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Autism spectrum disorders (ASDs) are a heterogeneous group of neuro-developmental disorders. While sig-
nificant progress has been made in the identification of genes and copy number variants associated with syn-
dromic autism, little is known to date about the etiology of idiopathic non-syndromic autism. Sanger
sequencing of 21 known autism susceptibility genes in 339 individuals with high-functioning, idiopathic
ASD revealed de novo mutations in at least one of these genes in 6 of 339 probands (1.8%). Additionally, mul-
tiple events of oligogenic heterozygosity were seen, affecting 23 of 339 probands (6.8%). Screening of a
control population for novel coding variants in CACNA1C, CDKL5, HOXA1, SHANK3, TSC1, TSC2 and
UBE3A by the same sequencing technology revealed that controls were carriers of oligogenic heterozygous
events at significantly (P < 0.01) lower rate, suggesting oligogenic heterozygosity as a new potential
mechanism in the pathogenesis of ASDs.

INTRODUCTION

Autism spectrum disorders (ASDs) are a heterogeneous group of
neuro-developmental disorders that are characterized by
impaired social interaction and communication, and by restricted
and repetitive behaviors. The autistic disorder (AD), Asperger
syndrome (AS) and pervasive developmental disorder not other-
wise specified (PDD-NOS) are recognized as three subgroups of
the ASDs by the current version of the Diagnostic and Statistical
Manual of Mental Disorders (DSM-IV). The estimated preva-
lence of the ASD is 1/91 among 3–17 years old and 1/110
among 8 years old children (1,2).

ASDs are highly heritable, as evidenced by twin and family
studies suggesting the heritability of autism to be .90%.
Autism affects predominantly males, with an overall
male-to-female ratio of 4:1. The male predominance is much

more pronounced in high-functioning autism and AS, and
may be as high as 14:1 within these subgroups (3). Recent
advances in the field of autism genetics have led to the identi-
fication of several autism susceptibility genes and the appreci-
ation of both de novo and inherited copy number variants
(CNVs) in the etiology of ASDs (4,5).

In contrast to studies of CNV, genetic linkage and genome-
wide association studies have been slower to identify suscep-
tibility genes contributing to the heritability of autism, and
many association analyses have had inadequate power. It is
recognized that each genetic susceptibility locus identified to
date accounts for only a small fraction of ASD cases (typically
,1%). While significant progress has been made in the identi-
fication of genes and CNVs associated with syndromic autism
(i.e. ASD as part of an underlying genetic syndrome as well as
ASD associated with congenital malformations and facial
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Table 1. Novel, coding non-synonymous variants detected by Sanger sequencing of 21 autism susceptibility genes in 339 probands with the ASD

Gene name Chr Coordinate Allele Mutation type RefSeqID Ref AA Var AA Number affected
patients

Number affected
controls

ARX chrX 24941366 T/G Missense NM_139058 Thr Pro 1 0
CACNA1C chr12 2437094 C/T Missense NM_000719 Arg Cys 1 0
CACNA1C chr12 2465684 T/C Missense NM_000719 Ile Thr 1 2
CACNA1C chr12 2484330 G/T Missense NM_000719 Gly Val 0 1
CACNA1C chr12 2529447 G/A Missense NM_000719 Gly Arg 1 0
CACNA1C chr12 2564900 G/A Missense NM_000719 Gly Arg 1 0
CACNA1C chr12 2564912 C/T Missense NM_000719 Pro Ser 4 4
CACNA1C chr12 2576670 T/G Missense NM_000719 Phe Cys 1 0
CACNA1C chr12 2590088 G/A Missense NM_000719 Val Ile 0 1
CACNA1C chr12 2656634 G/A Missense NM_000719 Ala Thr 1 0
CACNA1C chr12 2658877 G/A Missense NM_000719 Gly Ser 2 0
CACNA1C chr12 2658928 G/A Missense NM_000719 Ala Thr 1 0
CACNA1C chr12 2659126 G/A Missense NM_000719 Gly Ser 0 1
CACNA1C chr12 2659162 G/A Missense NM_000719 Gly Arg 2 0
CACNA1C chr12 2662090 T/C Missense NM_000719 Leu Pro 1 0
CACNA1C chr12 2665254 C/T Missense NM_000719 Arg Cys 6 0
CACNA1C chr12 2667958 G/C Missense NM_000719 Ala Pro 0 1
CACNA1C chr12 2668046 G/A Missense NM_000719 Ser Asn 0 1
CACNA1C chr12 2668129 G/A Missense NM_000719 Val Ile 1 0
CACNA1C chr12 2668205 C/G Missense NM_000719 Ala Gly 0 1
CDKL5 chrX 18526627 A/G Missense NM_001037343 His Arg 1 0
CDKL5 chrX 18581529 G/A Missense NM_001037343 Val Ile 0 1
EML1 chr14 99445547 A/G Missense NM_004434 Asn Ser 1 0
EML1 chr14 99450317 G/A Missense NM_004434 Asp Asn 1 0
FOXP2 chr7 114081280 C/A Missense NM_148899 Pro Thr 1 0
FOXP2 chr7 114091661 A/G Missense NM_148899 Asn Ser 1 0
FOXP2 chr7 114117153 A/C Missense NM_148899 His Pro 2 0
FOXP2 chr7 114117169 A/T Missense NM_148899 Glu Asp 1 0
GRID2 chr4 94563072 C/T Missense NM_001510 Pro Leu 1 0
GRID2 chr4 94766467 G/A Missense NM_001510 Val Ile 2 0
HOXA1 chr7 27101672 C/A Missense NM_005522 Ala Ser 0 1
HOXA1 chr7 27101822 T/C Missense NM_153620 Thr Ala 0 1
HOXA1 chr7 27101874 G/C Missense NM_153620 Ile Met 2 0
MAPK3 chr16 30035564 G/A Missense NM_002746 Pro Ser 1 0
MAPK3 chr16 30040668 T/G Missense NM_002746 Thr Pro 1 0
MECP2 chrX 152949868 G/C Missense NM_004992 Ala Gly 1 0
PTEN chr10 89680805 A/G Missense NM_000314 Thr Ala 1 0
PTEN chr10 89701980 C/G Missense NM_000314 Phe Leu 1 0
SHANK3 chr22 49490328 G/A Missense NM_001080420 Arg His 0 1
SHANK3 chr22 49506750 G/A Missense NM_001080420 Gly Asp 1 0
SHANK3 chr22 49506884 A/T Missense NM_001080420 Ser Cys 2 0
SHANK3 chr22 49507020 G/A Missense NM_001080420 Arg Lys 1 0
SHANK3 chr22 49507097 G/A Missense NM_001080420 Ala Thr 1 0
SHANK3 chr22 49507125 T/G Missense NM_001080420 Val Gly 0 1
SHANK3 chr22 49507260 C/T Missense NM_001080420 Thr Met 0 1
SHANK3 chr22 49507359 C/T Missense NM_001080420 Pro Lys 0 1
SHANK3 chr22 49507406 G/A Missense NM_001080420 Val Met 0 1
SHANK3 chr22 49516073 C/T Missense NM_001080420 Pro Ser 1 0
SHANK3 chr22 49516107 G/T Missense NM_001080420 Ser Ile 0 1
SHANK3 chr22 49516125 C/T Missense NM_001080420 Ala Val 2 0
SHANK3 chr22 49516230 C/T Missense NM_001080420 Thr Ile 1 0
SHANK3 chr22 49516308 G/A Missense NM_001080420 Arg His 1 0
SHANK3 chr22 49516325 C/T Missense NM_001080420 Pro Ser 1 0
SHANK3 chr22 49516329 C/T Missense NM_001080420 Ser Lys 1 0
SHANK3 chr22 49516346 G/A Missense NM_001080420 Arg Thr 1 0
SHANK3 chr22 49516365 G/A Missense NM_001080420 Gly Asp 3 0
SHANK3 chr22 49516370 C/A Missense NM_001080420 Pro Thr 1 1
SHANK3 chr22 49516374 G/A Missense NM_001080420 Gly Asp 0 1
TSC1 chr9 134761739 T/G Missense NM_000368 Met Leu 1 0
TSC1 chr9 134761835 C/T Missense NM_000368 Gly Ser 1 2
TSC1 chr9 134767919 T/C Missense NM_000368 Asn Ser 2 0
TSC1 chr9 134768873 G/A Missense NM_000368 His Tyr 2 3
TSC1 chr9 134771026 T/C Missense NM_000368 Lys Arg 7 1
TSC1 chr9 134771108 C/T Missense NM_000368 Gly Ser 0 1
TSC1 chr9 134772035 G/A Missense NM_000368 Pro Ser 1 0
TSC1 chr9 134775834 G/A Missense NM_000368 Ser Leu 2 0

Continued
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dysmorphism), little is known to date about the etiology of
idiopathic autism (ASD of unknown etiology, with no
evident organic cause or underlying dysmorphisms). For the
latter, a genetic model in which several genes interact with
one another to produce the autism phenotype has been
suggested (6). Using family history studies and twin studies
of autism, Pickles et al. (7) rejected single-locus and hetero-
geneity models for the inheritance of autism in favor of a
multi-locus model involving anything from 2 to 10 loci,
with three interacting loci being most plausible. However, to
date, there are no data to support or refute this model. In
this study, we set out to evaluate whether sequence variations
in genes known to cause syndromic autism contribute to the
etiology of high-functioning, non-syndromic autism.

RESULTS

We sequenced a total of 21 genes (ARX, ATRX, CACNA1C,
CDKL5, EML1, FMR1, FOXP2, GRID2, HOXA1, KCTD13,
MAPK3, MECP2, NLGN3, NLGN4X, PTEN, RS1, SHANK3,
SLC25A12, TSC1, TSC2 and UBE3A) known to cause syn-
dromic autism and other cognitive disorders (8–24), in
339 probands with high-functioning ASDs from the
Simons Simplex Collection. Sequencing was performed by
the traditional Sanger method, and coding non-synonymous
variants and coding insertions or deletions (indels) were con-
firmed by a second, independent sequencing method (454
pyrosequencing).

A total of 818 coding non-synonymous events were
detected at 92 sites, and 51 coding indels (11 sites) were ident-
ified. Excluding all variants annotated in dbSNP131 and the
1000 Genomes Project (data release pilot 2) resulted in a
data set of 105 novel coding non-synonymous variants (66
sites) and 47 coding indels (8 sites) (Tables 1 and 2). Of
note, no nonsense mutations were detected in any of the 21
genes among the 339 probands tested, and only one frame-
shifting indel (HOXA1) that was inherited from a non-affected
parent was identified.

We were able to follow up on 115 variants of interest
(coding non-synonymous and coding indels), for which suffi-
cient DNA from both parents was available. The analysis indi-
cated that whereas the vast majority of events (108/115) were
inherited from an unaffected parent, we did detect seven novel
coding non-synonymous variants (in six patients) that were de
novo events (Table 3). These de novo variants included three
different small indels and three different missense mutations.
All but one (a 3 bp deletion in HOXA1, present in two pro-
bands) were seen in single patients. One patient carried two
de novo variants in the HOXA1 gene, the aforementioned
small deletion, and a missense mutation in a moderately con-
served amino acid (p.I61M). One patient was found to carry a
de novo 9 bp deletion in TSC2, which was out of frame, there-
fore deleting four amino acids and inserting an arginine in a
highly conserved domain of the protein. Of note, this particu-
lar patient did not have a history of tuberous sclerosis, or a
positive family history of tuberous sclerosis. The Simons
Simplex Collection database does not contain information

Table 1. Continued

Gene name Chr Coordinate Allele Mutation type RefSeqID Ref AA Var AA Number affected
patients

Number affected
controls

TSC1 chr9 134776272 G/T Missense NM_000368 Thr Asn 3 1
TSC1 chr9 134776684 G/A Missense NM_000368 Arg Trp 1 0
TSC1 chr9 134776689 G/A Missense NM_000368 Ser Leu 0 1
TSC1 chr9 134790812 A/C Missense NM_000368 Leu Val 0 1
TSC2 chr16 2038634 G/A Missense NM_021056 Ser Asn 0 1
TSC2 chr16 2040411 A/G Missense NM_021056 Met Val 1 7
TSC2 chr16 2040453 A/G Missense NM_021056 Ile Val 0 0
TSC2 chr16 2043393 A/T Missense NM_021056 Glu Val 0 1
TSC2 chr16 2043407 G/A Missense NM_021056 Ala Thr 0 1
TSC2 chr16 2052990 G/A Missense NM_021056 Ala Thr 2 1
TSC2 chr16 2054427 A/C Missense NM_021056 Lys Gln 1 0
TSC2 chr16 2055530 C/T Missense NM_021056 Arg Cys 1 0
TSC2 chr16 2060557 A/G Missense NM_021056 Ile Val 1 0
TSC2 chr16 2061577 T/G Missense NM_021056 Asp Glu 0 1
TSC2 chr16 2061871 G/A Missense NM_021056 Ala Thr 2 0
TSC2 chr16 2066142 C/G Missense NM_021056 Phe Leu 1 1
TSC2 chr16 2067712 G/C Missense NM_000548 Glu Gln 1 2
TSC2 chr16 2069567 C/T Missense NM_021056 Pro Leu 1 0
TSC2 chr16 2070191 C/T Missense NM_021056 Ala Val 1 0
TSC2 chr16 2074318 C/T Missense NM_021056 Ser Leu 0 1
TSC2 chr16 2074330 G/A Missense NM_021056 Arg Gln 1 0
TSC2 chr16 2074497 G/A Missense NM_021056 Gly Arg 1 0
TSC2 chr16 2078075 C/A Missense NM_021056 Ser Arg 1 0
UBE3A chr15 23166916 T/A Missense NM_000462 Ser Cys 0 6
UBE3A chr15 23167822 C/T Missense NM_000462 Ala Thr 10 13
UBE3A chr15 23167903 T/C Missense NM_000462 Thr Ala 1 0
UBE3A chr15 23171810 T/G Missense NM_000462 Lys Gln 0 9

Coordinates based on genome build hg18. Chr, chromosome; AA, amino acid.
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about brain imaging studies; however, it is documented that
this patient has a history of seizures. Another patient carried
a de novo missense mutation in PTEN, altering a moderately
conserved threonine to an alanine (p.T78A). The patient has
no known history or documented features of PTEN harmatoma
tumor syndrome and his head circumference was at the 25th
percentile. Lastly, two patients carried de novo mutations in
the FOXP2 gene. One had a missense variant of an amino
acid that is conserved throughout species (p.H603P) and
another patient had a 3 bp insertion, adding a glutamine in
yet another highly conserved domain of the protein (Fig. 1).
For all de novo mutations, unaffected siblings were tested, in
order to rule out the remote possibility of germline mosaicism.
None of the respective siblings carried the mutation identified
in the probands.

Aside from de novo mutations, we found an interesting
pattern of inheritance to the inherited events. Notably, 23/
339 probands (6.8%) were found to carry two or more
novel coding non-synonymous variants or coding indels in
the 21 genes analyzed, representing cases of oligogenic het-
erozygosity (Table 4). Follow up on these oligogenic var-
iants in the respective unaffected parents and siblings
revealed that only four of these combinations were present
in one of the parents, while 15 represented oligogenic com-
binations unique to the affected proband. Two additional
combinations could fall into the ‘unique’ category, as they
involve novel variants in the maternal allele of the UBE3A
gene. However, grandparental samples were not available

to further test the inheritance of the UBE3A allele. For
two oliogenic events, the inheritance pattern could not be
established, given failure of amplification in at least one of
the two parents. Studying the unaffected siblings of 23 pro-
bands with oligogenic events, only 2 siblings were carriers
of the same oligogenic combination, while 15 did not
carry the respective combination. Amplification failed in
two siblings and four probands did not have a sibling
enrolled in the study.

Eighteen of the 23 oligogenic events clustered among
7 genes (CACNA1C, CDKL5, HOXA1, SHANK3, TSC1,
TSC2 and UBE3A). We performed Sanger sequencing of the
entire coding regions of these 7 genes in a total of 376 con-
trols, the same methodology that was used in the autistic pro-
bands. Control individuals had undergone psychiatric
screening by questionnaire. Individuals with known psychia-
tric disorder or phenotypes consistent with obsessive-
compulsive behaviors were excluded from our study. While
a total of 99 coding non-synonymous variants and coding
indels were identified among controls in the 7 genes analyzed,
only 6 control individuals were carriers of oligogenic hetero-
zygous events of these genes. The incidence of oligogenic het-
erozygous variants in two or more of the seven genes is
significantly different between probands (18/339, i.e. 5.31%)
and controls (6/376, i.e. 1.59%), as evidenced by Fisher’s
exact test (P , 0.01) (Table 5).

Retrospective analysis of the clinical phenotypes of pro-
bands affected with oligogenic compound heterozygosity

Table 2. Novel, coding Indels detected by Sanger sequencing of 21 autism susceptibility genes in 339 probands with the ASD

Gene name Chr Coordinate Mutation type Number of
basepairs

RefSeqID Reference
allele

Variant
allele

Number affected
patients

Number affected
controls

HOXA1 chr7 27101863 Deletion 3 NM_153620 TGG – 34 20
HOXA1 chr7 27101863 Insertion 3 NM_153620 – TGG 1 0
HOXA1 chr7 27101863 Insertion 6 NM_153620 – TGGTGG 1 0
HOXA1 chr7 27101863 Deletion 6 NM_153620 TGGTGG – 0 1
TSC1 chr9 134761828 Insertion 3 NM_000368 – CTG 0 1
UBE3A chr15 23167844 Deletion 6 NM_130839 CTTTTC – 1 0
HOXA1 chr7 27101857 Deletion 9 NM_153620 TGGTGGTGG – 1 0
TSC2 chr16 2072468 Deletion 9 NM_021056 GCTGCCAAG – 1 0
HOXA1 chr7 27100623 Frame shift deletion 1 NM_005522 C – 1 0
FOXP2 chr7 114058841 Insertion 3 NM_148899 – AGC 4 2
PTEN chr10 89680779 Exon boundary deletion 5 NM_000314 TTAGT – 1 0

Coordinates based on genome build hg18.

Table 3. De novo mutations detected by Sanger sequencing of 21 autism susceptibility genes in 339 probands with the ASD

Patient(s) Gene Chrom Coordinate Mutation type Reference allele Variant allele Reference amino acid Variant amino acid Conservation

11 598 FOXP2 7 114058841 Insertion – AGC – Gln 8/8 species
11 446 FOXP2 7 114117153 Missense A C His Pro 11/11 species
11 030 HOXA1 7 27101863 Deletion TGG – H – 6/9 species
11 452 HOXA1 7 27101863 Deletion TGG – H – 6/9 species
11 452 HOXA1 7 27101874 Missense G C Ile Met 5/7 species
11 532 PTEN 10 89680805 Missense A G Thr Ala 8/10 species
11 549 TSC2 16 2072468 Deletion GCTGCCAAG – Ser/Cys/Gln/Gly Arg 10/11 species

Based on genome build hg18. Conservation based on USCS Genome Browser.
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revealed that these individuals indeed represent a group of
high-functioning autism with a total average IQ of 93.05
(SD ¼ 22.75) (Table 6).

DISCUSSION

This study set out to identify the relationship of the genetics of
syndromic and non-syndromic autism. The fact that only 6/
339 probands (1.8%) carry a de novo novel, coding non-
synonymous variant or coding indel in the 21 genes examined
is consistent with their clinical presentation, as the patients
selected represented cases of idiopathic autism rather than syn-
dromic autism (which would be the expected phenotype
caused by loss-of-function mutations in most of the genes
tested). While this suggests that the individual mutations
causing syndromic versus non-syndromic autism may be sep-
arate from each other, the actual number of de novo missense
mutations in these genes is surprisingly high. It has been esti-
mated that on average, a newborn carries 0.86 de novo amino
acid altering mutations (25). Given this rate, our study of 21
genes in 339 probands should have revealed ,1 (0.27) de
novo missense mutations among these genes. The fact that
the actual number of de novo mutations is much higher
(22-fold increase for all tested genes) suggests that while
severe loss-of-function mutations of given genes may cause

syndromic autism, milder mutations of the same genes may
be associated with non-syndromic autism. However, the com-
parison of de novo mutation rates between our own cohort and
the per generation estimate cited above is limited by the fact
that they rely on different detection methods and statistical
analyses.

The two de novo mutations identified in TSC2 and PTEN are
clearly in genes known to cause syndromic autism. The other
four de novo variants were identified in HOXA1 and FOXP2,
genes that are yet to be confirmed to be involved in autism or
that show phenotypes on the autism spectrum. While a missense
variant of HOXA1 was reported in association with autism (15),
most subsequent studies had failed to replicate an association of
the gene to autistic phenotypes (26–31). As part of this study,
we identified a de novo missense mutation of HOXA1 in one
patient, and a small de novo 3 bp deletion in a polyhistidine
tract of the protein in another. The latter was seen at relatively
high frequency (36 of 339 probands and 10 of 376 controls) and
likely represents a common variant.

Mutations in the forkhead-domain gene FOXP2 provided
evidence that the gene is critical for human speech and
language (14), but the number of autistic patients identified
with FOXP2 mutations has been very limited (32–35). In
this study, we identified two patients with de novo mutations
in FOXP2. While one of the two adds an additional glutamine
to a polyglutamine tract of the protein, which may represent a

Figure 1. De novo mutations and evolutionary conservation. Six de novo mutations detected by Sanger sequencing of 21 autism susceptibility genes in 339
probands from the Simons Simplex Collection. Reference amino acids are displayed in black, variant amino acids in the patients in red color. Amino acids
from different species which differ from the human sequence are displayed in green. Single line, no amino acids in the aligned species. Double line, aligned
species has no alignable amino acids in the respective region. Information based on UCSC Genome Browser human genome build 18.
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benign variant, the other represents a missense mutation
(p.H603P) in a protein domain that is highly conserved
throughout species. The two patients identified to carry de
novo mutations of FOXP2 were both diagnosed with AD.
Testing of their communication skills by the communication
domain of the Vineland Adaptive Behavioral Scale II
(VABS-II) revealed low scores in both individuals (74 in indi-
vidual 11 598, and 77 in individual 11 446), suggesting mod-
erate to significant impairment of communicative skills in both
probands. These findings strengthen the role of FOXP2 and its
contributions to the ASDs.

Table 4. Parental and sibling data for all variants participating in oligogenic heterozygous events in 23 ASD probands

Patient Gene Chrom Coordinate Mutation type Patient status Mother status Father status Designated sib status

11 445 HOXA1 7 27101863 Indel (3 bp del) 1 1 0 0
11 445 TSC2 16 2061871 Missense G/A 1 1 0 1
11 450 CACNA1C 12 2668129 Missense G/A 1 0 1 1
11 450 SHANK3 22 49516308 Missense G/A 1 – 0 –
11 450 SHANK3 22 49516346 Missense G/A 1 – 0 –
11 184 HOXA1 7 27101863 Indel (3 bp del) 1 1 1 1
11 184 UBE3A 15 23167822 Missense C/T 1 1 0 1
11 542 HOXA1 7 27101863 Indel (3 bp del) 1 0 1 0
11 542 TSC1 9 134775834 Missense G/A 1 0 1 –
11 370 TSC1 9 134771026 Missense T/C 1 1 0 1
11 370 UBE3A 15 23167822 Missense C/T 1 0 1 0
11 590 CACNA1C 12 2437094 Missense C/T 1 1 0 0
11 590 TSC2 16 2067712 Missense G/C 1 0 1 1
11 049 CACNA1C 12 2658877 Missense G/A 1 1 0 0
11 049 CDKL5 X 18526627 Missense A/G 2 1 0 0
11 444 CACNA1C 12 2564912 Missense C/T 1 1 0 1
11 444 TSC1 9 134776272 Missense G/T 1 0 1 0
11 256 HOXA1 7 27101863 Indel (3 bp del) 1 1 0 1
11 256 TSC1 9 134776272 Missense G/T 1 0 1 1
11 402 HOXA1 7 27101860 Indel (6 bp del) 1 1 0 0
11 402 TSC2 16 2052990 Missense G/A 1 – – 0
11 540 TSC1 9 134776684 Missense G/A 1 0 1 0
11 540 TSC2 16 2070191 Missense C/T 1 0 1 1
11 540 TSC2 16 2078075 Missense C/A 1 1 0 1
11 028 CACNA1C 12 2665254 Missense C/T 1 1 0 0
11 028 FOXP2 7 114117153 Missense A/C 1 1 0 0
11 598 FOXP2 7 114058841 Indel (3 bp ins) 1 0 0 x
11 598 GRID2 4 94766467 Missense G/A 1 0 1 x
11 546 TSC1 9 134768873 Missense G/A 1 1 0 0
11 546 UBE3A 15 23167822 Missense C/T 1 0 1 0
11 468 HOXA1 7 27101863 Indel (3 bp del) 1 1 0 x
11 468 UBE3A 15 23167822 Missense C/T 1 1 0 x
11 376 TSC1 9 134771026 Missense T/C 1 1 0 1
11 376 GRID2 4 94766467 Missense G/A 1 0 1 0
11 202 CACNA1C 12 2665254 Missense C/T 1 1 0 x
11 202 TSC1 9 134771026 Missense T/C 1 2 0 x
11 202 EML1 14 99450317 Missense G/A 1 0 1 x
11 290 SHANK3 22 49516073 Missense C/T 2 – – –
11 290 TSC1 9 134771026 Missense T/C 1 0 1 1
11 685 CACNA1C 12 2658928 Missense G/A 1 0 1 0
11 685 MECP2 X 152949868 Missense G/C 2 1 0 0
11 714 HOXA1 7 27101863 Indel (3 bp del) 1 1 0 –
11 714 CACNA1C 12 2564900 Missense G/A 1 0 1 0
11 780 CACNA1C 12 2662090 Missense T/C 1 – 1 x
11 780 GRID2 4 94563072 Missense C/T 1 – 1 x
11 724 UBE3A 15 23167822 Missense C/T 1 1 0 0
11 724 SHANK3 22 49516370 Missense C/A 1 – – –
11 543 UBE3A 15 23167844 Indel (6 bp del) 1 0 1 0
11 543 TSC2 16 2054427 Missense A/C 1 1 0 1

‘0’, homozygous for reference allele; ‘1’, heterozygous for variant allele; ‘2’, homozygous or hemizygous for variant allele; ‘–’, data not available; ‘x’, no sibiling.
Coordinates based on genome build hg18.

Table 5. Fisher’s exact test analysis for oligogenic heterozygous events

Observed Case Control Total

Oligogenic event 18 6 24
No oligogenic event 321 370 691
Total 339 376 715

Probands with high-functioning ASD and control individuals display
significantly different frequencies of oligogenic heterozygous events in two or
more of seven genes (P ¼ 0.00653, Fisher’s exact test).
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As part of this study, 18 of 339 probands were found to be
carriers of novel oligogenic heterozygous coding variants,
even among the small number of genes analyzed. The occur-
rence of oligogenic heterozygous events is of particular inter-
est, as it has been suggested before that autism could represent
a complex genetic disorder that results from simultaneous
genetic variations in multiple genes (4). Following the same
concept, a two-hit model for CNVs has been proposed for
severe developmental delay (36) and subsequently been dis-
cussed for epilepsy as well (37). For autism, Pinto et al. (38)
reported the occasional combination of de novo and inherited
CNVs within a given family. While this study of 21 genes pro-
vides limited insight in the actual complexity of autism gen-
etics, the data show significant increase in oliogogenic
heterozygous combinations of novel coding variants in genes
such as CACNA1C, CDKL5, HOXA1, SHANK3, TSC1, TSC2
and UBE3A among autistic probands compared with control
individuals. Given the uncertain significance of the aforemen-
tioned 3 bp deletion in the polyhistidine tract of HOXA1, we
re-analyzed our data set excluding this common variant.
This would leave 14 oligogenic heterozygous events among
339 probands and 4 oligogenic heterozygous events among
376 controls, which is still highly significant by Fisher’s
exact test (P ¼ 0.01448).

Studying the parents and unaffected siblings for the pres-
ence of oligogenic events revealed that the vast majority of
these combinations are unique to the proband. However, the
fact that four parents and two siblings carried the same com-
binations of oligogenic heterozygosity reveals that at least
some of these events on their own are not sufficient to cause
autism. One might speculate that the accumulation of
several, if not many of such hypomorphic mutations causes

a genetic load, which will ultimately cross a given threshold
and lead to clinical manifestation of the ASD in the respective
individuals (Fig. 2). Our study is limited by the small number
of genes tested, and the full range of oligogenic heterozygous
events contributing to the etiology of autism will only become
evident once large scale, whole exome or whole genome data
sets of sequences from autistic individuals are analyzed to
evaluate for such combinatorial events. Also, while our
study detected a significant difference in the incidence of oli-
gogenic heterozygous variants between probands and controls
for the aforementioned genes, it might be the case that controls
have different heterozygous combinations with other genes
that were not tested.

‘Synergistic heterozygosity’ has been described as a poten-
tial disease mechanism in some metabolic disorders, with the
idea that concurrent partial defects in more than one pathway,
or at multiple steps in one pathway may lead to disease, even
though no complete deficiency in any one enzyme is present
(39). In the field of autism genetics, several hypomorphic var-
iants may accumulate either in a specific signaling pathway, or
a subcellular compartment (such as the synapse) to exceed a
threshold and result in phenotypic manifestation. This would
be consistent with the data from clinical studies whereby chil-
dren from families in which both parents manifest sub-
threshold autistic traits are more likely to show more severe
impairment in reciprocal and social behavior (40).

It is noteworthy that the average full-scale IQ of individuals
with de novo mutations in some of the 21 autism susceptibility
genes was 71.6 (SD ¼ 19.2), whereas the average full-scale IQ
of those with oligogenic heterozygous events without de novo
mutations was 94.1 (SD ¼ 22.2). While evidence is emerging
that intellectual disabilities might be widely attributable to de

Table 6. Clinical phenotypes and the genes involved in oligogenic heterozygous events among 23 probands with ASD

Patient ID Sex Age (years) Diagnosis IQ score (total) First gene Second gene

11 445 Male 8 AD 78 HOXA1 TSC2
11 450 Male 5 PDD-NOS 77 CACNA1C SHANK3
11 184 Male 9 AD 93 HOXA1 UBE3A
11 542 Female 12 PDD-NOS 116 HOXA1 TSC1
11 370 Male 14 AD 96 TSC1 UBE3A
11 590 Male 10 Asperger 96 CACNA1C TSC2
11 049 Male 7 PDD-NOS 137 CACNA1C CDKL5
11 444 Female 16 Asperger 104 CACNA1C TSC1
11 256 Male 11 AD 108 HOXA1 TSC1
11 402 Male 8 PDD-NOS 91 HOXA1 TSC2
11 540 Male 8 PDD-NOS 57 TSC1 TSC2
11 028 Male 9 AD 108 CACNA1C FOXP2
11 598 Male 5 AD 71 FOXP2 GRID2
11 546 Male 11 Asperger 119 TSC1 UBE3A
11 468 Male 10 PDD-NOS 87 HOXA1 UBE3A
11 376 Male 7 AD 91 TSC1 GRID2
11 202 Male 11 PDD-NOS 82 CACNA1C TSC1
11 290 Male 11 AD 131 SHANK3 TSC1
11 685 Male 5 AD 98 CACNA1C MECP2
11 714 Male 6 Asperger 95 CACNA1C HOXA1
11 724 Male 10 AD 55 SHANK3 UBE3A
11 543 Male 16 AD 57 TSC2 UBE3A

Average 9.5 93.05
SD 3.19 22.75

AD, autistic disorder; PDD-NOS, pervasive developmental disorder not otherwise specified.
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novo mutations (41), cases of the high-functioning ASD may
rather be attributable to co-inheritance of subtle, yet function-
ally significant variants in respective genes.

In summary, our data uncovered de novo mutations in 1.8%
of the ASD patients we studied and suggest that oligogenic
heterozygosity of coding non-synonymous variants and
coding indels may constitute a novel pathogenic mechanism
or risk for ASDs. The data from this study provide a frame-
work upon which to expand investigations into oligogenic
events in larger data sets. A model of oligogenic heterozygos-
ity may offer at least a partial explanation for why traditional
linkage analysis and mapping approaches have been rather
unsuccessful in identifying genetic variants predisposing to
ASDs. Whole exome sequencing analyzed in the context of
genes involved in pathways critical for neuronal development
and function is likely to be a productive approach to unravel
oligogenic and combinatorial events that might increase an
individual’s risk for ASDs.

MATERIALS AND METHODS

Subject recruitment

We obtained DNA samples (from lymphoblast cell lines) from
probands and their family members through the Simons
Simplex Collection (SSC), a resource of the Simons Foun-
dation Autism Research Initiative (SFARI). The SSC rep-
resents a repository of clinical, neuropsychological,
phenotypic and genetic data of .2000 families with simplex
autism. This is a collection of cases of sporadic (‘simplex’)
autism with unaffected parents and unaffected siblings. On
average, probands in the SSC exhibit moderate-to-severe
autistic symptoms with relatively little intellectual disability
(42). Control DNAs were obtained from the NIMH through
the Center for Collaborative Genetic Studies on Mental Dis-
orders. Control individuals had undergone a comprehensive
online psychiatric questionnaire.

Controls were ruled out if they

† Replied 1 (Yes) to both A8d and A8e (Depression);

† Replied 1 (Yes) to both B14 and B15 (Generalized
Anxiety Disorder);

† Replied 3, 4 or 5 to G2a or replied 5 to G7a (Alcohol
Dependence);

† Replied 1 to H3 AND 3, 4 or 5 to H3a (Drug Depen-
dence);

† Replied 1 or 21 to any question of section I (Obsessive
Compulsive Behavior).

Probands and controls were sex matched at a ratio of M:F ¼
6.8:1.

Sequencing

We have designed primers and amplified coding regions and
intron/exon junctions of the 21 genes according to standard
protocols. polymerase chain reaction (PCR) products were
sequenced using traditional Sanger fluorescent di-deoxy
methods on ABI 3730 capillary sequencers. Resulting
sequences were analyzed and single nucleotide variants and
Indels detected using SNPdetector software (43).

Validation

All coding non-synonymous variants and coding indels
detected in Sanger sequencing were assayed with
PCR-directed orthogonal sequencing validation. Targets
were re-amplified, and resulting PCR reactions pooled and
sequenced using 454 pyrosequencing. Resulting 454 reads
were mapped to the human reference sequence using BLAT
and CrossMatch alignment software. We required coverage

Figure 2. Proposed models of inheritance for ASDs. Left panel: syndromic autism is mostly caused by severe loss-of-function mutations of specific genes, with
each gene causing a specific syndrome. Right panel: non-syndromic autism may be caused by milder mutations in genes that are known to cause syndromic
autism or by mutations in novel genes, unrelated to syndromic autism. Oligogenic heterozygosity of hypomorphic variants in genes known to cause syndromic
autism may have a cumulative effect, resulting in non-syndromic autism. Mutations may be point mutations or coding indels, as well as CNVs.
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of .50 at the site and variant allele fraction .20% to validate
a variant.
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