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Abstract

Cells must continuously adjust to changing environments and, thus, have evolved mecha-

nisms allowing them to respond to repeated stimuli. While faster gene induction upon a

repeated stimulus is known as reinduction memory, responses to repeated repression have

been less studied so far. Here, we studied gene repression across repeated carbon source

shifts in over 1,500 single Saccharomyces cerevisiae cells. By monitoring the expression of

a carbon source-responsive gene, galactokinase 1 (Gal1), and fitting a mathematical model

to the single-cell data, we observed a faster response upon repeated repressions at the pop-

ulation level. Exploiting our single-cell data and quantitative modeling approach, we discov-

ered that the faster response is mediated by a shortened repression response delay, the

estimated time between carbon source shift and Gal1 protein production termination. Inter-

estingly, we can exclude two alternative hypotheses, i) stronger dilution because of e.g.,

increased proliferation, and ii) a larger fraction of repressing cells upon repeated repres-

sions. Collectively, our study provides a quantitative description of repression kinetics in sin-

gle cells and allows us to pinpoint potential mechanisms underlying a faster response upon

repeated repression. The computational results of our study can serve as the starting point

for experimental follow-up studies.

Author summary

Cells have to continuously adjust to their environment and cope with changing tempera-

ture, stress conditions, or metabolic resources. Yeast cells exposed to repeated carbon

source shifts have shown to be “primed” by their first exposure, exhibiting enhanced gene

expression of specific genes later on. However, how cells respond to a repeated repressive

stimulus, e.g., withdrawal of metabolic resources, has been so far much less studied.

For this, we investigated the expression kinetics of a carbon source-responsive gene

across repeated repressions. We measured single-cell expression and used mathematical
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modeling to evaluate potential causes underlying an observed faster repression response

upon a repeated stimulus. Specifically, we investigated whether i) an increased dilution

due to e.g., proliferation, ii) an increased fraction of repressing cells, or iii) different

kinetic parameters in the repeated repression cause the observed faster response in the

second repression. Leveraging quantitative mathematical model comparison, we discov-

ered that the faster response is mediated by a shortened estimated time between carbon

source shift and protein production termination at the single-cell level.

Our study provides a quantitative description of repression kinetics in single cells and

allows us to pinpoint potential mechanisms underlying a faster response upon repeated

repression.

Introduction

Cells receive and process external signals to optimally adjust to changing environments.

Repeated stimulation from the same external signal induces an altered transcriptional

response, a phenomenon termed transcriptional memory [1], with implications for a broad

range of cellular functions, including the human adaptive immune system [2,3], disease devel-

opment in diabetes [4,5], and aging [6]. So far, transcriptional memory has primarily been

studied with respect to gene induction, despite gene repression playing an essential role in

gene regulation [7,8].

The adjustment of Saccharomyces cerevisiae (budding yeast) to carbon sources is among the

most well-studied eukaryotic signal integration systems. Whereas glucose directly enters gly-

colysis, a vital metabolic route providing cells with energy, galactose is first converted to glu-

cose-6-phosphate [9,10], necessitating the production of Gal gene-encoded enzymes [11].

Repeated alternations between glucose and galactose media revealed that yeast cells are primed

by their carbon source history, exhibiting transcriptional memory: repeated galactose induc-

tion results in enhanced Gal gene expression [12–16]. In Bheda et al. we examined the expres-

sion of the galactokinase 1 gene (Gal1) in single cells, for which reinduction memory has been

well characterized, and discovered that a shorter delay, rather than an increased expression

rate, contributed to the observed increase in Gal1 levels [17].

In contrast, multiple rounds of transcriptional repression have been much less studied. Lee

et al. identified a stronger decrease in transcription levels and a faster response upon repeated

galactose exposure in bulk experiments [18]. Here, we systematically analyzed short-term tran-

scriptional repression kinetics in single cells. For this, we studied the expression kinetics of a

carbon source-responsive gene across repeated repressions. We used mathematical modeling

and the single-cell expression information to evaluate potential causes underlying a faster

response. We investigated whether i) an increased dilution due to e.g., proliferation, ii) an

increased fraction of repressing cells, or iii) different kinetic parameters in the repeated repres-

sion cause the observed faster response in the second repression. Specifically, we used compu-

tational methods to deconvolute protein kinetics from dilution effects in single cells and

developed a mathematical model to quantitatively describe single-cell repression kinetics and

to determine the subpopulation of repressing cells. Additionally, we used the estimated single-

cell parameters of protein production, degradation and repression response delay to identify

changes in kinetic parameters.
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Results

Faster Gal1 response upon repeated repression

To study Gal1 protein kinetics over multiple short-term repressions, we re-analyzed images/

movies of budding yeast cells from Bheda et al., which were alternatingly exposed to glucose or

galactose media (Fig 1A) [17]. For this, cells had been cultured in custom-made microfluidic

devices to ensure precise media shifts and long-term tracking. Gal1 expression levels in single

yeast cells had been monitored using a Gal1-GFP fusion, a standard reporter to study gene

expression in time-lapse microscopy and images from the microfluidics chambers had been

taken every 3 min resulting in 320 images per chamber during a 16 h experiment (see Bheda

et al., 2020 for details). Semi-automatic segmentation, tracking of the yeast cells and extraction

of the total Gal1-GFP fluorescence signal per cell and time point using Autotrack and Phylo-

Cell [19], YeaZ [20] and Cell-ACDC [21] (see Materials and Methods) yielded in over 1,500

single-cell Gal1 expression traces (Fig 1B). To obtain an independent biological replicate, we

repeated the experiment and analyzed it according to Bheda et al. (S1 Fig). As expected, the

total Gal1-GFP fluorescence signal of single cells recapitulates Gal1 inductions and repressions

during galactose and glucose, respectively, and increased overall Gal1 levels in induction i2 in

both the original data as well as in our new experiments (Figs 1B and S1A). We also visually

observed a faster response of Gal1-GFP fluorescence at the population level upon repression r2

(Fig 1C), which is in line with the findings of Lee et al. [18].

Dilution effects cannot explain faster response upon repeated repression

During budding, cytoplasmic proteins are disseminated between mother and daughter cells.

Assuming a constant Gal1 protein amount, this decreases the total Gal1-GFP fluorescence sig-

nal in the mother cell (Fig 2A top), a phenomenon called dilution. Could an increased dilution

because of e.g., increased proliferation in repression r2 compared to r1, explain the faster

repression response observed upon repeated carbon source shifts (Fig 1C)? The single-cell res-

olution of our data and asymmetric budding allowed us to identify mother-daughter relation-

ships and to deconvolute dilution and repression kinetics. For this, we calculated the sum of

the total Gal1-GFP fluorescence signal of the mother cell, i.e., cell present at the start of repres-

sion, and its progeny, i.e., daughter cell(s) detected during repression (Fig 2A bottom, and

Materials and Methods) to account for dilution effects due to cell divisions. In the following,

the adjusted sum of the total Gal1-GFP fluorescence signal of the mother cell and its progeny

Fig 1. Faster Gal1 response upon repeated repression. (A) Budding yeast cells were grown in microfluidic chambers and alternatingly exposed to a medium

containing either glucose (orange) or galactose (gray) as carbon source. Galactokinase 1 (Gal1) is induced in cells exposed to galactose and repressed in cells

exposed to glucose. Gal1 expression was monitored via a Gal1-GFP fusion and time-lapse microscopy. (B) Single-cell traces of total Gal1-GFP fluorescence

signal across two inductions i1 and i2 (gray) and repressions r0, r1, and r2 (blue). (C) Population means of the normalized total Gal1-GFP fluorescence signals

of repressions r1 and r2, shifted to the respective start of the repression time.

https://doi.org/10.1371/journal.pcbi.1010640.g001

PLOS COMPUTATIONAL BIOLOGY Altered expression response upon repeated gene repression in single yeast cells

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010640 October 18, 2022 3 / 17

https://doi.org/10.1371/journal.pcbi.1010640.g001
https://doi.org/10.1371/journal.pcbi.1010640


is referred to as total GFP. We applied the same dilution compensation to repressions r1 and

r2 (Fig 2B). Note that the increase in total GFP traces from n = 102 in r1 to n = 328 in r2 is due

to cellular proliferation during the 4 hours of repression r1.

Following a galactose-glucose shift, total GFP intensities initially rise before decreasing. To

obtain quantitative insights, we calculated the time to maximal mean total GFP for repressions

r1 and r2. This time reduced from 0.79 ± 0.10 h (mean ± std, n = 102 cells) in r1 to 0.50 ± 0.03

h (n = 328 cells) in r2, where the time point of the maximal mean was calculated with105 boot-

straps (Fig 2B). A shorter time to maximal mean total GFP suggests a faster response upon

repeated repression, even after accounting for dilution effects due to proliferation. Hence, dilu-

tion effects cannot explain the faster response in repression r2 at the population level.

A computational model identifies cells with and without repression

kinetics

At the single-cell level, Gal1 induction delay varies significantly. Zacharioudakis et al. [16]

showed that Gal1 induction caused by a glucose–galactose media shift results in a bimodal

population distribution, with only a subset of cells inducing Gal1 even after several hours of

galactose exposure. As in our experiments repression was preceded by 3 h of galactose induc-

tion, we expected that our cell population at the start of repression contained induced and

uninduced cells, which thus show and do not show protein repression kinetics, respectively.

Could a larger fraction of repressing cells in repression r2 explain the faster response observed

upon repeated repression (Fig 2B)? To determine the subpopulation of cells with protein

repression kinetics, information on single-cell kinetics is required. As it is difficult to distin-

guish between cells showing and not showing protein repression kinetics from the total GFP

traces alone (Fig 2B), we used computational modeling and model selection to systematically

describe and classify the kinetics of single total GFP traces. In comparison to other classifica-

tion methods, model selection allows us to classify total GFP traces without determining arbi-

trary thresholds for e.g. initial total GFP when classifying induced and uninduced cells at

repression start. Since Gal1 induction results in an approximate 1000-fold change in Gal1

expression [22], we assumed that stochasticity inherent to gene expression was insignificant

and that a deterministic modeling approach was sufficient in describing the kinetics of the

Fig 2. Dilution effects cannot explain the faster response upon repeated repression. (A) Budding decreases the total Gal1-GFP fluorescence signal in mother

cells and increases the total Gal1-GFP fluorescence signal in daughter cells (top). To compensate for this dilution, we summed up the total Gal1-GFP

fluorescence signal of each mother cell present and its progeny during one repression (bottom). (B) Single-cell traces of total GFP signal adjusted for dilution

(see (A)) for the first two hours of repressions r1 (left) and r2 (right). Time to maximal mean total GFP is 17 min shorter in repression r2, where mean total

GFP is indicated by the dotted line, the maximal mean total GFP is highlighted by the dot. Bootstrap (105) samples were drawn to generate mean ± std.

https://doi.org/10.1371/journal.pcbi.1010640.g002
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total GFP traces. To discriminate between cells showing and not showing protein repression

kinetics, we defined two models.

The model not accounting for repression assumes a constant basal GFP production and

degradation over time with rates rbasal and rdeg (Fig 3A left), since we observed a gradual

increase in total GFP signal in cells visually identified as not showing repression kinetics (Fig

3B top right). Note that rbasal encompasses all reaction steps that lead to the production of a

detectable GFP protein, including mRNA transcription, Gal1-GFP translation, and GFP matu-

ration. Similarly, rdeg comprises active GFP degradation and potential effects of photo-bleach-

ing. Dilution effects are compensated prior to modeling and are not part of rdeg (see Methods).

Fig 3. Fraction of cells with repression kinetics cannot explain the faster response upon repeated repression. (A) Left: a model for cells without repression

kinetics composed of basal GFP production (rbasal) and degradation (rdeg). Right: a model for cells with repression kinetics composed of an initial constant and

active GFP production (rprod) and degradation (rdeg) until a delayed repression onset (tdelay) where GFP production is switched off. (B) Top: two exemplary

total GFP traces (dotted line) and fits of the model not accounting for repression (red solid line) and model accounting for repression (black solid line).

Exemplary images of the cell(s) at three different time points are shown above. Mother cells are circled in gray, progeny in pink. The better fitting model was

selected according to the Bayesian information criterion (BIC). Left: total GFP trace better fitted by the model accounting for repression. Right: total GFP trace

fitted equally well by both models. Due to the higher model complexity of the model accounting for repression, the model accounting for repression is rejected.

Bottom: profile likelihoods of the model accounting for repression corresponding to the two exemplary total GFP traces above endorse parameter

identifiability. Asterisks represent optimized parameters and corresponding log-likelihood (logL) values. (C) Ten exemplary total GFP traces (dotted lines) and

best fits (solid lines) for repressions r1 (left) and r2 (right). GFP traces best fitted with the model accounting for repression are shown in black and fits of total

GFP traces best fitted with the model not accounting for repression are shown in red. (D) The median initial total GFP, GFP0, is significantly higher

(p = 9.2�10−5 and p = 2.7�10−7, two-sided median test corrected for multiple testing with Bonferroni correction, m = 12) in traces better fitted by the model

accounting for repression (black) than in traces better fitted by the model not accounting for repression (red). This confirms that the model accounting for

repression fits induced cells better, while the model not accounting for repression fits uninduced cells. The number of cells and percentages of all GFP traces

best fitted by the model accounting and not accounting for repression are shown. (E) Time to maximal mean total GFP is decreased in repression r2 for cells

with repression kinetics (0.81 h ± 0.09 h vs. 0.52 h ± 0.05 h). Bootstrap (105) samples of the cells with repression kinetics were drawn to generate mean ± std.

https://doi.org/10.1371/journal.pcbi.1010640.g003
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The temporal variation of the total GFP signal described by the model not accounting for

repression is summarized using the following ordinary differential equation:

@GFPðtÞ
@t

¼ rbasal � rdegGFP tð Þ:

This is solved by

GFP tð Þ ¼
rbasal
rdeg

1 � e� rdegtð Þ þ GFP0e
� rdegt;

where GFP0 = GFP(0), the initial total GFP at time point 0.

According to the model accounting for repression, cells that induced Gal1 during galactose

induction require time to reestablish glucose-mediated repression. Hence, GFP is actively pro-

duced at rate rprod, where rprod comprises a basal production rate rbasal and an additional pro-

duction rate accounting for the active production of GFP, till a time point tdelay. GFP

production is switched off (rprod = 0) and GFP is degraded with rate rdeg after this estimated

repression response delay tdelay (Fig 3A right). Again, rprod includes mRNA transcription,

Gal1-GFP translation, and GFP maturation, while rdeg comprises active GFP degradation, and

photo-bleaching, but no dilution. The temporal change of total GFP over time described by

the model accounting for repression is summarized by the following ordinary differential

equations:

before tdelay :
@GFPðtÞ
@t

¼ rprod � rdegGFP tð Þ

after tdelay :
@GFPðt � tdelayÞ

@t
¼ � rdegGFP t � tdelay

� �

with solutions

before tdelay : GFP tð Þ ¼
rprod
rdeg

1 � e� rdegtð Þ þ GFP0e
� rdegt

after tdelay : GFPðt � tdelayÞ ¼ GFPðtdelayÞe
� rdegðt� tdelayÞ;

where

GFP tdelay
� �

¼
rprod
rdeg

1 � e� rdegtdelayð Þ þ GFP0e
� rdegtdelay :

An example of a cell visually identified as showing repression kinetics is shown in Fig 3B

top left. Right next to it, we show the fluorescent microscopy images and total GFP trajectory

of a cell visually identified as not showing repression kinetics. Until tdelay, where tdelay < 2 h,

the model accounting for repression equals the model not accounting for repression. However,

these model definitions allow for model selection and circumvent the usage of arbitrary thresh-

olds for, e.g., the estimated value of tdelay. Both models comprise four and five model parame-

ters, respectively: initial total GFP, GFP0, basal GFP production rate, rbasal, or GFP production

rate, rprod, GFP degradation rate rdeg, a noise parameter σ determining the width of the Gauss-

ian noise distribution (see Materials and Methods), and the repression response delay tdelay for

the model accounting for repression. For repressions r1 and r2, respectively, we performed

multi-start maximum likelihood optimization to estimate the single-cell parameters, and

model selection on both models for each total GFP trace (Fig 3B top and 3C). Calculating the
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profile likelihoods of exemplary total GFP traces, we found the model parameters of the model

accounting for repression to be identifiable (Fig 3B bottom). We then determined whether the

model accounting for repression was required to explain a total GFP trace using the Bayesian

information criterion (BIC). A BIC difference of ten between the model accounting for and

not accounting for repression (BICrepression < BICno repression− 10) was considered an appropri-

ate threshold to reject the model not accounting for repression with fewer model parameters

(see Materials and Methods and Fig 3B and 3C), as commonly done in model selection using

BIC as selection criterion [23–25]. GFP traces of cells requiring the model accounting for

repression are henceforth referred to as “cells with repression kinetics”. The median initial

total GFP, GFP0, was significantly higher in cells with repression kinetics than in cells without

repression kinetics (p = 9.2�10−5 for r1 and p = 2.7�10−7 for r2), meaning that the model

accounting for repression mainly describes cells with higher Gal1 induction levels (Fig 3D).

This implies that our models can discriminate between cells that were repressing Gal1 and

cells uninduced at the beginning of repression. The overlapping ranges of initial total GFP

between cells with and without repression kinetics (Fig 3D) reveal how simple thresholding

could result in wrong classification of cells with and without repression kinetics.

Fraction of cells with repression kinetics in r2 cannot explain faster

response upon repeated repression

Using our modeling approach to classify total GFP traces into cells with and without repres-

sion kinetics, we found that of all total GFP traces, 71% and 76% of r1 and r2, respectively,

require the model accounting for repression (Fig 3D). Since the fraction of cells with repres-

sion kinetics is only slightly increased in repression r2, this effect cannot explain the faster

response upon repeated repression. Hence, we determined the time to maximal mean total

GFP again, this time constraining the analysis to the subpopulation of cells with repression

kinetics. We again found a shortened time to maximal mean total GFP in r2, with 0.81

h ± 0.09 h (mean ± std, n = 72 cells) and 0.52 h ± 0.05 h (n = 248 cells) for r1 and r2, respec-

tively (Fig 3E), demonstrating that the faster response in r2 at the population level is not due to

the increased fraction of cells with repression kinetics.

Shortened repression response delay mediates faster response upon

repeated repression at the single-cell level

So far, we excluded major contributions of dilution effects and an increased fraction of cells

with repression kinetics in r2 to underlie the faster response upon repeated repression. Could

altered kinetics of individual cells between repressions r1 and r2 lead to the observed change

in repression response? In the previous section, we estimated the kinetic parameters GFP0, tde-

lay, rprod, and rdeg for cells with repression kinetics. To compare protein kinetics between

repression r1 and r2 at the single-cell level, we used these estimated single-cell parameters of

cells with repression kinetics present in both repressions r1 and r2. We discovered that the

median initial total GFP, GFP0, and median repression response delay, tdelay, are significantly

different (p = 3.3�10−9 and p = 1.5�10−3, respectively) between both repressions using a two-

sided paired sign test with multiple testing correction (Fig 4A and 4B). Median GFP0 is

increased (median values of 0.59 and 2.05 for r1 and r2, respectively, Fig 4A), while median tde-

lay is shortened in r2 (median values of 0.50 and 0.38 for r1 and r2, respectively, where 72% of

paired cells showed a decrease in tdelay, Fig 4B). The increased GFP0 in r2 conforms to the tran-

scriptional reinduction memory of Gal1 and results in higher GFP0 at the start of r2. The

median rprod and median rdeg between the two repressions were comparable (p = 0.22 and

p = 0.34, respectively) (Fig 4C and 4D). In line with our findings, Bheda et al. reported similar
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production rates [17]. We repeated the entire analysis based on data from independent experi-

ments (see Methods for details). While the exact parameters vary between replicates due to the

heterogeneity in Gal1 induction at the single-cell level, our replicate analysis confirms the con-

clusions, in particular that a shortened repression response delay in r2 mediates the observed

faster response upon repeated repression (S1 Fig). We also tested a more complex, moment

equation derived noise model, explicitly accounting for the stochastic nature of single-cell GFP

production and degradation (see Methods for details). Due to the increased flexibility of this

noise model, we detected fewer cells with repression kinetics for repressions r1 and r2. The set

of cells with repression kinetics detected using this revised noise model is, however, largely

overlapping with the previously reported set of cells with repression kinetics for both repres-

sions r1 and r2 (S2A and S2B Fig). More importantly, the repression response delays of the

cells with repression kinetics detected by both models are estimated to comparable values, sug-

gesting that a more complex noise model does not influence the main conclusions of this work

(see S2C and S2D Fig). Of note, a comparison between the estimated single-cell parameters of

cells with repression kinetics of the two different models is uninformative, due to the low sta-

tistical power of the small set of paired cells with repression kinetics across both models for

repressions r1 and r2. Finally, using a simulation study, we tested whether the GFP degrada-

tion rate influences our results (S3 Fig). We found that too small degradation rates might lead

to misclassifying cells as cells without repression kinetics, hence potentially leading to a loss of

information. However, this does not affect our conclusions, since degradation rates are esti-

mated correctly and reliably (S3 Fig).

Discussion

Here, we described a faster Gal1 response upon repeated short-term repression at the popula-

tion level in support of what had been shown by Lee et al. [18]. By using single-cell Gal1

expression data and mathematical modeling, we demonstrated that a faster response upon

repeated repression is not simply due to increased dilution effects or a larger fraction of

repressing cells, but is mediated by a shortened repression response delay at the single-cell

level which could suggest the existence of transcriptional repression memory.

Fig 4. Shortened repression response delay mediates faster response upon repeated repression at single-cell level.

Comparison of paired estimated single-cell parameters of cells with repression kinetics of repression r1 and r2 shows

that the median initial total GFP, GFP0, and median repression delay, tdelay, are significantly different (p = 3.3�10−9 and

p = 1.5�10−3, respectively, two-sided paired sign test correcting for multiple testing with Bonferroni correction, m = 12,

and the number of paired cells = 54), with median GFP0 increased and median tdelay decreased (median tdelay values of

0.50 and 0.38 for r1 and r2, respectively). GFP degradation is not different between repressions r1 and r2 (p = 0.34).

https://doi.org/10.1371/journal.pcbi.1010640.g004
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We would like to note that we assessed the kinetics of the Gal1-GFP fusion protein, and

hence also modeled Gal1-GFP kinetics. Although this reporter has been successfully employed

in several studies involving Gal1 gene expression [16,26–29], Gal1-GFP does not allow us to

exclude alternative molecular mechanisms driving the shortened repression response delay tde-

lay in repression r2 such as an accelerated mRNA degradation. Altered GFP maturation was

accounted for in the production rate rprod. Of note, GFP stability is estimated by the degrada-

tion rate, rdeg, which we found to be not significantly different between repressions r1 and r2

(p = 0.34). While the degradation rates are estimated to be quite low, they are high enough

such that repression kinetics are observable (see Fig 3C). The stability of GFP may only lead to

a loss of information, i.e., repression kinetics are overshadowed by the accumulation of GFP,

such that cells with repression kinetics might no longer be detected as such (S3 Fig). GFP sta-

bility does not influence the estimated repression response delays and hence our conclusions.

Potential effects due to photo-bleaching would increase rdeg but not affect the estimation of tde-

lay and hence our conclusions.

Due to the rather simple kinetics of the total GFP traces, our model is sufficiently complex

to describe the data (Fig 3C). More detailed descriptions of this process e.g., shut off kinetics of

protein production, mRNA/promoter kinetics, or histone occupancy, would be desirable but

inevitably lead to unidentifiable model parameters and, hence, to little or none additional

insight. Similarly, we did not consider cell-size and cell-cycle aware stochastic models, as for

example successfully applied by Song et al. [30].

During model design, we also tested mixed effect modeling frameworks, where single-cell

parameters are assumed to underlie a certain population distribution and parameter correla-

tions can be accounted for. However, due to the large and unconventional noise distributions

underlying the model parameters of our data, mixed effect modeling did not describe the data

well enough at the population level. Hence, we believe that for the given data, our simple

modeling framework was the most informative approach possible.

Throughout this study, we mainly assumed an additive Gaussian noise model with constant

variance to correctly reflect measurement noise. However, other noise models might also be

applicable. For example, the Laplacian noise model has shown to be more robust against outli-

ers and, hence, more suitable for corrupted data [31]. We also investigated time-dependent

noise from a moment equation based model, taking into account not only measurement but

also intrinsic noise emerging from the stochasticity of the underlying molecular processes.

While we show that these different noise models lead to the same conclusions in our study, we

want to highlight here that identifying a suitable noise model is generally important for both

parameter inference as well as model selection [32,33]. The similarity between the two

approaches is likely due to the large molecule numbers of Gal1-GFP expression in our study.

In this study, we focused on the altered Gal1 expression response upon repeated gene

repression. Our simple and linear repressor model used to identify the repression delay is

basic data analysis, such that its results could be understood as empirical evidence for altered

gene repression kinetics. Whether this phenomenon is a unique characteristic of Gal1 or if this

is universal to other non-galactose induced memory genes of, e.g, the MAL or INO system,

will be interesting to investigate in the future. Moreover, Gal1 reinduction memory is inherited

by daughter cells [17]. Whether altered repression kinetics can also be maintained through

multiple cell divisions is still unknown. Due to yeast cells mainly arresting their cell-cycles in

the initial hours of galactose exposure (inductions i1 and i2), dividing cells are rarely detected

in i2 and thus we cannot investigate the effect of cell divisions on altered repression kinetics in

r2.

Together, our work lays the foundation for further mechanistic studies using single-cell

mRNA kinetics or time-resolved information regarding the chromatin architecture at the Gal1
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promoter to investigate the molecular workings underlying a shortened repression response

delay upon repeated short-term repression.

Materials and methods

Data acquisition and sources

For the analysis for Figs 1 and 2, we used microscopy images and initial segmentation, map-

ping, and tracking information from a microfluidics experiment from Bheda et al. [17], which

contained 13 positions. The images from the first two hours of repression r1 were rectified,

and the segmentation, mapping, and tracking were extended to the entire two hours of repres-

sion r2. Bheda et al. only segmented r2 partially since they were primarily interested in galac-

tose induction, and did not adjust the final repression frames. Using the software PhyloCell

[19], we manually corrected the segmentation, mapping, and tracking of r1 and r2. For the

replicate analysis (S1 Fig), we repeated the induction-repression experiment as described in

Bheda et al. [17] (Fig 1A). Due to low cell numbers, we pooled data from three independent

experiments, totalling 13 positions, respectively. Using the softwares YeaZ [20] and Cell-

ACDC [21] for cell segmentation, mapping and tracking, we extracted the relevant single-cell

information of the live-cell images for both repressions r1 and r2. During glucose repression,

the yeast cells proliferated, increasing the cell numbers within the microfluidic chambers.

However, filled microfluidic chambers no longer assure that all the progeny of a cell is

recorded, and mapping and tracking of cells become infeasible. To ensure mapping and track-

ing of single yeast cells within the microfluidic chambers, the glucose repressions were limited

to a maximum of 4 h and the overall experiment was limited to 16 h (4 h in glucose (r0), 3 h in

galactose (i1), 4 h in glucose (r1), 3 h in galactose (i2), 2 h in glucose (r2)).

Data preprocessing

We extracted the single-cell information relevant for our analysis, namely cell ID, mother cell

ID, detection frame (first frame in which a cell is detected), last frame (last frame a cell is

detected), relative GFP intensities per time (mean GFP intensity of a segmented cell) and cell

area per time. As the data regarding the relative GFP intensities and cell area was not sorted

over time, we first sorted it and then calculated the total GFP fluorescence per time given by

total GFP fluorescence = relative GFP fluorescence × cell area.

Finally, cells that were not imaged till the end of the experiment, cells with missing relative

GFP and/or cell area values, and cells that were supposedly detected before their mother cells

(segmentation error) were discarded.

Dilution compensation

Cytoplasmic proteins are disseminated between the mother and daughter cells during bud-

ding. Assuming that Gal1 is not produced or degraded, protein redistribution causes a drop in

total Gal1-GFP fluorescence in the mother cell and a rise in total Gal1-GFP fluorescence in the

daughter cell till the mother and daughter cells split (Fig 2A top). As a result, regardless of

repression, dilution causes variations in total Gal1-GFP fluorescence. The daughter cell grows

to about ⅓ of the size of the mother cell [34] such that the decrease in total Gal1-GFP fluores-

cence due to dilution was expected to be ⅓ of the initial total Gal1-GFP fluorescence of the

mother cell. To ensure that dilution does not overshadow potentially more subtle repression

kinetics, we created artificial non-dividing cells compensating for dilution by adding the total

Gal1-GFP fluorescence of the progeny of a cell present at the start of glucose repression, which

we called mother cell, to the total Gal1-GFP fluorescence of that mother cell during the first 2
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h of repression (Figs 2A bottom, 2B and S1C). For mother cells with a bud at the beginning of

a repression period, we additionally added the bud to the total Gal1-GFP fluorescence of that

mother cell. The GFP traces of all computed non-dividing cells can be found under https://

github.com/marrlab/Gal1repression. As we found the maximal mean total GFP to be attained

before 2 h of glucose exposure, we restricted our analysis to the first 2 h of repression.

Models

During the first two hours of glucose repression, we modeled the kinetics of the total GFP of

every single cell. Due to the high variability in galactose induction, we assumed that our initial

cell population at the beginning of repression contained induced and uninduced cells, which

show and do not show repression kinetics, respectively. We developed two models, with and

without repression, to account for both total GFP kinetics during repression.

Model not accounting for repression

For more information regarding the model not accounting for repression, see the main text.

Model accounting for repression

For more information regarding the model accounting for repression, see the main text.

Noise models

Time-independent noise model taking into account only measurement noise:

Experimental data, such as total GFP per cell per time, is noise corrupted. As a result, we

used an underlying additive Gaussian noise model with a constant variance σ2 throughout

time to test our models. The single-cell specific model parameters are comprised in the param-

eter vector Θi for cell i and the experimental measurement at time point k for cell i is denoted

by �y ik. The log-likelihood for the Gaussian noise model is given by

logL yið Þ ¼
� 1

2

X

k

log 2ps2

i

� �
þ
ð�yki � yðtk; yiÞÞ

2

s2
i

:

Time-dependent noise model taking into account measurement and intrinsic noise:

Due to the stochastic nature of GFP production and degradation, the single-cell GFP mea-

surements also underlie, in addition to measurement noise, intrinsic noise. The variance of the

more sophisticated noise model is hence composed of (1) the constant measurement noise σ2

and (2) the time-dependent variance of the stochastic process underlying the corresponding

model. According to the moment equations, the time evolution of the variance of the stochas-

tic process underlying the model not accounting for repression is given by

@VarðtÞ
@t

¼ � 2rdegVar tð Þ þ rbasal 2 � e� rdegtð Þ þ GFP0rdege
� rdegt;

with solution

Var tð Þ ¼
1

rdeg
e� 2rdegtðrdegðGFP0ðe

rdegt � 1Þ þ Var0Þ þ rbasale
rdegtðerdegt � 1ÞÞ;

where GFP0 = GFP(0), the initial total GFP at time point 0, Var0 = Var(0), the initial stochastic

variance at time point 0, and GFP(t) as derived in the main text.

For the model accounting for repression, we need to consider the piecewise stochastic pro-

cesses before and after tdelay. The time evolutions of the variances of the stochastic processes
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are given by

before tdelay :
@VarðtÞ
@t

¼ � 2rdegVar tð Þ þ rprod 2 � e� rdegtð Þ þ GFP0rdege
� rdegt

after tdelay :
@Varðt � tdelayÞ

@t
¼ � 2rdegVar t � tdelay

� �
þ rdegGFP tdelay

� �
e� rdegðt� tdelayÞ;

with solutions

before tdelay : Var tð Þ ¼
1

rdeg
e� 2rdegtðrdegðGFP0ðe

rdegt � 1Þ þ Var0Þ þ rprode
rdegtðerdegt � 1ÞÞ

after tdelay : Varðt � tdelayÞ ¼ e� 2rdegðt� tdelayÞðGFPðtdelayÞðe
rdegðt� tdelayÞ � 1Þ þ VarðtdelayÞÞ;

where

Var tð Þ ¼
1

rdeg
e� 2rdegtdelayðrdegðGFP0ðe

rdegtdelay � 1Þ þ Var0Þ þ rprode
rdegtdelayðerdegtdelay � 1ÞÞ

Var0 = Var(0), the initial stochastic variance at time point 0, and GFP(t), GFP(tdelay) as

derived in the main text.

Together, the total variance of the Gaussian distribution accounting for measurement and

intrinsic noise for time point t is given by

VartotalðtÞ ¼ s
2 þ VarðtÞ:

The log-likelihood for the more complex, time-dependent, Gaussian noise model is then

given by

logL yið Þ ¼
� 1

2

X

k

log 2pVartotaliðtÞð Þ þ
ð�yki � yðtk; yiÞÞ

2

VartotaliðtÞ
:

We obtained the optimal model parameters of both models and both noise models for the

total GFP traces for each cell by performing maximum likelihood estimation.

Optimization and parameter estimation

For each total GFP trace separately for r1 and r2, we computed the model parameters for the

models accounting and not accounting for repression. The initial total GFP GFP0, the basal

production rate rbasal, and the degradation rate rdeg are the model parameters for the model

not accounting for repression. Instead of a basal production rate, rbasal, we have a production

rate, rprod, for the model accounting for repression. Also, we discovered the time point of the

repression response delay tdelay for the model accounting for repression. For both models, we

also inferred the noise parameter σ determining the spread of the Gaussian noise model and

potentially the initial stochastic variance Var0 when testing the sophisticated noise model.

Overall, this results in 4 (5) inferrable parameters for the model not accounting for repression

and 5 (6) inferrable parameters for the model accounting for repression, assuming a time-(in)

dependent noise model. We assumed that all parameters are constant over time. For numerical

reasons we optimized the parameters in log10 scale [35] and rescaled the data by 107. As total

Gal1-GFP fluorescence signal and total Gal1-GFP molecules are (linearly) mapped by an

unknown constant, the number of total Gal1-GFP molecules is always scalable by that

unknown constant that we exploit to increase convergence. The lower and upper bounds for
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all initial, rate, and noise parameters are –10 and 1 in log10 scale, respectively, assuring that the

whole range of biologically plausible parameter values is covered. The lower and upper bounds

for the repression response delay are given by 36 s and 2 h (corresponding to –2 and log10(2)

in log10 scale). As we only considered 2 h of glucose repression, we did not allow the time

delay to take on larger values. We performed multi-start local optimization of the negative log-

likelihood using the parameter estimation toolbox PESTO [36]. For each model and total GFP

trace, we performed local optimization runs from at least 20 different Latin-hypercube-sam-

pled starts. If less than five starts converged, i.e. the objective function values of the starts differ

less than 0.1 to the best start, we re-ran the optimization with 50, 100, and 200 starts until at

least five starts converged for each GFP trace.

Model selection

We used the Bayesian information criterion (BIC) [37] for comparing the model accounting

and not accounting for repression per total GFP trace. The BIC is calculated by

BIC ¼ logðnÞ k � 2 logL;

where n is the number of data points, k is the number of estimated parameters and logL is the log-

likelihood value for the maximum likelihood estimate of the model parameters. Here, the number

of estimated parameters is either four for the model not accounting for repression or five for the

model accounting for repression. The BIC rewards high likelihood values and penalizes the model

complexity in the form of additional model parameters. We considered the model accounting for

repression to fit a given total GFP trace considerably better than the model not accounting for

repression if BICrepression < BICno repression–10 (Figs 3B–3D, S1D and S1E).

Statistical analysis

Comparison of initial total GFP of total GFP traces. On the estimated initial total GFP,

GFP0, of all total GFP traces significantly better fitted by a model accounting for repression

and all total GFP traces better fitted by a model not accounting for repression, we did a two-

sided median test. To avoid false-positive results, we used the Bonferroni correction, which

adjusts the significance-level α = 0.05 by the total number of investigated null hypotheses m,

such that α’ = α/m. In this study, the total number of null hypotheses for the analysis is m = 12:

• Two hypothesis tests comparing initial total GFP between fits of the models accounting and

not accounting for repression for repressions r1 and r2 (main analysis),

• Four hypothesis tests comparing estimated single-cell parameters between repressions r1

and r2 (main analysis),

• Two hypothesis tests comparing initial total GFP between fits of the models accounting and

not accounting for repression for repressions r1 and r2 (replicate analysis),

• Four hypothesis tests comparing estimated single-cell parameters between repressions r1

and r2 (replicate analysis).

Comparison of estimated single-cell parameters between repressions r1

and r2

We ignored all traces that were well described by a model not accounting for repression (unin-

duced cells) and focused the statistical analysis on the total GFP traces for which the model

accounting for repression gave a considerably better fit (see the Model selection, Figs 3B–3C
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and S1D). For those total GFP traces, we compared the estimated single-cell parameters of ini-

tial total GFP, GFP0, repression response delay tdelay, production and degradation rates, rprod

and rdeg, for repressions r1 and r2. We performed a two-sided paired sign test on the estimated

single-cell parameters of paired mother cells in repressions r1 and r2 (Figs 4 and S1G). To

avoid false-positive outcomes, we used the Bonferroni correction, which modified the signifi-

cance level of α = 0.05 by the total number of tested null hypotheses m to α’ = α/m, with

m = 12.

Comparison of estimated single-cell parameters between the time-

independent and time-dependent noise models

We compared the estimated single-cell parameters using a paired-sample t-test and corrected

for false-positive outcomes by applying the Bonferroni correction with m = 8 (one null

hypothesis for each estimated single-cell parameter = 4, for both repressions r1 and r2 = 8).

Implementation and data/code availability

The data and MATLAB code corresponding to this manuscript are available under https://

github.com/marrlab/Gal1repression.

Supporting information

S1 Fig. Shortened repression delay in repression r2 at the single-cell level for replicate

experiment. (A) Single-cell traces of total Gal1-GFP fluorescence signal across two inductions

i1 and i2 (gray) and repressions r0, r1, and r2 (blue). (B) Comparison of means of the normal-

ized total Gal1-GFP fluorescence signals of repressions r1 and r2. (C) Single-cell traces of total

GFP signal adjusted for dilution for the first two hours of repression r1 (left) and repression r2

(right). Time to maximal mean total GFP is 24 min shorter in repression r2, where mean total

GFP is indicated by the dotted line and the maximal mean total GFP is highlighted by the dot.

Bootstrap (105) samples were drawn to generate mean ± std. (D) Ten exemplary total GFP

traces (dotted lines) and best fits (solid lines) for repressions r1 (left) and r2 (right). GFP traces

best fitted with a model accounting for repression are shown in black and fits of total GFP

traces best fitted with a model not accounting for repression are shown in red. (E) The median

initial total GFP, GFP0, is higher in traces better fitted by the model accounting for repression

(black) than in traces better fitted by the model not accounting for repression (red). This con-

firms that the model accounting for repression fits induced cells better, while the model not

accounting for repression fits uninduced cells. The number of cells and percentages of all GFP

traces best fitted by the model accounting for repression and model not accounting for repres-

sion are shown. (F) Time to maximal mean total GFP is decreased in repression r2 for cells

with repression kinetics (0.97 ± 0.08 vs. 0.88 ± 0.04). Bootstrap (105) samples of the cells with

repression kinetics were drawn to generate mean ± std. (G) Comparison of paired estimated

single-cell parameters of cells with repression kinetics of repression r1 and r2 shows that the

median initial total GFP, GFP0, and median repression delay, tdelay, are significantly different

(p = 4.6�10−7 and p = 3.3�10−3, respectively, two-sided paired sign test correcting for multiple

testing with Bonferroni correction, m = 12, and the number of paired cells = 31), with median

GFP0 increased and median tdelay decreased (median tdelay values of 0.83 and 0.53 for r1 and

r2, respectively).

(TIF)

S2 Fig. Estimated repression response delays are comparable between time-independent

and time-dependent noise models for repressions r1 and r2. (A-B) The time-dependent
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noise model detects fewer cells with repression kinetics in repressions r1 (A) and r2 (B). How-

ever, the set of repressor cells detected across the two noise models is largely overlapping.

(C-D) The estimated single-cell repression response delays are comparable (paired-sample t-

test with Bonferroni correction, m = 8, and the number of paired cells = 40 for r1 and = 162

for r2) across both noise models for both repressions r1 (C) and r2 (D).

(TIF)

S3 Fig. Estimated repression response delay is independent of GFP degradation rate. Total

GFP traces of four simulated cells with varying degradation rates, rdeg = 0.5 h-1 (fast), rdeg = 0.2

h-1 (slow), rdeg = 0.04 h-1 (super slow), and rdeg = 0 h-1 (none) using Gillespie’s stochastic simu-

lation algorithm and simulation parameters GFP0 = 100, tdelay = 0.5 h, rprod = 100 h-1, and σ =

5. Performing parameter estimation and model selection, only the cell with no degradation

(right) is misclassified as a cell without repression kinetics (with BICno repression < BICrepression).

The repression response delay is correctly estimated to approximately 0.5 h for all simulated

cells independent of the GFP degradation rate.

(TIF)
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