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Abstract

Psychometric properties of perceptual assessments, like reliability, depend on stochastic

properties of psychophysical sampling procedures resulting in method variability, as well as

inter- and intra-subject variability. Method variability is commonly minimized by optimizing

sampling procedures through computer simulations. Inter-subject variability is inherent to

the population of interest and cannot be influenced. Intra-subject variability introduced by

confounds (e.g., inattention or lack of motivation) cannot be simply quantified from experi-

mental data, as these data also include method variability. Therefore, this aspect is gener-

ally neglected when developing assessments. Yet, comparing method variability and intra-

subject variability could give insights on whether effort should be invested in optimizing

the sampling procedure, or in addressing potential confounds instead. We propose a new

approach to estimate intra-subject variability of psychometric functions by combining com-

puter simulations and behavioral data, and to account for it when simulating experiments.

The approach was illustrated in a real-world scenario of proprioceptive difference threshold

assessments. The behavioral study revealed a test-retest reliability of r = 0.212. Computer

simulations without considering intra-subject variability predicted a reliability of r = 0.768,

whereas the new approach including an intra-subject variability model lead to a realistic esti-

mate of reliability (r = 0.207). Such a model also allows computing the theoretically maxi-

mally attainable reliability (r = 0.552) assuming an ideal sampling procedure. Comparing the

reliability estimates when exclusively accounting for method variability versus intra-subject

variability reveals that intra-subject variability should be reduced by addressing confounds

and that only optimizing the sampling procedure may be insufficient to achieve a high reli-

ability. This new approach allows computing the intra-subject variability with only two mea-

surements per subject, and predicting the reliability for a larger number of subjects and

retests based on simulations, without requiring additional experiments. Such a tool of pre-

dictive value is especially valuable for target populations where time is scarce, e.g., for

assessments in clinical settings.
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1 Introduction

The development of assessments of human perception thresholds (e.g., visual, auditory, tactile,

or proprioceptive stimuli) is a challenging field, as these require good psychometric and clini-

metric properties such as high reliability, for both research and clinical applications. The selec-

tion and optimization of psychophysical assessments is, in general, a lengthy, iterative, and

cumbersome process where different psychophysical methods need to be tested and their

parameters tuned [1]. Evaluating such procedures requires time and financial resources, as it

involves repeated assessment of a large number of subjects. This may present a serious hurdle

for the development of reliable assessments, especially for sample populations where available

time is scarce and recruitment is difficult or expensive (e.g., neurological patients).

When evaluating and optimizing psychophysical methods (e.g., for a high test-retest reli-

ability), different factors play an essential role: method variability as well as inter- and intra-

subject variability. While inter-subject variability clearly has an effect on reliability [2], it is

given by the population of interest and its true value cannot be influenced. Previous works

have suggested that a lack of correlation between different methods tested on the same subjects

(i.e. a lack of agreement between results) may originate either from inherent method variability

(i.e., based on the stochastic process, the statistical properties of the method, and number of

trials) or from intra-subject variability [3]. As both method and intra-subject variability are

confounded in the outcome measure of a perception assessment, it is difficult to discern

one factor from the other and quantify them independently. Generalizability theory is one

approach to disentangle different sources of errors [4–6]. However, it requires complex experi-

mental designs with a large number of conditions where each factor is controlled for. Further-

more, unknown non-systematic and random error sources, such as the inaccuracy of the

measurements and other uncontrolled factors (e.g., inattention or lack of motivation) remain

confounded in the residual error.

The detection or discrimination capability of physical stimuli often resembles a sigmoidal

psychometric function [7, 8]. This psychometric function defines the subject’s performance, or

responses to physical stimuli in a psychophysical task. Therefore, perception and psychophysi-

cal procedures (i.e., complete perception experiments) can be modeled. As a matter of fact,

the method variability as well as other performance metrics such as bias and efficiency can be

quantified using computer simulations and have been widely investigated for various proce-

dures [1, 9–20].

In contrast, intra-subject variability introduced by confounds (variables that influence both

the dependent and independent variable causing a spurious association, e.g., inattention, lack

of motivation in psychophysical experiments, or fatigue) is difficult to estimate and cannot be

directly quantified based on experimental or simulated data only. For example, a lack of moti-

vation could decrease the performance of a patient with sensory deficits in a perceptual test

aiming to quantifying sensory deficits. Thus, it is not clear whether the origins of the decreased

performance are the sensory deficits and/or lack of motivation. Because of such confounding

effects, intra-subject variability has received little attention so far, and is generally neglected in

computer simulations of psychophysical sampling procedures. As a consequence, simulations

of psychophysical experiments are hardly realistic, and results are not representative.

The aim of this work is twofold: firstly, to present an approach to quantify intra-subject var-

iability, and secondly, to apply and illustrate the approach by creating a general model of intra-

subject variability—in this case of proprioceptive perception at the wrist assessed in a two-

alternative forced-choice (2AFC) setting. To estimate the intra-subject variability for different

parameters of the psychometric function, a dataset with repeated measures from a behavioral

study is required. Based on this experimental data, the subject’s psychometric functions are
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modeled to simulate the same population. We propose to add individual, statistical noise dis-

tributions models on the different parameters (threshold and slope) of the psychometric func-

tions to simulate intra-subject variability. The level of intra-subject variability (i.e., noise) on

the different parameters can be quantified by matching the test-retest reliability of the simu-

lated experiment with the test-retest reliability of the behavioral data and by maximizing the

similarity between the distributions of outcome measures. Better knowledge about human per-

ception and the ability to model intra-subject variability is important and would offer many

possibilities, such as comparing, selecting, and tuning different psychophysical methods in

simulated scenarios corresponding closely to the real application and population of interest.

Furthermore, model-based extrapolation to a larger number of trials or increased sample size,

for example to explore their impact on reliability, could then be performed purely in simula-

tion. This could significantly speed up the development and testing of psychophysical assess-

ment procedures.

2 Materials and methods

2.1 Behavioral data

2.1.1 Subjects. Thirty-three healthy young subjects (Nsubjects = 33) were recruited and par-

ticipated in an experiment to assess wrist proprioception (age mean ± SD: 24.1 ± 3.4 years, 20

male and 13 female, 27 right handed, 5 left handed, and 1 ambidextrous). Handedness was

assessed with the Edinburgh Handedness Inventory [21]. Exclusion criteria comprised sensory

and motor deficits affecting normal wrist and hand function, as well as any history of neuro-

logical or wrist injury. Prior to participating in the experiment, all subjects gave written

informed consent. The study was approved by the institutional ethics committee of the ETH

Zurich (EK 2015-N-03).

2.1.2 Protocol of the proprioceptive assessment. Each trial of the assessment aiming at

estimating the difference threshold of the angular position at the right wrist joint consisted of

the consecutive presentation of two different angles and the subsequent judgment by the sub-

ject which of the two presented movements was larger (two-interval 2AFC paradigm [8]). The

subjects did not receive feedback about correct performance.

The movements were applied to the passive wrist with a one degree-of-freedom robotic

wrist interface (Fig 1). A detailed description of the robot can be found in [22]. In short, this

device is capable of providing well-controlled and reproducible passive flexion-extension

movements to the wrist and is driven by a direct-drive brushed DC motor (RE65, Maxon

Motor, Sachseln, Switzerland). The angular position is measured with a high-resolution

encoder (R158, 1 million counts/rev, Gurley Precision Instruments, Troy, NY, USA), and

movements are controlled in LabVIEW RealTime 13.0 (National Instruments, Austin, TX,

USA) at 1 kHz. Above the tested hand, a touchscreen showing the visual interface for the

experiment is mounted horizontally. To avoid any visual or auditory cues (e.g., noise emitted

by the motor), the tested arm was occluded from vision and white noise was played over head-

phones during the whole experiment.

The movements always started from the resting position (hand aligned with forearm, 0˚)

and went into flexion direction (maximum 40˚). The two presented angles were always cen-

tered around a reference of 20˚. The difference between the two angles (referred to as level)

was defined by an adaptive sampling procedure named Parameter Estimation by Sequential

Testing (PEST) [9]. PEST was used with a logarithmic adaptation for positive-only stimuli to

avoid an undesired behavior of the algorithm due to zero crossings [3]. This adaptive algo-

rithm takes the judgments (also referred to as responses) of past trials into account and

changes the difference between the angles accordingly, using heuristic rules to approach the
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difference threshold as rapidly as possible. The same proprioceptive assessment has been

previously used and described in more detail in other studies with a different robotic device

for the assessment of the metacarpophalangeal joint [3, 23–25]. The same movement timing

characteristics and parameters for the PEST algorithm were used in the present experiment,

except for the maximum number of trials (start level x0 = 5.5˚, start step Δx0 = ±2˚, target

performance Pt = 75%, Wald sequential likelihood ratio test parameter W = 1, minimum

step Δxmin = ±0.1˚, maximum trials at same level trialsmax@x = 20, maximum trials in total

trialsmax = 120). Each flexion movement lasted 1 s and the wrist was kept at the wrist flexion

angle for 1.5 s before moving back to the start position. Each movement followed a natural

minimum jerk trajectory [26].

Each subject performed the assessment in five sessions on different days (from 1 to 4 days

between sessions, with a maximum of 7 days from the first to the last session).

2.1.3 Estimation of the psychometric function. Based on the data from the assessment

sequence (i.e., difference between the two presented angles and corresponding response of the

subject), the proportion of correct responses can be calculated for the different levels x to fit a

sigmoidal psychometric function ψ(x) (Fig 2) using a Maximum Likelihood criterion imple-

mented in the Palamedes MATLAB routines [27]:

cðx; a;b; g; lÞ ¼ gþ ð1 � g � lÞ FGauss ðx; m; s2Þ; ð1Þ

with FGauss(x; μ, σ2) a sigmoidal cumulative Gaussian function. In the present work, the thresh-

old parameter α corresponds to the mean μ of the underlying Gaussian function, and the slope

parameter β is inversely proportional to the standard deviation σ:

b ¼
1
ffiffiffiffiffiffi
2p
p

1

s
: ð2Þ

Fig 1. Robotic setup for the wrist proprioception assessments in the behavioral study. The motor (gray) actuates the handle (blue) in wrist

flexion-extension direction. A touchscreen (semitransparent dark gray) placed over the wrist occludes the tested wrist from vision. With the non-

assessed hand, the subject reports the response by clicking on one of the two blue buttons indicated on the screen.

https://doi.org/10.1371/journal.pone.0209839.g001
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The guess rate parameter γ was fixed to 0.5, as the 2AFC paradigm with randomly ordered sti-

muli for the two intervals within a trial can be considered decision-bias-free, and the presenta-

tion of two identical stimuli should lead to performance at chance level [8]. The lapse rate

parameter λ was allowed to vary 2 [0, 0.1]. Leaving the lapse rate free when fitting a psycho-

metric function has been shown to reduce estimation bias introduced by isolated scattered

lapses [28]. Note that this range was chosen identical to our previous work [25] and is larger

than the proposed range [0, 0.06] by [28]. This was motivated by the desire to account for a

potentially higher probability of inattention in elderly or neurologically impaired subjects (for

which such assessments are primarily designed), which was confirmed in [23].

The actual slope (first order derivative) of ψ(x) at the inflexion point α is

binflection ¼
ð1 � g � lÞ

ffiffiffiffiffiffi
2p
p

1

s
: ð3Þ

This definition of the slope carries as units one over the units of the stimulus, in the present

work [1/˚], and can be used to compare the slope values across studies using different types

of sigmoidal functions F(x) [29]. To do arithmetic calculations on the slope (e.g., arithmetic

mean), it is reasonable to normalize the slope with the following nonlinear function to a range

[0, 1] with arbitrary units [a.u.]:

binflection ½a:u:� ¼
arctan ðbinflectionÞ

p=2
: ð4Þ

If this nonlinear transformation is not performed, errors in slope estimation can diverge

towards infinite for two almost identically steep psychometric functions, which would lead to

a distortion when comparing to errors in shallow psychometric functions.

Using computer simulations, the estimation quality of psychophysical sampling procedures

can be calculated by comparing the estimated values of the different parameters of a psycho-

metric function with the true values (i.e., parameter values of the psychometric function to be

estimated) [1]. Following this work, the estimation performance of PEST was evaluated with

Fig 2. Definition of psychometric function and its parameters. Psychometric function ψ(x; α, β, γ, λ) (bold black

sigmoid) and cumulative Gaussian function FGauss(x; μ, σ) (bold gray sigmoid) in the case of a two-alternative forced

choice (2AFC) task. The thin gray curve is the underlying Gaussian probability density function. The inflection points

are indicated as circles in the respective colors.

https://doi.org/10.1371/journal.pone.0209839.g002
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computer simulations using the same parameter values as used in the present behavioral study

(x0 = 5.5˚, Δx0 = ±2˚, Pt = 75%, W = 1, Δxmin = ±0.1˚, trialsmax@x = 20, trialsmax = 120). The var-

iable error of the estimate cannot be corrected for. However, the average bias (i.e., also referred

to as constant error of the estimate [1]) can be removed after fitting the psychometric function

with the Maximum Likelihood criterion. While PEST can be considered a bias-free sampling

procedure for the threshold estimates, the slope estimation bias showed a strong dependence

on the true slope and was approximatively corrected by using the following equation:

binflection; b:c: ½a:u:� ¼ binflection ½a:u:�
2:381

: ð5Þ

This power function (and the value of the exponent) are the result from a fit on simulated data

from our previous work [1].

A further estimation bias in psychophysical experiments with human subjects can arise

from longer inattention periods, as loss of attention may alter perception [30–32]. A method

to detect and remove such inattention periods in PEST sequences has recently been proposed

[25]. This method has shown to reduce estimation errors by up to around 75% and was applied

post-hoc on the PEST sequences recorded in the behavioral study before fitting the psychomet-

ric function.

2.2 Computer simulations

2.2.1 Population model and templates. A model of the population distribution was cre-

ated for each parameter of the psychometric function (i.e., α, β, γ, and λ) based on the averaged

parameters (across the five repeated measurements for each individual subjects) of the psycho-

metric functions obtained in the behavioral study: For the threshold α and lapse rate λ, the

arithmetic mean was calculated for each subject (across the five measurements) to obtain an

improved estimate of the subject’s true psychometric function. The same was done for the

slope β, however, β was first converted to the slope at inflection βinflection (with the five corre-

sponding lapse rates of the individual subject), normalized (βinflection [a.u.]), and the bias was

removed (βinflection, b.c. [a.u.]) before averaging across the five measurements. Subsequently, the

slope was converted back with the inverse transformations (with the averaged lapse of the indi-

vidual subject). Averaging was not necessary for the guess rate γ, as it was always fixed to 0.5.

Averaging over the repeated measurements was considered appropriate, as previous studies

have shown with a mixed-effects model and a Bland-Altman analysis that there is no learning

effect in this 2AFC proprioception assessment task [23, 24].

From these empirical parameter distributions a set of simulated perception models (also

referred to as templates ψ(x)T) was randomly sampled. To differentiate between psychometric

functions and their parameters originating from the behavioral study and the simulated psy-

chometric functions, the symbol T was added for variables referring to simulated templates

(e.g., αT). The number of templates ψT(x) was set to be identical to the number of assessed sub-

jects in the behavioral study (Ntemplates = 33).

2.2.2 Noise model. When designing a noise model (i.e., continuous distribution) for a

certain parameter of a psychometric function template (i.e., αT or b
T
inflection ½a:u:�), three things

must be considered within this framework: (i) the continuous probability density function

should be chosen based on an appropriate mathematical support dependent on the definition

of the parameter, (ii) the mean μnoise of the distribution should match the true parameter value

of the template (i.e., αT or b
T
inflection ½a:u:�) for which the noise model is created, and (iii) the stan-

dard deviation of the noise model should be directly controllable by a noise level parameter

(να and νβ, respectively).
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The threshold including intra-subject variability was modeled with a log–normal distribu-

tion with a support [0, +1):

aTnoise � LognormalðmN ; s
2
N Þ: ð6Þ

To avoid bias when introducing noise, the mean μnoise was defined to be the threshold of the

template:

mnoise :¼ aT: ð7Þ

The standard deviation σnoise of the variability was controlled with the parameter να 2 [0, +1):

snoise :¼ na; ð8Þ

The two parameters of the log–normal distribution were calculated using μnoise and the desired

σnoise:

mN ¼ log
mnoiseffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
s2
noise

m2
noise

s

0

B
B
B
B
@

1

C
C
C
C
A

and ð9Þ

sN ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

log 1þ
s2
noise

m2
noise

� �s

: ð10Þ

The slope including intra-subject variability was modeled with a beta distribution with a

support [0, 1]:

b
T
inflection ½a:u:�; noise � BeðaBe; bBeÞ: ð11Þ

The mean μnoise of BeðaBe; bBeÞ was defined to correspond to the normalized slope at the inflec-

tion of the template:

mnoise :¼ b
T
inflection ½a:u:�: ð12Þ

The standard deviation σnoise of the variability was controlled with the parameter νβ 2 (0, 1]

serving as a scaling parameter:

snoise :¼ nbŝnoise; ð13Þ

where ŝnoise is the maximum possible value for σnoise to avoid a U-shaped distribution. This

can be guaranteed with at least one of the parameters aBe or bBe � 1, leading to:

ŝnoise ¼ max

 

mnoise

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � mnoise

1þ mnoise

r

;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mnoiseðm

2
noise � 2mnoise þ 1Þ

2 � mnoise

s !

:

ð14Þ

With μnoise and σnoise, the two parameters of the beta distribution BeðaBe; bBeÞ could be
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calculated:

aBe ¼
mnoiseð� m

2
noise þ mnoise � s

2
noiseÞ

s2
noise

and ð15Þ

bBe ¼ aBe
1 � mnoise

mnoise

� �

: ð16Þ

No noise was modeled on the lapse rate λT and on the guess rate γT = 0.5. The

psychometric functions to be used for the simulated PEST sequences were of the form

c
T
noiseðx; aTnoise; b

T
noise; g

T; l
T
Þ. For the threshold, 16 equally distributed noise levels να 2 [0, 1.5],

and for the slope, 14 noise levels νβ 2 [0, 1] with a twice as high grid density 2 [0.7, 1], were

simulated.

2.2.3 Procedure. For each combination of να and νβ, the PEST sequence of the 2AFC

task was simulated five times for the whole set of templates C
T
na ;nb

. For each single simulated

sequence, new random variables aTnoise and b
T
inflection ½a:u:�; noise were drawn from the log–normal

and beta distributions, respectively, simulating intra-subject variability across the five mea-

surements. The identical PEST parameters as in the behavioral study were used for the com-

puter simulations. Responses to a specific level x were simulated by comparing a randomly

generated number 2 Uð0; 1Þ to c
T
noiseðxÞ of the respective template. A smaller random number

generated a correct response, and a larger random number a false response.

The simulation of the whole setC
T
na ;nb

was repeated Nsimulations = 1000 times for each combi-

nation of να and νβ with new randomly sampled parameters (i.e., αT, βT, γT, λT) from the popu-

lation distribution models.

The psychometric functions from the simulated PEST sequences were estimated identically

to the behavioral study, including the bias correction. The only difference lay in the inattention

correction algorithm [25], which was not applied on the simulated data. It was assumed that

significant biases from potential inattention periods in the behavioral study were already cor-

rected for before creating the population model for the templates. Thus, as no inattention

periods were modeled in the simulations, there was no need to apply the algorithm. The com-

puter simulations and estimations of the psychometric function were performed entirely in

MATLAB R2014a.

2.3 Data analysis

Test-retest reliability of the estimated thresholds from the five measurements of the behavioral

study was quantified by computing the ICC(2,1) intraclass correlation coefficient r (two-way

layout with random effects for absolute agreement) [33] and its 95% confidence interval (CI)

[34, 35].

Identically, for each setC
T
na ;nb

, distributions of Nsimulations values for the reliability of the esti-

mated thresholds as well as its lower and upper CI bounds for each combination of να and νβ
were generated. From these Nsimulations reliability values, the arithmetic mean �rT

na ;nb
was calcu-

lated. In this two-dimensional noise space an iso-reliability contour where the reliability of the

simulated experiment matched the reliability of the behavioral study (�rT
na ;nb
¼ r) was calculated

(set of να and νβ pairs). To obtain a smoother contour, the reliability surface was interpolated

with a spline on a finer grid (by halving the grid intervals three times in each dimension).

To find which να and νβ pair of the iso-reliability contour corresponds the best to the intra-

subject variability of the behavioral study, for each of the Nsimulations per pair, histograms of the
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parameters of the estimated psychometric functions from the computer simulation were com-

pared to histograms of the parameters of the psychometric functions originating from the

behavioral data. This was done by calculating the cosine similarity between the two vectors of

histogram bin counts (h and hT, for the behavioral and simulated data, respectively) for the

parameters α, βinflection, b.c. [a.u.], and λ:

similarityTi ¼ cos ðyiÞ ¼
hi � h

T
i

khik2kh
T
i k2

8i 2 fa;b; lg; ð17Þ

where a similarity of 1 represents identical histograms. Note that by using this similarity metric

the histograms do not need to be additionally normalized. The following bin sizes were used

for α, βinflection, b.c. [a.u.], and λ: 0.25, 0.05, and 0.005. To obtain an overall similarity, the three

calculated similarities were multiplied with each other.

sT
na ;nb
¼

Y

i2fa;b;lg

similarityTi ; ð18Þ

From these Nsimulations overall similarity values, the arithmetic mean �sT
na ;nb

was calculated. The

iso-reliability contour was projected onto the similarity surface in the two-dimensional noise

space after a spline interpolation, identical to what was done for the reliability. The interpo-

lated να and νβ pair on the iso-reliability contour with the highest average overall similarity

was chosen as the best model to estimate intra-subject variability (n̂a and n̂b).

For a new set of psychometric functions C
T
n̂a ;n̂b

with the optimal noise model, the simulation

was repeated Nsimulations times, and the parameter distributions as well as �rT
n̂a ;n̂b

and �sT
n̂a ;n̂b

were

calculated. In addition, the maximum attainable reliability r̂T
n̂a ;n̂b

(corresponding to no method

variability) was computed based directly on the templates with intra-subject noise, but without

simulating the psychophysical experiment.

To illustrate the intra-subject variability on a psychometric function, a population average

model was computed by averaging the individual subject models. Using the intra-subject vari-

ability models with parameters n̂a and n̂b, 1000 templates were created. The estimate distribu-

tions originating from pure method variability as well as from intra-subject variability were

compared with each other by plotting the percentage of estimates within a tolerance interval

depending on the interval size (percentage within bounds, PCTw/iB), and the normalized area

under these curves (nAUC) according to the methods proposed by [1].

3 Results

The test-retest reliability coefficient of the behavioral study and its confidence interval was

r = 0.212 [0.077, 0.394]. The simulated reliability �rT
na;nb

for different να and νβ pairs as well as

the matched iso-reliability contour at r are shown in Fig 3. In case of no intra-subject variabil-

ity, the reliability would correspond to �rT
na¼0;nb¼0

¼ 0:768 [0.662, 0.859] for the psychophysical

paradigm and sampling procedure used in this work (i.e., maximum attainable reliability

using these methods for the present population of interest).

The overall similarity �sT
na ;nb

(combined for threshold, slope, and lapse rate) is visualized in

Fig 4, together with the same projected iso-reliability contour. The maximum overall similarity

on the contour was found for the noise level pair n̂a ¼ 0:363 and n̂b ¼ 0:849 (�sT
n̂a ;n̂b
¼ 0:764),

corresponding to the best intra-subject variability model estimate. The similarities of the distri-

butions of the parameters of the psychometric functions are shown individually in Fig 5. The

simulated reliability at this noise level pair was �rT
n̂a ;n̂b
¼ 0:207 [0.076, 0.384]. The maximum
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attainable reliability without method variability (i.e., assuming a perfect assessment) for the

identified intra-subject variability model would be r̂T
n̂a ;n̂b
¼ 0:552 [0.403, 0.704].

For illustration purposes, the effect of intra-subject variability on the shape of the psycho-

metric function is shown in Fig 6 for the population average model ψ(x; α = 1.696, β = 1.708,

γ = 0.500, λ = 0.036) and the noise level pair n̂a, n̂b, together with the distributions of threshold

and slope resulting from method and intra-subject variability. For the threshold estimation,

the nAUC was higher for the method variability compared to the intra-subject variability,

whereas for the slope estimation, the opposite was the case. The maximum difference in esti-

mation performance in terms of PCTw/iB was 42.5% at a threshold tolerance of ±0.210˚, and

38.1% at a slope tolerance of ±0.299.

4 Discussion

In this work we presented an approach to quantify intra-subject variability in psychophysical

testing. This was achieved by introducing and adjusting a statistical noise model in computer

simulations to match the test-retest reliability and histograms of the parameters of the esti-

mated psychometric functions of a behavioral dataset. Using this approach we estimated the

intra-subject variability of healthy subjects in a psychophysical assessment of proprioceptive

perception at the wrist using a 2AFC paradigm, and compared the intra-subject variability

with the inherent method variability of PEST.

Fig 3. Simulated reliability and iso-reliability contour of behavioral study. For each pair of intra-subject threshold

noise να and slope noise νβ, the simulated reliability averaged across Nsimulations = 1000 simulations (�rT
na ;nb

) is

represented as a heat map. The dashed white line indicates the iso-reliability contour corresponding to the reliability

obtained from the behavioral study (r = 0.212).

https://doi.org/10.1371/journal.pone.0209839.g003
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Fig 4. Best intra-subject variability estimate based on overall similarity. For each pair of intra-subject threshold

noise να and slope noise νβ, the overall similarity (combined for threshold, slope, and lapse rate) averaged across

Nsimulations = 1000 simulations (�sT
na ;nb

) is represented as a heat map. The dashed white iso-reliability contour is identical

to Fig 3. The noise level pair on the contour with the highest overall similarity (�sTn̂ a ;n̂b ¼ 0:764) is indicated with a black

dot.

https://doi.org/10.1371/journal.pone.0209839.g004

Fig 5. Histogram similarity for the optimal intra-subject variability. Histograms of the parameters of the

psychometric functions of the behavioral data (gray fill, 33 × 5 data points) versus the simulated data (black outline,

33 × 5 simulated data points averaged over 1000 simulations) with optimal noise level at the pair n̂a, n̂b.

https://doi.org/10.1371/journal.pone.0209839.g005
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Fig 6. Illustration of intra-subject variability. (Top) For each stimulus level x the distribution of proportion correct

is plotted as a heat map based on 1000 templates created with the population average model (bold black sigmoid) and

the intra-subject variability models using n̂a and n̂b. (Middle) The dashed black distribution curves correspond to the

parametric log–normal and beta intra-subject variability models. The histograms (black outline) as well as the dashed

black lines for the means show the parameter distributions of the 1000 templates including intra-subject variability.

The white triangles indicate the threshold and slope of the population average model (without noise). As a comparison,

the inherent method variability (histogram with gray fill) for the same population average model without intra-subject

variability is plotted. (Bottom) The percentage of estimates within a tolerance interval (percentage within bounds,
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The results showed that for a matched reliability, the similarity between the behavioral and

simulated datasets was excellent for the optimal pair of intra-subject threshold and slope vari-

ability. Furthermore, the identified intra-subject variability of the threshold was larger com-

pared to the method variability, whereas the opposite was the case for the slope.

4.1 Intra-subject and method variability

When trying to estimate the test-retest reliability based on the population model without

intra-subject variability, the reliability coefficient would be largely overestimated. In the pres-

ent sample population this would result in a considerable error of 262.3%. In contrast, when

including intra-subject variability in the simulation, the reliability of the simulated experiment

matched the reliability of the behavioral study with an absolute error of 0.005 (�rT
n̂a ;n̂b
¼ 0:207

and r = 0.212, respectively), corresponding to a relative error of 2.4%. In theory, this error

should be zero, however, since the estimates were based on a stochastic generation of

responses, the simulated test-retest reliability varied across simulation runs. To improve the

estimate of intra-subject variability, and therefore the match of reliability values, a high num-

ber of repetitions (Nsimulations) were performed to obtain higher statistical power, and the grid

of the simulated intra-subject variability levels in the two-dimensional reliability space was

interpolated. This error could be further minimized by increasing the number of repetitions

and the density of the simulation grid. Further indication for a good model estimation quality

is provided by the fact that not only the simulated and behavioral reliability coefficient

matched, but also matching errors for the CI were low (absolute [0.001, 0.010] and relative

[1.3%, 2.5%] errors for the lower and upper bound). Moreover, cosine similarity between

behavioral and simulated outcome measures was very high for all three parameters α, β, and λ
(> 0.8), and thus demonstrates that the population’s inter- and intra-subject variability models

accurately represent the actual population.

The presented method allows to discern between and compare intra-subject variability and

method variability. When assuming invariant subjects (i.e., no intra-subject variability), the

test-retest reliability for the threshold would be 39.2% higher compared to when the estimated

intra-subject variability is included in the simulation, but a perfect method (i.e., no method

variability) would be assumed. This is also reflected by the nAUC for the threshold (a non-

parametric metric to evaluate the variability of estimation errors), which is higher by 16.4% for

the simulated case with method variability only. Based on these findings, if the assessment was

to be improved, one could suggest to address factors influencing the intra-subject variability,

before optimizing the psychophysical sampling procedure, as even with a perfect method, the

reliability would ceil at r̂T
n̂a ;n̂b
¼ 0:552 due to intra-subject variability. This can also be seen in

Fig 6 (Middle, left) where the distribution of estimates is narrower for the method variability

compared to the one for intra-subject variability. It can also be observed that the method vari-

ability follows a unimodal distribution, resembling a log–normal probability density function,

as it can be expected from the theoretical definition of the threshold parameter with positive

semi-infinite support. On the contrary, the slope estimates suffer from poor method perfor-

mance and, according to the U-shaped estimate distribution (histogram with gray fill in Fig 6

(Middle, right)), outcome measures are predominantly severely under- or overestimated. This

poor slope estimation performance given the settings of the sampling procedure and the short

PCTw/iB) around the parameters of the population average model is plotted against the size of the interval (gray:

method variability, black: intra-subject variability), together with the absolute difference of percentage (|Δ|, dashed

black line). For both method and intra-subject variability, the normalized area under the curve (nAUC) is calculated.

https://doi.org/10.1371/journal.pone.0209839.g006
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number of trials has also been observed in [1]. As a consequence, the nAUC for the simulated

case with intra-subject variability only is 11% higher. Thus, if the slope estimation should be

improved, it would be important to optimize the current sampling procedure or choose

another sampling procedure (e.g., theC method, designed to estimate both the threshold and

the slope [36]).

4.2 Advantages and limitations of this method

The advantage of this method is that the test-retest reliability is affected by all terms of variabil-

ity (inter- and intra-subject, and method variability). As a consequence, since the inter-subject

variability can be approximated by taking the averaged psychometric functions for each sub-

ject and the method variability is given by the simulation, the intra-subject variability can be

estimated. Furthermore, the intra-subject variability can be calculated even if only two mea-

surements were done per subject, whereas, for example, calculating the standard deviation of

two measurements for each subject is very likely a poor estimate of the true intra-subject vari-

ability (besides being still confound with method variability). However, it should be noted

that, depending on the intra-subject and method variability, the quality of the model of the

population (and inter-subject variability) can be compromised if only two measurements are

available per subject. Thus, in case of a poor population model, an overestimated inter-subject

variability may be compensated by an underestimated intra-subject variability and vice versa

when matching the reliability. Ideally, the available behavioral data would encompass a large

sample size (for a good representation of the population) and a large number of measurements

(for a good estimate of each subject’s psychophysical function). An advantage of sampling tem-

plates from the computed distributions representing the population compared to using the

averaged psychometric functions as templates, is that repeated randomly sampled templates

should lead to more generalizable results than bootstrapping from a limited set of subjects.

More importantly, it offers the possibility to sample more templates from the distribution, for

example to predict how the reliability and its confidence interval changes with increasing sam-

ple size. This framework can be applied to any psychophysical assessment, where the perfor-

mance of the subject can be modeled. However, it should be noted that dedicated behavioral

data and simulations are required for every individual application. Within the same applica-

tion, the estimated models can be used to extrapolate, e.g., to larger sample sizes. Transferabil-

ity of the intra-subject variability model from one population to another (e.g., from healthy

subjects to neurologically impaired patients) might be limited and subject to further investiga-

tion. Nevertheless, it can be assumed that using the intra-subject variability model for healthy

subjects in a simulation of a patient population provides better reliability estimates than having

no intra-subject variability model included. Furthermore, if it can be assumed that the psycho-

physical sampling procedure (e.g., PEST) does not strongly influence confounds or affect the

intra-subject variability, the same models could be used to create realistic simulations to com-

pare different sampling procedures.

A limitation of the present simulations is that no intra-subject variability was modeled for

the lapse rate. It would be possible model the lapse rate including intra-subject variability with

a beta distribution as for the slope, but with an adapted support. However, for the sake of sim-

plicity, this was omitted here. As a matter of fact, as the histogram similarity is almost 1 for the

lapse rate parameter, it shows that using a constant lapse rate (within the range [0, 0.1]) for

each individual subject also leads to realistic simulations and that adding an additional intra-

subject variability model for the lapse rate may not be necessary. While Fig 5 suggests that

there may be cases with lapse rates higher than 0.1, this would correspond to subjects not pay-

ing attention to every fifth trial, which is very high for healthy subjects. More likely, this
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bimodal result (lapse rates around 0 and around 0.1) may arise from the fitting procedure and

the short number of trials per PEST sequence. To identify the origin of these results, further

studies comparing different fitting procedures with longer sequences would be required.

When identifying the best model of intra-subject variability, the noise level pair να, νβ, where

overall similarity is the highest, may not lie on the iso-reliability contour corresponding to the

reliability r of the behavioral data. One reason for this is that in the similarity histogram, inter-

and intra-subject variability are confounded, and the similarity may vary depending on the

selection of bin sizes. In contrast, using the reliability as a metric should provide a more robust

and accurate estimate of the variability model, as it distinguishes between inter- and intra-sub-

ject variability despite taking both into account. Therefore, the overall similarity is used only as

a second criterion to identify the optimal model. One major limitation of this approach to esti-

mate intra-subject variability is that it only provides one variability model for the whole sample

and not individual models for each subject. To create individual models, more repeated mea-

surements would be necessary for each subject. However, the present noise models are already

a significant improvement over no variability model, and may be accurate enough for many

applications.

5 Conclusions

Computer simulations offer a valuable and powerful tool to simulate and optimize psycho-

physical experiments. While they can be used to evaluate different procedures and their

method variability, existing computer simulations are often not representative of real-world

scenarios, as critical aspects such as the intra-subject variability are neglected. As a matter of

fact, intra-subject variability cannot be directly quantified from behavioral data. This work

introduces a new approach based on the combination of computer simulations and behavioral

data to separate method variability from intra-subject variability and to estimate and model

intra-subject variability in psychophysical experiments.

Given a realistic model of the population, different psychophysical procedures can be simu-

lated and compared, and the procedures can be tuned to the specific application and target

population. Quantifying the method and intra-subject variability allows putting them into per-

spective when developing assessments. Given the intra-subject variability, it allows simulating an

experiment with an ideal psychophysical method (i.e., finding the theoretically maximally attain-

able performance of an assessment). These two aspects can inform the decision whether effort

should be spent on improving the psychophysical procedure (i.e., reducing method variability)

or if potential confounds affecting intra-subject variability should be addressed. The efficiency of

attempts to reduce confounds (e.g., inattention [25]) could be quantified (using the presented

method) based on a reduction of the intra-subject variability. Furthermore, based on the more

complete model also containing intra-subject variability, it is also possible to examine the impact

of a larger number of trials on reliability, or the converging behavior of the reliability’s confi-

dence interval bounds with a larger number of subjects, as well as retests, without having to

conduct additional experiments. This presents a particular benefit for studies with populations

where time for assessments is limited or expensive, as in the case of a clinical setting.

Supporting information

S1 File. Behavioral data. This file contains three tables with the threshold, slope at inflection,

and lapse rate obtained in the behavioral study. The columns are subject ID and measurements

1 through 5.
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