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Deep learning enhanced Rydberg multifrequency
microwave recognition

Zong-Kai Liu® "2, Li-Hua Zhang"?, Bang Liu'2, Zheng-Yuan Zhang"?, Guang-Can Guo'?,
Dong-Sheng Ding® 2™ & Bao-Sen Shi@ 2™

Recognition of multifrequency microwave (MW) electric fields is challenging because of the
complex interference of multifrequency fields in practical applications. Rydberg atom-based
measurements for multifrequency MW electric fields is promising in MW radar and MW
communications. However, Rydberg atoms are sensitive not only to the MW signal but also
to noise from atomic collisions and the environment, meaning that solution of the governing
Lindblad master equation of light-atom interactions is complicated by the inclusion of noise
and high-order terms. Here, we solve these problems by combining Rydberg atoms with deep
learning model, demonstrating that this model uses the sensitivity of the Rydberg atoms
while also reducing the impact of noise without solving the master equation. As a proof-of-
principle demonstration, the deep learning enhanced Rydberg receiver allows direct decoding
of the frequency-division multiplexed signal. This type of sensing technology is expected to
benefit Rydberg-based MW fields sensing and communication.
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he strong interaction between Rydberg atoms and micro-

wave (MW) fields that results from their high polarizability

means that the Rydberg atom is a candidate medium for
MW fields measurement, e.g., using electromagnetically induced
absorption!, electromagnetically induced transparency (EIT)%3
and the Autler-Townes effect3-°, The amplitudes’~1, phases!®!1
and frequencies®!? of MW fields could then be measured with
high sensitivity. Based on this measurement sensitivity for MW
fields, the Rydberg atom has been used in communications”-31-13
and radar!4 as an atom-based radio receiver. In the commu-
nications field, the Rydberg atom replaces the traditional antenna
with superior performance aspects that include sub-wavelength
size, high sensitivity, system international (SI) traceability to
Planck’s constant, high dynamic range, self-calibration and an
operating range that spans from MHz to THz
frequencies”>*1%1>16 One application is analogue communica-
tions, e.g., real-time recording and reconstruction of audio
signals'3. Another application is digital communications, e.g.,
phase-shift keying and quadrature amplitude modulation”:%12.
The channel capacity of MW-based communications is limited by
the standard quantum limited phase uncertainty’. Furthermore, a
continuously tunable radio-frequency carrier has been realized
based on Rydberg atoms!?, thus paving the way for concurrent
multichannel communications. Detection and decoding of mul-
tifrequency MW fields are highly important in communications
for acceleration of information transmission and improved
bandwidth efficiency. Additionally, MW fields recognition
enables simultaneous detection of multiple targets with different
velocities from the multifrequency spectrum induced by the
Doppler effect. However, because of the sensitivity of Rydberg
atoms, the noise is superimposed on the message, meaning that
the message cannot be recovered efficiently. Additionally, it is
difficult to generalize and scale the band-pass filters to enable
demultiplexing of multifrequency signals with more carriers!©.

To solve these problems, we use a deep learning model for its
accurate signal prediction capability and its outstanding ability to
recognize complex information from noisy data without use of
complex circuits. The deep learning model updates the weights
via backpropagation and then extracts features from massive data
without human intervention or prior knowledge of physics and
the experimental system. Because of these advantages, physicists
have constructed complex neural networks to complete numerous
tasks, including far-field subwavelength acoustic imaging!$, value
estimation of a stochastic magnetic field!?, vortex light
recognition?%21, demultiplexing of an orbital angular momentum
beam?223 and automatic control of experiments24-2,

Here, we demonstrate a deep learning enhanced Rydberg
receiver for frequency-division multiplexed digital communica-
tion. In our experiment, the Rydberg atoms act as a sensitive
antenna and a mixer to receive multifrequency MW signals and
extract information®!112, The modulated signal frequency is
reduced from several gigahertz to several kilohertz via the inter-
action between the Rydberg atoms and the MWs, thus allowing
the information to be extracted using simple apparatus. These
interference signals are then fed into a well-trained deep learning
model to retrieve the messages. The deep learning model extracts
the multifrequency MW signal phases, even without knowing
anything about the Lindblad master equation, which describes the
interactions between atoms and light beams in an open system
theoretically. The solution of the master equation is often com-
plex because the higher-order terms and the noises from the
environment and from among the atoms are taken into con-
sideration. However, the deep learning model is robust to the
noise because of its generalization ability, which takes advantage
of the sensitivity of the Rydberg atoms while also reducing the
impact of the noise that results from this sensitivity. Our deep

learning model is scalable, allowing it to recognize the informa-
tion carried by more than 20 MW bins. Additionally, when the
training is complete, the deep learning model extracts the phases
more rapidly than via direct solution of the master equation.

Results

Setup. We adapt a two-photon Rydberg-EIT scheme to excite
atoms from a ground state to a Rydberg state. A probe field drives
the atomic transition 58,5, F = 2) — |5P1/2,F’ =3) and a
coupling light couples the transition |5P;/,, F' = 3) — |51D; )
in rubidium 85, as shown in Fig. 1a. Multifrequency MW fields
drive a radio-frequency (RF) transition between the two different
Rydberg states |51D;,) and |50F;),,). The energy difference
between these states is 17.62 GHz. The multifrequency MW fields
consist of multiple MW bins (more than three bins) with fre-
quency differences of several kilohertz from the resonance fre-
quency. The amplitudes, frequencies, and phases of the multiple
MW bins can be adjusted individually (further details are pro-
vided in the “Methods” section). The detunings of the probe,
coupling and MW fields are A, A. and A, respectively. The Rabi
frequencies of the probe, coupling and MW fields are Q,, Q. and
Q,, respectively. The experimental setup is depicted in Fig. 1b. We
use MW fields to drive the Rydberg states constantly, producing
modulated EIT spectra, ie., the probe transmission spectra, as
shown in the inset of Fig. 1b. The phases of the MW fields cor-
relate with the modulated EIT spectra and can be recovered from
these spectra with the aid of deep learning. Specifically, the probe
transmission spectra are fed into a well-trained deep learning
model that consists of a one-dimensional convolution layer (1D
CNN), a bi-directional long-short-term memory layer (Bi-LSTM)
and a dense layer to extract the phases of the MW fields.
Figure lc-e shows these components of the neural network
(further details are presented in the “Methods” section). Finally,
the bin phases are recovered and the data are read out.

Frequency-division multiplexed signal encoding and receiving.
In the experiments, we use a four-bin frequency-division multi-
plexing (FDM) MW signal for demonstration, where one of the
four MW bins is used as the reference bin. The relative phase
differences between the reference bin and the other bins are
modulated by the message signal. Specifically, for the four-bin
MW signal,

E = A cos[(wy + w))t + ¢,]+ A, cos[(wy + w,)t + ¢,]
+ A; cos[(wy + w3)t + @;] + A, cos[(wy + wy)t + ¢,],

where w, is the resonant frequency, w;,; are the relative fre-
quencies, the carrier frequencies are 27(wo + w;) = 17.62 GHz —
3kHz, 2n(wo+ w,) = 17.62GHz—1kHz, 2m(wo+ ws)=
17.62 GHz + 1kHz and 2n(w, + wy) = 17.62 GHz + 3 kHz, the
frequency difference between two frequency-adjacent bins is
Af=2kHz and the message signal is ¢; , 3 = 0 or 7, standing for 3
bits (0 or 1), and the reference phase is ¢, =0 (which remains
unchanged). The phase list (¢, ¢,, ¢;, ¢,) is a bit string for time
to. By varying the phase of ¢;,; with time, we then obtain the
FDM signal for binary phase-shift keying (2PSK). Additionally,
the amplitudes of the four bins are 0.1A ;= A;,; to solve the
problem that results from the nonlinearity of the atom, where the
probe transmission spectra of two different bit strings, e.g.
(0,0,7,0) and (0,7, 0,0), are the same (further details are pre-
sented in the “Methods” section). By increasing the frequency
difference Af, we can obtain higher information transmission
rates. For four bins with Af= 2 kHz, the information transmission
rate is np x Af= (4 — 1) x 2 x 103 bps = 6 kbps, where n, is the
number of bits. In the experiments, disturbances originate from
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Fig. 1 lllustration of the setup. a Overview of experimental energy diagram.
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Probe and coupling laser beams excite the atoms at ground state 5S,,2) to the

Rydberg state 151D3)5). Multifrequency microwave (MW) electric fields couple the Rydberg states I51D5,) and [50F5 ). b Schematic of Rydberg atom-
based antenna and mixer interacting with multifrequency signals. A 795 nm laser beam is split into two beams, which then propagate in parallel through a
heated Rb cell (length: 10 cm, temperature: 44.6 °C, atomic density: 9.0 x 1010 cm~3)46, One is the probe beam, which counterpropagates with the
coupling laser beam exciting atoms to Rydberg states to reduce Doppler broadening. The other is the reference beam, which does not counterpropagate
with the coupling laser beam. The beams are detected using a differencing photodetector (DD) to obtain the probe transmission spectrum (inset).

Multifrequency MW fields transmitted by a horn are applied to the atoms,

with a radiated direction that is perpendicular to the laser beam propagation

direction. The multifrequency MW fields are modulated using a phase signal such that the phase differences between the reference bin and the other bins
carry the messages. The probe transmission spectrum is fed into a well-trained neural network to retrieve the variations of the phases with time.

c-e Schematics of the neural network. The network consists of € a one-dimensional convolution layer, d a bi-directional long-short-term memory layer and
e a dense layer; for further details about these layers, see the “Methods” section.

the environment and atomic collisions. Because of the sensitivity
of Rydberg atoms to MW fields, the resulting noise submerges our
signal. To use the sensitivity of the Rydberg atoms and simulta-
neously minimize the effects of noise, the deep learning model is
used to extract the relative phases (¢,, ¢,, ¢3).

Deep learning. To improve the robustness and speed of our
receiver, we use a deep learning model to decode the probe
transmission signal. The complete encoding and decoding process
is illustrated in Fig. 2a. The Rydberg antenna receives the FDM-
2PSK signal and down-converts this signal into the probe
transmission spectrum. The information is then retrieved from
the spectrum using the deep learning model. The precondition is
that the different bit strings correspond to distinct probe spectra;
this is resolved by setting 0.1A,=A;,3, as discussed earlier.
Then, we combine the 1D CNN layer, the Bi-LSTM layer and the
dense layer to form the deep learning model (see the “Methods”
section for further details)3031. One of the reasons for using the
1D CNN layer and the Bi-LSTM layer is that the data sequences
are long, which means that prediction of the phases ¢ =
(91, 935 93, 0) from the spectrum is a regression task and
requires a long-term memory for our model. Another reason is to
combine the convolution layer’s speed with the sequential sen-
sitivity of the Bi-LSTM layer32. The input sequence is first
processed by the 1D CNN to extract the features, meaning that a
long sequence is converted into a shorter sequence with higher-
order features. This process is visualized to show how the deep
learning model treats the transmission spectrum; more details are
presented in the Supplementary Materials. The shorter sequence
is then fed into the Bi-LSTM layer and resized by the dense
layer to match the label size (see the “Methods” section for
further details). Specifically, the probe spectrum T =

{T,, T,, Ty, -+, Tiy -+, Ty, } and the corresponding phases

¢ = (¢, ¢, 95, 9, =0) are collected to form the data set,
where T;., is the ith data point of a probe spectrum and the fourth
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bit ¢4 = 0 is the reference bit. Both the spectra and the phases are
1D vectors with dimensions of N+ 1 and 4, respectively. These
independent, identically distributed data {{T}, {¢}} are fed into
our model as a data set. By shuffling this data set and splitting it
into three sets, i.e., a training set, a validation set and a test set, we
train our model on the training set (feeding both the waveforms
and labels {{T}, {¢}}), validate, and test our model on the vali-
dation and test sets, respectively (by feeding waveforms without
labels and comparing the predictions with ground truth labels).
The validation set is used to determine whether there is either
overfitting or underfitting during training. Finally, the perfor-
mance (i.e., accuracy) of the model is estimated by predicting the
test set.

The performance of our deep learning model is affected by the
training epochs and the training and validation set sizes. The
training curves on different training sets and validation sets are
shown in Fig. 2b, c. Initially, our model performs well on the
training set only, implying overfitting. The curves then converge
(dashed line) and our model performs well on both the training
set and the validation set. The sudden jump in the loss curve in
Fig. 2c is caused by the change in the learning rate (further details
are presented in the “Methods” section). Use of more training and
validation data causes the curves to converge more quickly. The
deep learning model performs well after these few-sample
training. In Fig. 2d, we show a confusion matrix for prediction
of a uniformly distributed test set, which demonstrates accuracy
of 99.38%.

The “noise” shown in Fig. 2a refers to two kinds of noises. One
comes from atoms and the external environment (systematic
noise). The other comes from the noise added on purpose
(additional noise). The systematic noise cannot be adjusted
quantitatively and is discussed with its noise spectrum in
the Supplementary Materials. Because the noise on the data set
is independent and is distributed identically (ii.d.), i.e., the entire
data set is shuffled before being split into the training and test
sets, the systematic noise pattern is almost the same in both the
training set and the test set. The deep learning model has already
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Fig. 2 Flow chat of recognizing the multifrequency MWs and results. a Process of encoding and decoding frequency-division multiplexed binary phase-
shift keying (FDM-2PSK) signal with Rydberg atoms and the deep learning model. b, ¢ Loss curve evolution with epochs for the training set (blue) and the
validation set (orange) during training with different training data and validation data. The training data sizes are b 393 and ¢ 1194. The validation data sizes
are b 131 and ¢ 398; more details about the data set split are presented in the “Methods” section. The loss curves for training and validation converge at
b 140 and ¢ 30 epochs, where an epoch is a time unit during which the model iterates once over the complete data set; see “Methods” section. d Confusion
matrix for a test set (the number of the testing set is 160 and the labels are uniformly distributed) after training in case (¢). The accuracy reaches 99.38%
after a 70-epoch training period. e Deep learning model accuracy on the noisy test set after training on the noisy training set. The x- and y-axes represent
the standard deviations of the additional white noise added to the test set and the training set, respectively. The colorbar represents the accuracy of the
model on the noisy test set. The results were obtained by averaging five sets of predictions. The diagonal (red line) indicates the accuracy of the model on a
test set in which the noise distribution is the same as that of the training set; more details about the noise are shown in Supplementary Materials.

learned the systematic noise pattern during the training process,
which is one of the major advantages of use of deep learning
against systematic noise. However, there is a case where the noise
is not iid. (ie., the case where a specific noise occurs during
testing only). This problem can be solved by online learning and
addition of prior knowledge as new features into the data, e.g.,
data for the temperature, the weather, and other factors33, Here
for simplicity, we talk about the i.i.d. case only and add the white
noise with a mean y and a standard deviation 0. We ignore the 1/f
noise in this case because it decays rapidly in the low frequency
range and the signal with which it would interfere is located
within the 2-200 kHz range. The additional noise is added both
on the training set and the test set of the deep learning model in
Fig. 2e, which demonstrates the performance of the deep learning
model when used on a data set with biased or unbalanced noise.
The results below the red line show the performance of the model
after training on a weaker-noise training set when predicting
based on a stronger-noise test set, i.e., generalization for a
stronger noise case. These results indicate that the deep learning
model has the generalization ability required to adapt to stronger
noise. In the area above the red line, there is more noise in the
training set than in the test set. Theoretically, a small amount of
additional noise in the training set will increase the robustness of
the deep learning model. However, when the noise increases, it
affects the accuracy, which decays rapidly. Next, the well-trained
model is used to reconstruct the QR code. In Fig. 3a-c, the results
and the corresponding confusion matrices with their epochs are
shown. First, the information is encoded into a QR code. After
the code is transmitted, received and decoded using the Rydberg
atoms and the deep learning model, the information is then
reconstructed successfully using the 35-epoch training model in
Fig. 3¢, but is not reconstructed in parts (a) and (b). The accuracy
is defined by the number of correctly predicted bit strings divided

by the total number of bit strings (147 bit strings). After 35
epochs, the accuracy reaches 99.32% and the message is
reconstructed successfully from the QR code received.

Comparison between deep learning method and the master
equation. In our case, the master equation that we employed is
the commonly used one without considering the noise spectrum.
The accuracies of the deep learning model and the master
equation fitting on noisy data are different. Figure 4 shows the
accuracies obtained by the two methods. The deep learning model
is trained on a training set without additional noise, and tested on
a test set with additional white noise whose standard deviation is
o (the transmission spectra with noise are given in Supplementary
Materials). Here for simplicity, the data set is composed of the
transmission of four MW bins only (one of them is reference bin)
and the frequency difference between the adjoin bins is
Af = 2kHz. On the other hand, the result of the master equation is
given based on the same test set as that of the deep learning
model. The deep learning method outperforms the fitting of the
master equation on the noisy data set.

Apart from the robutness to the noise, when the transmission
rate is increased by increasing the number of MW bins or the
frequency difference Af, the deep learning model performs well,
while it is difficult to retrieve the messages with high accuracy
using the master equation. Specifically, to increase the bandwidth
efficiency and the transmission rate, the number of MW bins
used to carry the messages must be increased, but the information
is still recognizable because of the scalability of the deep learning
model. For 20 MW bins, the number of bits is (20 — 1) with one
reference bit, giving a (20 — 1)x 2kbps = 38 kbps transmission
rate. The number of combinations of these bits is 21°, which
increases exponentially as the number of MW bins increases.
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Fig. 4 Prediction accuracy of deep learning model and the master
equation on the noisy test set. The noise is white noise with mean =0
and a standard deviation . The noise is added quantitatively using different
o values. Before and after addition of the noise, the data are scaled between
0 and 1 using their maximum and minimum. The deep learning model is
trained in a training set without additional noise. In addition, we do not
involve noise spectrum when solving the master equation. Each point is
obtained after averaging of five predictions on the noisy data.

Here, for demonstration purposes, only the first 3 bits of the total
of 19 bits carry the messages and the other bits, including the
reference, are set to be 0. To show how well our model performs,
we train, validate and test the model on this new data set without
varying the other parameters, with the exception of the training
epochs of our model. The loss curves for training and validation
are shown in Fig. 5a. A confusion matrix for epoch 78 is shown in
Fig. 5b. The model performs well on this new test set, which was
sampled uniformly from eight categories with an accuracy of
100%. Another method that can be used to increase the

information transmission rate involves increasing the frequency
difference. In our case, the frequency difference is increased
from Af=2kHz to Af=200kHz. The transmission rate
increases correspondingly, from (4 —1)x2kbps=6kbps to
(4 — 1) x 200 kbps = 0.6 Mbps. To detect the high-speed signal,
the DD bandwidth is increased, which inevitably leads to
increased noise. After the model is trained on this new data set,
the training and validation loss curves are as shown in Fig. 5¢. A
confusion matrix for epoch 83 is shown in Fig. 5d. Increasing the
number of training epochs allows the model to perform well on
this new data set, with an accuracy of 98.83% on a uniformly
sampled test set.

To compare the performances of the deep learning model and
the master equation, we fitted the probe spectra for 20 bins with a
frequency difference Af=2kHz and four bins with a frequency
difference Af=200kHz by solving the master equation without
considering the higher-order terms and the effects of noise. In
each case, 160 probe spectra were fitted that were sampled
uniformly from every category. The prediction results are shown
in Fig. 5(e) and (f). The prediction accuracy of the master
equation is lower than that of the deep learning model. In our
case, the impact of increasing the number of bins is greater than
increasing the DD bandwidth for high-speed signals on the fitting
accuracy. The prediction accuracy for a 20-bin carrier with
frequency difference Af=2kHz is 20.63%, which is like to the
accuracy of guessing, i.e., 1/8. This implies that there is a
disadvantage that comes from the fitting method itself, i.e., it can
easily become trapped by local minima. Some type of prior
knowledge is required to overcome this disadvantage, e.g.,
provision of the initial values of the phases before fitting. In
contrast, the deep learning model is data driven and does not
require any prior knowledge. The local minima problem of deep
learning can be overcome using some well-known techniques,
including learning rate scheduling and design of a more effective
optimizer3?, Additionally, the accuracy difference for the 200-
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epoch = 78 on the test data set. Only the first 3 bits of the 20 bits are selected to carry the messages and all other bits are 0. The accuracy is 100% for 123
testing spectra. ¢ Loss vs. epoch curves for training and validation of the four MW bins (one bin is the reference) with frequency difference Af =200 kHz.
d Confusion matrix for epoch = 83 on the test data set. The accuracy is 98.83% for 171 testing spectra. e Predicted solution of the master equation without
consideration of higher-order terms and noise on a 20-bin carrier with frequency difference Af =2 kHz. The number of spectra is 160, where the spectra
were sampled uniformly from eight categories. The accuracy is 20.63%. f Predicted solution of the master equation without consideration of higher-order
terms and noise on four-bin carrier with frequency difference Af=200 kHz. The number of spectra is 160, which were sampled uniformly from eight
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kHz-difference MW bins between the deep learning model and
the master equation means that the deep learning model is more
robust to noise. Furthermore, the prediction time for the master
equation is 25 s per spectrum, while the time for the deep learning
model is 1.6 ms per spectrum. The master equation is solved by
“FindFit” function in Mathematica 11.1 with both “Accuracy-
Goal” and “PrecisionGoal” default, while the deep learning code
is written in Python 3.7.6. These codes are run on the same
computer with NVIDIA GTX 1650 and Intel®Core™ i7-9750H.

Another method to decode the signal is available that uses an
in-phase and quadrature (I-Q) demodulator or a lock-in
amplifier”12. However, the carrier frequency must be given when
decoding the signal in this case. Additionally, for multiple MW
bins, numerous bandpass filters are required. The deep learning
method is thus much more convenient.

Discussion

We report a work on Rydberg receiver enhanced via deep
learning to detect multifrequency MW fields. The results show
that the deep learning enhanced Rydberg mixer receives and
decodes multifrequency MW fields efficiently; these fields are
often difficult to decode using theoretical methods. Using
the deep learning model, the Rydberg receiver is robust to noise
induced by the environment and atomic collisions and is immune
to the distortion that results from the limited bandwidths of
the Rydberg atoms (from dipole-dipole interactions and the EIT
pumping rate, as studied in ref. 7) for high-speed signals
(Af=200kHz). In addition to increasing the transmission speed
of the signals, further increments in the information transmission
rate are achieved by using more bins, which is feasible because of

the scalability of our model. Besides the transmission rate, this
deep learning enhanced Rydberg system promises for use in
studies of the channel capacity limitations. Because spectra that
are difficult for humans to recognize as a result of noise and
distortion are distinguishable when using the deep learning
model, Rydberg systems enhanced by deep learning could take
steps toward the realization of the capacity limit proposed in the
literature ref. 34. To obtain high performance (i.e. high signal-to-
noise ratio, information transmission rate, channel capacity and
accuracy), the training epochs and training set must be extended
and enlarged.

In summary, we have demonstrated the advantages of receiving
and decoding multifrequency signals using a deep learning
enhanced Rydberg receiver. In a multifrequency signal receiver,
rather than using multiple band-pass filters, lock-in amplifier’-12
and other complex circuits, signals can be decoded using the
extremely sensitive Rydberg atoms and the deep learning model
at high speed and with high accuracy without solving the Lind-
blad master equation. One of the advantages of use of the Ryd-
berg atom is that the accuracy of the Rydberg atom approaches
the photon shot noise limit3>. In principle, the accuracy of the
Rydberg atom is higher than that of the classical antenna.
According to recent work based on the atomic superheterodyne
method, ultrahigh sensitivity can be obtained!?. However, in this
proof-of-principle demonstration, there is considerable room for
the optimization required to reach that limit (e.g., stabilization of
the laser, narrowing the laser linewidth, and temperature stabi-
lization). The sensitivity of the Rydberg atoms is a double-edged
sword because it also involves noise. The deep learning model
restricts this side effect while taking full advantage of the Rydberg
atoms’ sensitivity to the signal. Using the automatic feature
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Fig. 6 Building blocks for LSTM layer and dense layer. The cells of a
long-short-term memory (LSTM) layer and dense layer are presented in
(a) and (b), respectively, where o represents the sigmoid layer and tanh
represents the tanh layer.

extraction processes of the neural networks, the spectra are
classified in a supervised manner. If the features (e.g. mean value,
variance, frequency spectrum) are extracted manually, the spectra
are then clustered by unsupervised learning methods such as
t-distributed stochastic neighbour embedding (t-SNE) or the
density-based spatial clustering of applications with noise
(DBSCAN) method3!, without training on the training set. Our
work will be useful in fields including high-precision signal
measurement and atomic sensors. Additionally, this decoding
ability can be generalized further to decode other signals that are
encoded by different encoding protocols, e.g., frequency division
multiplexing amplitude shift keying (FDM-ASK), frequency
division multiplexing quadrature amplitude modulation (FDM-
QAM), and IEEE 802.11ac WLAN standard signals for a 5 GHz
carrier. The frequency of carrier to be decoded covers from sev-
eral hertz to terahertz since for Rydberg atoms to receive MW
with different wavelengths, the only part of the system that needs
to be tuned is the frequency of the laser, while in classical
receivers, the wavelength of the received MW is limited by the
size of the antenna30-3%. In addition to communications, our
receiver can be used to detect multiple targets from multi-
frequency signals caused by the Doppler effect.

Methods
Generation and calibration of MW fields. The MW fields used in our experi-
ments were synthesized by the signal generator (1465F-V from Ceyear) and a
frequency horn. Each bin in the multifrequency MW field is tunable in terms of
frequency, amplitude and phase. The RF source operates in the range from DC to
40 GHz. The frequency horn is located close to the Rb cell. We used an antenna
and a spectrum analyser (4024F from Ceyear) to receive the MW fields and then
calibrated the amplitudes of the MW fields at the centre of the Rb cell.

The probe transmission spectrum in the time domain when A, =0, A. =0 and
A =0 reflects the interference among the multifrequency MW bins, which results
from the beat frequencies of the bins that occur through the interaction between
the atoms and light. The Rydberg atoms receive the MW bins by acting as an

antenna and a mixer®! 112, After reception by the atoms, the frequency spectrum of
the probe transmission shows that we can obtain the frequency differential signal
from the probe transmission spectrum. This represents an application of our atoms
to reduce the modulated signal frequency (from terahertz to kilohertz magnitude),
which allows the signal to be received and decoded using simple apparatus. In our
experiment, more than 20 frequency bins can be added to the atoms, for which the
dynamic range is greater than 30 dBm. The amplitudes, phases and frequencies of
these bins can be tuned individually. When the bandwidth is increased to detect an
increasing frequency difference Af signal, more noise is involved, but this noise is
suppressed by the deep learning model. In other words, the signal can be
recognized using the deep learning model when the information transmission rate
is increased by raising the frequency difference Af. These bins are used to send
FDM-PSK signals in the “FDM signal encoding and receiving ” section of the
main text.

Master equation. The Lindblad master equation is given as follows:

dp/dt = —i[H.p; /h + L/h, where p is the density matrix of the atomic ensemble
and H=)_H| [p( )] is the atom-light interaction Hamiltonian when summed over
all the single-atom Hamiltonians using the rotating wave approximation. This
Hamiltonian has the following matrix form:

Q
0o -3 0 0
Q, Q
2 A — 0
H=h ’ ?) ’ Q) @
0 -5 A+A4 -
[2N0)]
0 0 - A+ A A

where for the MW signal E = A, cos[(w, + w; )t + ¢,] + A, cos[(w, + w,) t+
@]+ A; cos[ (wg + w3)t + @3]+ Ay cos[(wy + @)t + @,], we have the Rabi fre-
quency Q(t) = \/E} + E3, where E, = A, sin[w,f + ¢,] + A, sin[w,t + ¢,] +
Az sin[wst 4 ¢;] + A, sin[w,t + ¢,] and E, = A, cos[w, t + ¢,] + A, cos[w,t+
@,] + Az cos[wst + ¢;] + A, cos[w,t + ¢,]. The Rabi frequency can be derived as
follows:

4
E= _;Aicos[(wﬂ + w,-)t + (p,-]

I:
4 . (2)
=\/E? + E3 cos| wyt + arctanM s
Yy Ajcos(wit + ;)

where the second term (which resonates with the energy levels of the Rydberg
atoms) induces the normal EIT spectrum and the first term modulates that spec-
trum. In the interaction between the atoms and the MW fields, the atoms act as a
mixer such that the output signal frequency (w;, w,, ws) is less than the input signal
frequency (wp + w;, W + w3, Wy + w3). The modulation signal’s nonlinearity is

reduced by setting the reference and increasing its amplitude as shown in Eq. (3),
which is a precondition for recognition of these phases via deep learning.

\/E? + E2

3 A
%A4\/1+ZZA—‘COS[(w4—wi)t+(%—(p,-)} 3)

i=1A,

3
~ A+ EIA,. cos[(w;, — @)t + (¢, — 9;)],

where the condition for the approximations on the second line and the third line is
Ag> A,

The Lindblad superoperator L =3 L[p®)] is composed of single-atom
superoperators, where L[p()] represents the Lindbladian and has the following
form: %M] =-1%,.(Cl.Cup+pC},C,) +3,,C,pCl, where C; = /T, |g)(el,
C, = JT,le){r| and C5 = /T;|r)(s| are collapse operators that stand for the decays
from state |e) to state | g>, from state |r) to state |e) and from state |s) to state |r)
with rates I, I, and T, respectively. Because we are only concerned with the steady
state here, i.e. t — oo, the Lindblad master equation can be solved using dp/dt = 0.
The complex susceptibility of the EIT medium has the form y(v) = (|;4g6|2/60h)pgg,
where p,, is the element of density matrix solved using the master equation. The

spectrum of the EIT medium can be obtained from the susceptibility using
T ~ e~mld,

Deep learning layers. Our deep learning model consists of a 1D CNN layer, a Bi-
LSTM layer and a dense layer. The mathematical sketches for these layers are given
as follows.

The 1D CNN layer is illustrated in Fig. 1c. The input signal convolutes the
kernel in the following form:

N-1
feg= mgofmg(n—m)' 4

where f represents the input data, g is the convolution kernel, m is the input data
index and 7 is the kernel index. The 1D CNN extracts the higher-order features
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from the input data to reduce the lengths of the sequences fed into the Bi-LSTM
layer. Before flowing into the Bi-LSTM layer, the data pass through the batch
normalization layer, the ReLU activation layer and the max-pooling layer, in that
sequence. For a mini-batch B = {x;._,, }, the output from the batch normalization
layer is y; = BN, g(x;) and the learning parameters are y and 8%0. The update rules
for the batch normalization layer are:

1 m
il . 5
Up < mg:lxw ( )
Uéeiﬁ(x-f‘u)z (6)
miz B
5 Xi —bp

& =5
NG @
Vi< Y+ B= BN'y‘ﬁ(xi)*, 8)

where Egs. (5) and (6) evaluate the mean and the variance of the mini-batch,
respectively; the data are normalized using the mean and the variance in Eq. (7)
and the results are then scaled and shifted in Eq. (8). The training is accelerated
using the batch normalization layer and the overfitting is also weakened by this
layer. The output then passes through the ReLU activation layer. The activation
function of this layer is fp.(x) = max(x,0). The vanishing gradient problem is
diminished by this activation function. Next, the inputs are downsampled in a
max-pooling layer3?.

The LSTM layer and an LSTM cell are shown schematically in Figs. 1d and 6a,
respectively. The equations for the LSTM are shown as Egs. (9)-(14)3241. At a time
t, the input x, and two internal states C,_;and h,_; are fed into the LSTM cell. The
first thing to be decided by the LSTM cell is whether or not to forget in Eq. (9),
which outputs a number between 0 and 1 that represents retaining or forgetting.
Next, an input gate (Eq. (10)) decides which values are to be updated from a vector
of new candidate values created using Eq. (11). The new value is then added to the
cell state and the old value is forgotten in Eq. (12). Finally, the cell decides what to
output using Eqgs. (13) and (14).

fo=o(Wy - [hn] +18y), ©)
iy =0(W;- [h_i.x] +b), (10)
C, = tanh(W¢ - [h,_;,x,] +bc), (€39)
C,=fxC_+ixC, (12)

o, =0(W,[h_y,x]+b,), (13)

h, = o,x tanh(C,), (14)

where o(x) = 1/(1 4+ e¥) is the sigmoid function. The sigmoid and tanh functions
are applied in an element-wise manner. The LSTM is followed by a time-reversed
LSTM to constitute a Bi-LSTM layer that improves the memory for long sequences.

The dense layer and a neuron are drawn in Figs. le and 6b, respectively, and the
corresponding equations are

a=w-x+b, (15)

y =g, (16)

where w is the vector of weights, b is the bias, x represents the input data, g(a) = 1/
(1+e?) is the sigmoid activation function used to limit the output values to
between 0 and 1, and y is the output. The dense layer resizes the shape of the data
obtained from the Bi-LSTM to match the size of the label.

The training consists of both forward and backward propagation. A batch of
probe spectra propagates through the 1D CNN layer, the Bi-LSTM layer, and dense
layer during the forward training process. The differentiable loss function is then
calculated. In our case, the differentiable loss function is the mean squared error
(MSE) between the predictions and the ground truth, which is used widely in the
regression task?2. The equation for the MSE is

1 »rm 2
n/; El (‘Pz:j 7f(Ti,j)) ) (17)

Lyep =
MSE m

where m is the number of data points in one spectrum, 7 is the mini-batch size, ¢;
is the ground truth and f(T;) is the model prediction. In backpropagation, the
trainable weights of each layer are updated based on the learning rate and the
derivative of the MSE loss function with respect to the weights to minimize the loss
Lysg, such that

OLyse
ow '

where 7 is the learning rate and W is the trainable weight for each layer. The

weights of each layer are then updated according to the RMSprop optimizer?2.

W W-—-pg (18)

( four frequency bins MW fields)

|

input; 4, 1 1
ConviD input (64, 1000, 1)
output: | (64, 541, 20)
4
input: | (64, 541, 20
BatchNormalization input: | ( )
output: | (64, 541, 20)
input: 64, 541, 20
Activation: ReLU [ "Pt_| (64, 541, 20)
output: | (64, 541, 20)
. input: 64, 541, 20
MaxPooling1D input. | ¢ )
output: | (64, 180, 20)
» Visualized
- . input: | (64, 180, 20
Bidirectional(LSTM) input:_| ( )
output: (64, 32)
4
input: | (64, 32
BatchNormalization input: | ( )
output: | (64, 32)
input: 64, 32
Dense input:_| (64, 32)
output: | (64, 4)
labels: 0100...

Fig. 7 Structure of our deep learning model and size of the data. The
RelLU activation function is f(x) = max(0, x). After the data output from the
max-pooling layer, the visualizations are performed; see Supplementary
Materials for more details.

The network is implemented using the Keras 2.3.1 framework on Python 3.6.11
(ref. 30). All weights are initialized with the Keras default. The hyper-parameters of
the deep learning model (including the convolution kernel length, the number of
hidden variables and the learning rate) are tuned using Optuna*3.

Deep learning pipeline. To obtain better fitting results, the data are scaled based on
their maximum and minimum values, ie, T’ = (T; — min(T))/(max(T) — min(T)).
The labels are encoded in dense vectors with four elements rather than in one-shot
encoding vectors to save space>2. Each of these elements is either 0 or 1, representing
the relative phase 0 or 7 of each bin, respectively.

A one-dimensional convolution layer (1D CNN), a bidirectional long-short-
term memory layer (Bi-LSTM) and a dense layer are used in our deep learning
model. The deep learning model structure is shown in Fig. 7. The data size for the
input layer is given in the form (batch size, length of probe spectrum, number of
features). The batch size is 64 in our case. Because the duration of the spectrum
ranges from t =0 to t=0.999 ms with a time difference of 7=1 ps, the spectrum
length is 1000. For a 1D input, the number of features is 1. Therefore, the data size
for the input layer is (64, 1000, 1).

During training of this model, fourfold cross-validation is used to save the
amount of training data.The data set is split as shown in Fig. 8. First, the data set is
split into two parts. The first is the test set (red), which remains untouched during
training. The second (purple) is used to train the model. In the cross-validation
process, the rest data set (purple) is copied four times and is divided equally into
four parts each. One of these parts is the validation data set (green) and the others
are used as training sets (blue). Four models are trained on the different training
sets and validation sets. Then the best model is chosen according to the validation
set and is tested on the test set. After splitting, the training set, the validation set,
and the test set all remain unchanged. In every epoch, each model iterates the
training set only once. There is no new set being taken; instead, the same training
set is iterated once each epoch.
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B Training and Validation set
M Test set

M Training set

[l Validation set

I

Fig. 8 Data partition during training, validating, and testing. First, the
data are split into two sets. The first is the test set. The remaining data set
is copied four times and is then split into four sets, each with different parts
that act as training sets and validation sets for the training of four deep
learning models.

The computational graph is cleared before each training sequence to prevent
leakage of the validation data. Gaussian noise (where the mean is 0 and the
standard deviation is 0.5) is added to the training data to increase the robustness of
the proposed model. In addition, the learning rate is adjusted during training to
jump out of the local minimum, which results in the jump in Fig. 2¢ in the main
text. The initial learning rate is 0.001. If the loss (mean-square error) of the
validation set does not decrease over 10 epochs, the learning rate is multiplied by
0.1. The RMSprop optimizer is used to update the weight of each layer during
training®2.

The bidirectional LSTM layer can be replaced with the well-known self-
attention layer to improve the memory of our proposed model further**. However,
this would require more training time and increased GPU memory. The current
model has been able to meet our requirements to date.

Data availability

The data are available in Github®® (https://github.com/ZongkaiLiu/Deep-learning-
enhanced-Rydberg-multifrequency-microwave-recognition). The deep learning results
are presented in the Jupyter notebook. And the master equation results are presented in
the Mathematica notebooks.

Code availability
The codes are provided in Github*® (https:/github.com/ZongkaiLiu/Deep-learning-
enhanced-Rydberg-multifrequency-microwave-recognition).
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