial kernel 0.302 12.967

Table 5. Optimized ANN Parameters

Ninput Nhidden Noutput rate 1 rate 2 momentum term

4 4 1 0.32 0.12 0.69
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set of 80 samples according to a ratio of 4:1. Because the data
set has changed, the model selection step should be repeated
to ensure that the most suitable algorithm could be found for
modeling. The R and RMSE values of different methods of
LOOCV and 10-fold cross validation (10-fold CV) are shown
in Table 6, from which it can be concluded that after data

expansion, the SVR with the polynomial kernel function is the
optimal algorithm with the highest R and lowest RMSE of both
LOOCV and 10-fold CV. In the SVR algorithm with the
polynomial kernel, the insensitive loss function ε and the
capacity parameter C have a significant impact on the
prediction accuracy of the model. After parameter optimization
by grid search method with the RMSE of LOOCV as the
evaluation functions, the optimal parameters were ε of 0.02
and C of 15. The starting value, ending value, and step size of ε
and C in the grid search optimization of SVR are shown in
Table S2. The trend of the RMSE of LOOCV with ε and C is
shown in Figure S1. Under the optimal parameters, the results
of the resubstitution test, LOOCV, 10-fold CV, and
independent test are shown in Figure 4. After data expansion
by GMM, the prediction accuracy has been greatly improved
with R of LOOCV increasing from 0.690 to 0.990. In addition,
the R value of the independent test set is as high as 0.986, also
demonstrating the good generalization ability of the con-
structed model. The result of the independent test also made

up for the limitation of the lack of the independent test
because the original data set of eight samples was too limited
to be divided for the extra independent test set. The
constructed SVR model with the optimal parameters named
“SVR model.mod” file is available at https://github.com/
luktian/models, which could be directly imported into the
software of ExpMiner and used for the bonding strength
prediction. In addition, the y-scrambling of the repeatability
measure was adopted to further verify the stability of the
model, avoiding random fluctuations caused by dataset
division. The dataset of 400 samples was randomly divided
30 times into the training set and the test set after algorithm
selection and parameter optimization with the R and RMSE of
LOOCV, 10-fold CV, and independent test set as evaluation
function to validate the stability of the model. R, RMSE with
the corresponding average and standard deviation values (σ) of
LOOCV, 10-fold CV, and independent test are shown in Table
S3. It could be found that the constructed model has shown
good predictability and stability according to the average R and
RMSE of the independent test being higher than 0.988 and
lower than 1.310 as well as the small σ being lower than 0.114.

Feature Analysis. Feature analysis refers to the statistical
and physical analysis of the modeling descriptors to further
explore the relationship between important descriptors and the
target variable. It should be noted that all the feature analysis is
only for the training set of the optimal model. For the
constructed SVR model, SHAP and sensitivity analysis are
used to explore the selected descriptors. SHAP belongs to a
feature analysis method based on game theory to analyze the
contribution of each feature to the predicted value of the
model, which would assign a value to each feature of every
sample to indicate the contribution of the feature to model
predictions.33,34 The assigned value is also called the SHAP
value of the feature, which is the weighted average of all
possible differences. All features could be ranked according to
the SHAP value to represent the quantitative contribution to
the target variable. The main purpose of sensitivity analysis is
to evaluate whether the results obtained under given
conditions are sufficiently reliable when other conditions are
not fully satisfied, which could be used to investigate the

Figure 3. Experimental bonding strength vs predicted bonding strength with corresponding R and RMSE based on (a) resubstitution test and (b)
LOOCV. GMM-based modeling for bonding strength prediction.

Table 6. R and RMSE of the Bonding Strength in LOOCV
and 10-Fold Cross Validation of Different Algorithms Based
on 400 Samples

algorithms RLOOCV RMSELOOCV R10‑fold CV RMSE10‑fold CV

OLS 0.868 4.409 0.869 4.397
RFR 0.983 1.619 0.982 1.687
DTR 0.975 1.977 0.971 2.137
PLS 0.868 4.391 0.869 4.376
MLR 0.868 4.391 0.868 4.386
ANN 0.988 1.391 0.989 1.336
SVR-linear kernel 0.868 4.525 0.868 4.521
SVR-Gaussian kernel 0.989 1.312 0.989 1.324
SVR-polynomial kernel 0.989 1.305 0.989 1.306
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change of the target variable with a certain descriptor under the
condition of fixing other descriptors.35,36

The SHAP analysis and sensitivity analysis of the descriptor
are shown in Figure 5. In Figure 5a, the ranking of the
descriptor contribution to the predicted value of the model
could be obtained according to the SHAP values. It can be
seen from Figure 5a that the descriptor contributing the most
to the SVR model of bonding strength prediction is the
thickness, followed by the flow rate of H2, current, and voltage.
SHAP analysis can rank descriptors according to their
contribution to the model, while the exploration of the
sensitivity of bonding strength to changes in specific
descriptors requires sensitivity analysis. Figure 5b−e illustrates
the sensitivity analysis of the modeling descriptors. It can be
seen that the bonding strength has a negative correlation with
the flow rate of H2 and a strong positive correlation with the
voltage. However, for thickness and current, there is a negative
correlation at first and a positive correlation after reaching the
lowest point. However, in general, the bonding strength is
negatively correlated with the thickness and the flow rate of H2
as well as positively correlated with current and voltage. In the

process of coating deposition, the residual stresses of
quenching stress and cooling stress would occur. The
quenching stress is derived from the rapid formation of the
layered structure during the deposition process, while the
cooling stress comes from the mismatch of the thermal
expansion coefficient of the coating and the substrate. The
quenching stress and cooling stress increase with the coating
thickness, which promotes the initiation and propagation of
microcracks to lead to the decrease of the bonding strength
after the tensile test.37−39 From the importance ranking of the
descriptors by SHAP, it can be concluded that the quenching
stress and cooling stress that increase with the coating
thickness are the most important factors leading to the
decrease of the bonding strength compared to the impact of
other factors.

APS Parameters Optimization. The purpose of the
machine learning model construction for bonding strength
prediction is to achieve a breakthrough in the bonding strength
by optimization of the APS process parameters. After obtaining
the quantitative trend of the APS process parameters on the
bonding strength through feature analysis, the process

Figure 4. GMM-generated bonding strength vs predicted bonding strength with corresponding R and RMSE based on (a) resubstitution test, (b)
LOOCV, (c) 10-fold cross validation, and (d) independent test.
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parameters could be optimized to improve the predicted value
of the bonding strength. The optimized process parameters
and the corresponding predicted bonding strength are shown
in Table 7. Under this process, the maximum predicted

bonding strength by the model could reach as high as 68.771
MPa, while the highest value of the bonding strength in the
original 8 data sets is 46.6 MPa. After APS parameter
optimization by the machine learning model, the bonding

Figure 5. Feature analysis of (a) SHAP and sensitivity analysis of (b) thickness, (c) the flow rate of H2, (d) current, and (e) voltage.
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strength is increased by 47.58%. However, in the origin data in
Table 3, the distribution range of the current value is 503−665
A, indicating that the current value is difficult to reach 700 in
the experiment. Fortunately, among the 400 virtual samples
generated by GMM, there still exist some samples with
predicted bonding strength higher than 46.6 MPa, among
which the highest predicted value could reach up to 55.95
MPa. The specific process parameters are a current of 617 A, a
voltage of 65 V, H2 of 3 L min−1, and a thickness of 200 μm.
Besides, it can be observed that most of the process parameter
values corresponding to the virtual samples with a bonding
strength greater than 46.6 MPa are floating under the optimal
process parameters, which can be regarded as an error in the
experiment. The range of the optimized process parameter
values does not deviate from the eight samples of the source
data, indicating that the process parameters are equipped with
the experimental feasibility.
Model Explanation. In this work, the results predicted

using the SVR model can be explained by using material
pattern recognition. Pattern recognition methods include
statistical pattern recognition and syntactic pattern recognition.
In this work, statistical pattern recognition is used to extend
the descriptors to the multidimensional space of the sample
projection. By applying appropriate computer pattern recog-
nition technology to identify the distribution area of samples of
various shapes, a mathematical model describing the
distribution range of various samples in a multidimensional
space can be obtained.40 The pattern recognition method used
in this work is principal component analysis (PCA), which can
calculate two principal components PCA (1) and PCA (2) by
a linear combination of descriptors to form an optimal
discriminant plane.41

Taking the APS process parameters as the feature set; the
bonding strength as the target variable; the training set as the
data set; samples with the bonding strength greater than 46.6
MPa as positive samples; the rest as negative samples, the PCA
projection diagram is shown in Figure 6. The rectangular area
in the figure refers to the optimized area. In Figure 6, there are
46 samples in the optimized area, of which there are 43
positive samples and 3 negative samples. Positive samples can
account for 92.73%, which is much higher than 57.54% in the
training set. As long as the calculated PCA (1) and PCA (2)
satisfy the boundary conditions of the optimized region, the
probability of obtaining a positive sample can be improved.
The boundary conditions of the optimized area are shown as
eqs 4−7

0.7651 PCA(1) 1.592− ≤ ≤ (4)

2.204 PCA(2) 1.004− ≤ ≤ − (5)

22.113 0.004316 Current 0.2877 Voltage

0.5133 H 0.003342 Thickness

24.470
2

≤ [ ] + [ ]

+ [ ] − [ ]

≤ (6)

12.482 0.002189 Current 0.1673 Voltage

0.2793 H 0.01116 Thickness

13.682
2

≤ − [ ] + [ ]

+ [ ] + [ ]

≤ (7)

Experimental Validation. To verify the model prediction
of the optimized parameters, the bonding strength of YSZ
coating was determined by experiments. The stress−extension
curve and the corresponding APS parameters as well as the
image of coating fracture are shown in Figure 7. Obviously, the

bonding strength with optimized APS parameters is better,
which is 19.10% higher than the best value in the original data.
In addition, the predicted bonding strength under the APS
parameter is 53.137 MPa with the absolute error of 2.363 MPa,
indicating the ideal prediction accuracy of the constructed
GMM−SVR model. This prediction error can be reduced by
constructing models by collecting more experimental data in
future studies. The result of experimental verification
demonstrates that the constructed GMM−SVR model could

Table 7. Optimized APS Parameters and the Corresponding
Predicted Bonding Strength

predicted bonding
strength/MPa current/A voltage/V H2/L min−1 thickness/μm

67.577 700 71 2.5 200
53.137 617 65 3 200

Figure 6. Pattern recognition of different samples by using the PCA
method. The positive samples in the optimized area account for
92.73%.

Figure 7. The stress−extension curve of the YSZ coating with
optimized APS parameters and the corresponding images of coating
fracture.
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assist the optimization of the APS process to promote the
bond strength of YSZ coatings.

■ CONCLUSIONS
In this work, APS parameters were taken as descriptors to
construct an SVR model for predicting the bonding strength of
YSZ thermal barrier materials. GMM was used to expand the
data set from the original 8 data points to 400 with the
increasement of R of LOOCV from 0.690 to 0.990, which has
proved that GMM could solve the problem of low prediction
accuracy and the lack of the independent testing due to the
limited data. After model construction, SHAP and sensitivity
analysis were adopted to analyze the relationship between
descriptors and bonding strength. The results show that the
thickness is a major factor in the bonding strength. The
bonding strength is negatively correlated with the thickness
and H2, but positively correlated with current and voltage. The
parameters of APS were optimized through feature analysis and
PCA. After optimization and experimental validation, the
determined bonding strength with optimized APS parameters
could reach 55.5 MPa, which is 19.109% higher than the
maximum value of 46.6 MPa in the original eight data sets.
Although we have applied machine learning to achieve

breakthrough of bonding strength by optimizing APS
parameters, there still exist more improvements of this work
needing to be realized in the future work. First, the flow rate of
Ar in the APS process parameters is a constant column, which
is unavailable to the model construction to explore the
influence of the flow rate of Ar on the bonding strength. In
subsequent work, the flow rate of Ar can be changed to further
explore the influence of this parameter on the bonding
strength. Second, although the method of GMM can improve
the model accuracy of small data set modeling, the original
eight sets of data are still too limited to better understand
universality of the patterns found by feature analysis. This
limitation can be solved through active learning. After the
experimental validation with optimized APS parameters, the
samples can be put back into the data set to reform a bigger
data set for machine learning. Followed by active learning, the
data size could be purposefully increased through iterative
loops to achieve the two-way optimization of the model and
APS process parameters simultaneously.
The algorithms of SVM and GMM were used to deal with

machine learning of the small size of the dataset in this work,
achieving the satisfactory results for experimental validation.
SVM is an applicable machine learning method with a solid
theoretical foundation, which has a wide range of applications
in modeling of small size of datasets in materials science. The
concept of “margin” in SVM could be used to obtain a
structured description of data distribution, thereby reducing
the requirements for data size and data distribution. Besides,
the constructed model by SVM tends to have excellent
generalization ability. However, SVM is sensitive to the
selection of kernel function and its parameters. For different
data, how to choose the optimal kernel function and
parameters is still a challenge. GMM adopts the idea of a
mixture model to find the distribution of data and obtains
virtual samples by sampling based on the mixture Gaussian
distribution to improve the performance of the model by
expanding the data size. The results have shown that the GMM
algorithm could improve the accuracy of small-data machine
learning models with good applicability to be widely applied in
other material fields. Li et al.32 have applied the GMM into the

Tennessee Eastman process and an industrial hydrocracking
process to improve the performance of a machine learning
model with a small size of dataset. Therefore, the combination
of SVM and GMM to process small-data machine learning
modeling can not only be applied to optimize the bonding
strength of YSZ coatings but also can be used for small-data
modeling in other material fields. However, there still exists
room for the improvement of GMM such as anomaly point
analysis. There may be anomaly points in the virtual samples
generated by GMM. For the materials data, the characteristic
values of materials tend to have a certain range, and the
generated data are difficult to ensure if it conforms to the
characteristics of actual materials. The analysis of anomaly
points in GMM is still a direction for further research.
Although the materials synthesis and characterization technol-
ogy become more and more mature, most of the material data
still belong to the small data due to the high cost of
experiments or calculations. For small-data machine learning
tasks, in addition to algorithm-based processing methods such
as SVM and GMM, the amount of data can be expanded
through high-throughput experiments and calculations, active
learning, transfer learning, and the establishment of a complete
material database and data processing platform.
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