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SUMMARY

Cancer metabolism is critical for understanding the mechanism of tumorigenesis, yet the understand-

ing is still challenging. We studied gene-metabolism regulatory interactions and quantified the global

driving forces for cancer-metabolism dynamics as the underlying landscape and probability flux. We

uncovered four steady-state attractors: a normal state attractor, a cancer OXPHOS state attractor,

a cancer glycolysis state attractor, and an intermediate cancer state attractor. We identified the

key regulatory interactions through global sensitivity analysis based on the landscape topography.

Different landscape topographies of glycolysis switch between normal cells and cancer cells were

identified. We uncovered that the normal state to cancer state transformation is associated with

the peaks of the probability flux and the thermodynamic dissipation, giving dynamical and thermody-

namic origin of cancer formation.We found that cancer metabolism oscillations consumemore energy

to support cancer malignancy. This study provides a quantitative understanding of cancer metabolism

and suggests a metabolic therapeutic strategy.

INTRODUCTION

Cancer cells acquire specific biological capabilities to sustain self-replication and survival during tumori-

genesis and development. One of the most important emerging hallmarks of cancer is reprogramming

of energy metabolism (Hanahan and Weinberg, 2011). For generating new biomass and energy needed

in the rapid cell cycle, cancer cells struggle to acquire necessary nutrients from a frequently nutrient-

poor environment in varied ways (Pavlova and Thompson, 2016). Two major metabolic pathways, glycolysis

and oxidative phosphorylation (OXPHOS), are utilized for producing energies in cancer cells. Most types of

cancer cells are observed to have high uptake of glucose but divert glucose-derived pyruvate away from

the mitochondrial TCA cycle to lactate production. This is known as ‘‘aerobic glycolysis’’ or the Warburg

effect (Warburg, 1956). Aerobic glycolysis not only is important for energy production, but also profits

the biosynthesis and rapid cell proliferation (Heiden et al., 2009). In contrast, observations also showed

that cancer cells can utilize OXPHOS for ATP production from glucose, fatty acids, or glutamine oxidation

(Lehuédé et al., 2016). Although significant progresses have been made, the understanding of the under-

lying mechanism and the interplay between the two pathways of cancer metabolism is still challenging.

To address these issues, one needs to explore the coupling between the underlying gene regulatory

network and metabolic pathway for determining the cancer metabolism. Mathematic models are useful

and effective for describing gene networks and metabolic pathways. However, very limited models on can-

cer metabolism have been suggested. Cancer glycolysis rate was studied based on enzyme kinetics and

experimental data from rodent AS-30D hepatoma and human cervix HeLa cells (Marı́n-Hernández et al.,

2011). In the further research (Marı́n-Hernández et al., 2014), the role of differential expressions of glycolytic

enzyme isoforms under different glucose levels was investigated. Roy and Finley (2017) built a model of

pancreatic cancer combiningmetabolic pathways and cell growth. This cancer model involved bothmetab-

olites and gene regulations for studying the relationship among HIF-1, AMPK, and ROS (Yu et al., 2017), but

involved only several gene nodes without metabolic reactions. Further improved model coupled the gene

regulations with metabolic pathways. However, only limited genes and metabolites were included for the

study (Jia et al., 2019). It has been reported that not only the enzymes expressed by genes can influence

metabolic reaction rates but also the alteration of metabolite level in cancer cell can influence the gene

regulations (Pavlova and Thompson, 2016). Thus, a more comprehensive model including both gene reg-

ulatory network and metabolic pathways in detail for cancer metabolism from an integrative biological net-

works perspective is in demand.
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Global quantification of the network dynamics is important for understanding the biological process, func-

tion, and the underlying mechanism. This can be realized through the identification of the driving forces for

the dynamics as the landscape and the probability flux (Wang et al., 2008, 2011; Wang, 2015). The land-

scape and probability flux has been shown to drive the dynamics of various cancer gene regulatory net-

works (Li and Wang, 2014, 2015; Chen and Wang, 2016; Yu and Wang, 2016), giving rise to a global and

physical description. However, the underlying mechanism for cancer metabolism still remains elusive.

In this study, we develop an integrative network model including cancer-related metabolic pathway and

gene regulatory network. The network includes 13 genes, 17 enzymes, and 23 metabolites, with a total

of 53 nodes. The network includes gene-gene regulations, gene-enzyme regulations, and enzyme-cata-

lyzed reactions. We have quantitatively investigated the integrative gene-metabolic network. We uncov-

ered the underlying landscape of cancer metabolism. Four steady-state attractors, normal state, cancer

OXPHOS state, cancer glycolysis state, and cancer intermediate sate, emerge based on the landscape

topography. Through global sensitivity analysis of the underlying landscape topography, we identified

the key gene-gene regulations for promoting cancer OXPHOS state and cancer glycolysis state. Moreover,

we observed that normal state to cancer state transformation or the bifurcations are associated with the

peaks of the probability flux and the associated entropy production rate. This provides a physical origin

and a quantitative indicator of the cancer formation. We also uncovered the underlying mechanism of can-

cer metabolism oscillations.Wemake predictions on the effectiveness of various metabolic therapeutic tar-

gets. This also provides the therapeutic targets for cancer metabolism oscillations.

RESULTS

Cancer Gene-Metabolism Integrative Network

Gene regulatory network and metabolic pathway can interact or regulate with each other. Genes are

translated to proteins, and these proteins are assembled to form enzymes in cytoplasm. The enzyme levels

control metabolic reaction rates directly. On the other hand, metabolites influence not only the enzymes

activity but also the gene expressions indirectly (Pavlova and Thompson, 2016).

Our cancer gene-metabolism integrative network includes two parts, gene regulatory network and metabolic

pathway. The gene regulatory network includes 13 genes, Akt, AMPK, cMyc, HIF-1, mTOR, NOX, p53, PDK,

PI3K, PTEN, RAS, SOD, and VEGF. The metabolic switch promoting deregulated growth is often triggered by

mutations in signaling pathways that rest at the crux of anabolic and energetic homeostasis, such as HIF-1a,

PI3K/AKT, mTOR, and AMPK (Yizhak et al., 2015). Seventy-three gene-gene, gene-enzyme, metabolite-gene,

or metabolite-enzyme interactions were included and listed in Tables S1 and S2. All these interactions were

selected from the previous experimental studies (Courtnay et al., 2015; Hammad et al., 2016; Hasawi et al.,

2014; Justus et al., 2015; Lien et al., 2016; Prasad et al., 2017; Saunier et al., 2015; Wegner et al., 2015) and

EVEX database (Landeghem et al., 2013). For metabolic pathways, we focused on glycolysis pathway and TCA

cycle from previous studies (Heiden and DeBerardinis, 2017; Yizhak et al., 2015; Pavlova and Thompson, 2016).

The pathway includes 23 metabolites and 17 enzymes along with the related reactions listed in Table S3. Extra-

cellular glucose is transported into cell first. Along with the sequence of reactions of glycolysis, one molecule of

intracellular glucose is metabolized into two molecules of pyruvate (pyr) and generates two molecules of ATP.

Two main further sequence reactions of pyruvate are important. The pyruvate is reduced by NADH to form

lactate, and it is expelledoutof the cell. Pyruvatealso canbeconverted toacetyl coenzymeA (acetylCoA) inmito-

chondria. Acetyl CoA enters into the TCA cycle, and oxidative phosphorylation is in sequence for generating

more ATP. The whole network is shown in Figure 1. The sequential metabolic reactions, which are displayed as

the sequential arrows, such as Pyr//Cit, can be treated effectively as one comprehensive reaction including

the substrates in the first reaction and the products in the last reaction. The sequential metabolic reactions

were modeled as one comprehensive reaction. Thus, the ODEs (Ordinary Differential Equations) exclude these

intermediatemetabolites for simplicity. For theclarityof thenetworkdisplay,wedidnot showcertainmetabolites,

which are not included in theODEs. The genesNOX and SOD are in the gene network. Their translated proteins

also control the relatedmetabolic reactions. To avoid the redundancy in themodel, the gene and related protein

level are represented as one variable in our model.

The gene-gene regulatory network and the metabolic pathway are mainly connected by the gene-enzyme

and metabolite-gene interactions that bridge the two networks together. As shown in Figure 1, the meta-

bolic pathways are controlled by Akt, p53, cMyc, PTEN, HIF-1, and PDK genes, whereas the gene regulatory

network is influenced by lactate, ROS, ATP, and O2. Besides, the metabolic enzymes can be regulated by
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metabolites, such as G6P and F2,6BP. These genes, enzymes, metabolites, and interactions among them

compose a cancer gene-metabolism integrative network.

Owing to the different dynamical characteristics between gene-gene regulatory interactions and meta-

bolic reactions, we consider the driving force for the network dynamics differently. The driving forces of

the dynamics for the gene expressions or enzyme levels are determined by:

_Xi = FðXiÞ=Ai

YNi

j = 1

Hji �DiXi (Equation 1)

Figure 1. Cancer Gene-Metabolism Integrative Network

Genes are colored with blue. Enzymes are colored with red. Metabolites are colored with black. Dark blue arrows and bars

represent gene-gene interactions. Dark red arrows and bars represent and gene-enzyme regulations. Purple arrows and

bars represent metabolite-enzyme regulations. Black arrows represent biochemical reactions. Double arrows represent

shared lines for multiple regulations. Each of the same colored connections that start with double arrows and end with

solid arrows and bars represent one regulation. G6P////R5P: G6P/6PGL/6PGC/Ru5P/R5P, 3PG/ / /

Ser: 3PG/3PHP/P-ser/Ser, Pyr//Cit: Pyr/Ac-CoA/Cit.
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Here, F represents the driving force of the variable X, the level of gene expressions or enzyme. A represents

the basic production rate of the gene or the enzyme. D represents the degradation rate of the gene or the

enzyme. S represents the gene expression level with half threshold of production. The parameter n is the

Hill coefficient for describing the cooperativity of the interactions. Hji is described by a nonlinear function,

namely, the shifted Hill function (Lu et al., 2013, 2014). The positive parameter gji represents the activation

of Xi from Xj if g>1 and the inhibition if g<1. For the gene-gene regulatory interactions, Hji is the summation

of two Hill functions, the inhibition term and the activation term. When g>1, the Eq. 2 can be converted into

Eq. 3, the activation term (only the second term) is effective. Conversely, when g<1, the Eq. 2 can be con-

verted into Eq. 4, only the inhibition term is effective. The parameters for this cancer metabolismmodel are

chosen carefully for producing the results that are biologically relevant and reasonable. The interactions

strengths are listed in Table S4.

The driving forces of the dynamics for the metabolite concentration are determined by:

_Yi = FðYiÞ=
XNi

j =1

Xjrj (Equation 5)

F represents the driving force of the variable Y, the concentration of metabolite. It describes the summation

of enzyme kinetic velocity rj multiplied by the related enzymes Xj. The kinetic equation is from previous

studies. Details are in Transparent Methods. The related parameters are listed in Table S5.

In real dynamics, fluctuations are unavoidable. When including these effects, the above deterministic equa-

tions become stochastic. One then targets the corresponding probability evolution rather than the trajec-

tory evolution. This is because the trajectory evolution now is stochastic and unpredictable, whereas the

probability evolution is deterministic and predictable. Such probabilistic evolution equation is often in

the form of the Fokker-Planck diffusion equation in the continuous variable representation. The steady-

state probability landscape and the corresponding probability flux can be obtained by either the self-

consistent mean field approach or by the Langevin simulations.

Landscape of Cancer Metabolism

The dynamics for non-equilibrium system (here, the gene-metabolic network dynamics) are determined by

two driving forces: the underlying landscape and the probability flux (Wang, 2015). The landscape reflects

the steady-state probability or weight of the corresponding state. Functional states with higher chances of

being observed can be quantified by the basin of attractions on the landscape. The stability of the function

can thus be determined by the barrier height or the time escaping from the basin of attraction. Therefore,

this can provide a global characterization and a stability measure in terms of the landscape topography.

The landscape has the tendency to attract the system down to the gradient. The probability flux refers

to the steady-state probability flux. It reflects the tendency for leading the system dynamics to rotate

around. It measures the degree of how far away from the equilibrium is. The dynamics of the underlying

gene-metabolic networks can then be viewed as a charged particle moving in an electric field (landscape)

and magnetic field (probability flux). Details are in Transparent Methods.

The landscape of cancer metabolism can be quantified based on the integrative network of cancer gene

regulatory-metabolic pathway, using the self-consistent mean field approximation of the corresponding

probabilistic evolution equation or by direct stochastic simulations. The landscape U is defined as U =
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� lnðPssÞ, which is directly related to steady-state probability distribution Pss of the concentration or

expression variables (see Transparent Methods).

The dynamical equations of cancer gene-metabolism integrative network includes 53 variables involving

genes, enzymes and metabolites. It is difficult to visualize the landscape in 53 dimensions. Therefore, we

choose two dimensions for display by integrating out other dimensions. Lactate dehydrogenase (LDH) is

a key enzyme for switching away from TCA cycle and can reflect aerobic glycolysis flux. Pyruvate dehy-

drogenase (PDH) is the first enzyme component of the pyruvate dehydrogenase complex (PDC), which

contributes to transforming pyruvate into mitochondria for subsequential TCA cycle and oxidative phos-

phorylation. In order to describe the different characteristics of the cancer cells in generating the en-

ergies, we choose LDH and PDH as the two-dimensional variables. Four steady-state attractors, normal

state (N), cancer OXPHOS state (P), cancer glycolysis state (G), and cancer intermediate state (I) attrac-

tors, emerge and are shown in Figures 2A and 2B. It is obvious that the LDH/PDH level of the cancer

intermediate state is lower compared with either the cancer OXPHOS state or the cancer glycolysis state.

The red region represents high potential area, whereas the blue region represents the low potential

area. Between the two steady-state attractors, there is a saddle, which is colored white in Figure 2B.

We define the saddle between normal state and cancer intermediate state as s1, the saddle between

normal state and cancer OXPHOS state as s2, the saddle between cancer intermediate state and cancer

OXPHOS state as s3, and the saddle between cancer intermediate state and cancer glycolysis state as s4.

Cancer cells display distinct metabolic features with different tissues (Lehuédé et al., 2016). As shown in

Figures 2A and 2B, normal state does not need big ATP consumptions compared with the cancer cells.

The levels of LDH and PDH are low. The level of PDH for the cancer OXPHOS state is much higher than

that of the normal state. This corresponds mainly to the oxidative phosphorylation for ATP generation,

related to the oxidative-phosphorylation-dependent cancer type such as melanomas and glioblastomas

(Obre and Rossignol, 2015). On the other hand, the level of LDH for the cancer glycolysis state is much

higher than that of the normal state. This corresponds mainly to the glycolysis for ATP generation, related

to glycolysis-dependent cancer type such as liver and colorectal cancers (Ma et al., 2013; Amann and Hel-

lerbrand, 2009; Calvisi et al., 2011; Haber et al., 1998; Graziano et al., 2016). The cancer intermediate state

has less PDH level compared with the cancer OXPHOS state and less LDH level compared with the cancer

glycolysis state. This may correspond to the mixed cancer phenotype such as prostate cancer (Elia et al.,

2015). The cancer intermediate state also bridges the normal state, the cancer OXPHOS state, and the can-

cer glycolysis state. The normal, OXPHOS, and glycolysis states can switch to each other through the cancer

intermediate state.

The above results predicted from our theoretical models have been observed in the experiments in

several cancer types. As an example, we utilize the RNA sequencing (RNA-seq) data of lung adenocar-

cinoma (LUAD) from Genomic Data Commons Data Portal (GDC). The dataset of lung adenocarcinoma

reveals three disease types: acinar cell neoplasms; adenomas and adenocarcinomas; and cystic,

mucinous, and serous neoplasms. It includes more disease types than most of other datasets from

GDC and has many normal samples. The complexity of this dataset can ensure that all the major cancer

states (glycolysis cancer state, OXHPHOS cancer state, and intermediate cancer state) can be displayed

from RNA-seq data. The gene expressions related to glycolysis, TCA cycle, and OXPHOS are selected for

further analysis. Since it is hard to visualize multiple genes, we put these genes into two groups. One

group contains glycolysis-related genes, and the other group contains TCA cycle- and OXPHOS-related

genes. These related genes in groups are listed in Table S6. Then we normalize every gene expression

and average the gene expressions in each group, respectively. The two mean gene expressions are used

for describing the level of glycolysis and OXPHOS, respectively, as shown in Figures 2C and 2D. In Fig-

ure 2C, it is obvious that the glycolysis and OXPHOS levels of normal cells are much lower than that of

cancer cells. This corresponds to the normal state (N) along with the cancer states (G,I,P) in the results of

our model. We further cluster these expressions into four groups as shown in Figure 2D. The four groups

are consistent with the four states, normal state, cancer glycolysis state, cancer OXPHOS state, and can-

cer intermediate state, from the results of our model. These trends and results have also been observed

in other cancer types, lung squamous cell carcinoma (LUSC), cervical squamous cell carcinoma and en-

docervical adenocarcinoma (CESC), and uterine corpus endometrial carcinoma (UCEC), as shown in

Figure S1.
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To further quantify the possible switching processes among steady-state attractors, we identified the domi-

nant paths between different attractors by minimizing the transition actions. The dominant paths are shown

on the landscape in Figure 2B. The yellow arrows (fromN state to I state, from I state to P state, fromN state

to P state, and from I state to G state) represent the tumorigenesis of OXPHOS or glycolysis cancer type,

whereas themagenta arrows (from I state to N state, from P state to N state, from P state to I state, and from

G state to I state) represent the cancer recovery or switching to the mixed cancer type. We also show the

steady-state probability flux of the cancer metabolism landscape in Figure 2B. The white and red arrows,

respectively, represent the direction of the steady-state probability flux and the negative gradient of the

potential landscape. The dynamics of the cancer metabolic network is determined by both the gradient

of the potential and the steady-state probability flux. The force from the steady-state probability flux leads

to the dominant paths to deviate from the conventionally expected potential gradient paths. As we can see

Figure 2. Landscape of Cancer Gene-Metabolism and Related Gene Expressions from GDC

The landscape is represented in terms of LDH expression level and PDH expression level. N, normal state; P, cancer OXPHOS state; G, cancer glycolysis

state; I, cancer intermediate state. s1, saddle between normal state and cancer intermediate state; s2, saddle between normal state and cancer OXPHOS

state; s3, saddle between cancer intermediate state and cancer OXPHOS state; s4, saddle between cancer intermediate state and cancer glycolysis state.

The yellow arrows represent the paths from N to I, from I to P, from N to P, and from I to G; the magenta arrows represent the paths from I to N, from P to N,

from P to I, and from G to I. The white arrows represent the directions of the steady-state probability flux, and the red arrows represent the directions of the

negative gradient of the potential landscape.

(A) The landscape of cancer gene-metabolism in 3D.

(B) The landscape of cancer gene-metabolism in 2D.

(C) Gene expression data with normal and cancer samples.

(D) Gene expression data clustered by K-means.

6 iScience 23, 101002, April 24, 2020



the forward and back dominant paths between the normal state and any cancer state are different from

each other to different extents. In other words, the dominant paths for cancer tumorigenesis and caner re-

covery are not necessarily reversible. Furthermore, the switchings between the cancer types are also not

necessarily reversible.

Global Sensitivity Analysis of the Cancer Metabolism Based on Landscape Topography

We define the potential difference from the saddle to the steady-state attractor as the barrier height. It rep-

resents the ability of switching from one steady-state attractor to the another. According to Figures 2A and

2B, we can quantify the barrier from s1 to normal steady state (Barriers1n) and the barrier from s1 to cancer

OXPHOS steady state (Barriers1p). Similarly, we can quantify the barrier from s2 to normal steady state (Bar-

riers2n), the barrier from s2 to cancer intermediate steady state (Barriers2i), the barrier from s3 to cancer in-

termediate steady state (Barriers3i) and the barrier from s3 to cancer OXPHOS steady state (Barriers3p), and

the barrier from s4 to cancer intermediate steady state (Barriers4i) and the barrier from s4 to cancer glycol-

ysis steady state (Barriers4g). Each of the 73 gene-gene, gene-enzyme, andmetabolite-gene interaction pa-

rameters is increased by certain percentages for perturbing the network, leading to the changes in the

respective barrier as shown in Figures 3, S2, and S3.

A B

C D

Figure 3. Global Sensitivity Analysis for the 32 Gene-Gene Regulations

(A) The changes of the barriers from s1 to normal steady state and cancer intermediate state. (B) The changes of the

barriers from s2 to normal steady state and cancer OXPHOS state. (C) The changes of the barriers from s3 to cancer

intermediate state and cancer OXPHOS state. (D) The changes of the barriers from s3 to cancer intermediate state and

cancer glycolysis state.

X axis represents the 32 gene-gene regulations. Y axis represents the barrier changes. Each parameter is increased by 1%

individually. DBarriers1n: the change of the barrier from s1 to normal steady state. DBarriers1i: the change of the barrier

from s1 to cancer intermediate state. DBarriers2n: the change of the barrier from s2 to normal state. DBarriers2p: the

change of the barrier from s2 to cancer OXPHOS state. DBarriers3n: the change of the barrier from s3 to normal state.

DBarriers3i: the change of the barrier from s3 to cancer intermediate state. DBarriers4i: the change of the barrier from s4 to

cancer intermediate state. DBarriers4g: the change of the barrier from s4 to cancer glycolysis state.
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Interestingly, the barrier changes from s4 to cancer OXPHOS state and from s4 to glycolysis cancer state are

opposite, shown in Figures 3C and 3D, illustrating the competing nature of the two metabolic pathways of

cancer. It also implies that the formation of different cancer type is caused by distinct gene-gene regula-

tions. The global sensitivity analysis based on the landscape topography via barrier heights predicts certain

key gene-gene regulations, including Akt->cMyc, Akt-jp53, AMPK-jmTOR, AMPK-jNOX, cMyc->HIF-1,

HIF-1>NOX, HIF-1->PDK, p53->HIF-1, P53->PDK, PDK->Akt, PI3K->mTOR, PTEN-jHIF-1, SOD->P53,

and VEGF->SOD. HIF-1 and p53 emerge frequently in these predicted important gene-gene regulations.

It has been reported that p53 responds to metabolic changes and influences the metabolic pathways

through several mechanisms (Vousden and Ryan, 2009). HIF-1 plays an important role in activating tran-

scription of genes encoding glucose transporters and glycolytic enzymes (Semenza, 2010).

We consider that the regulations for promoting cancer OXPHOS state if the barrier changes of the cancer

OXPHOS state are more than that of the cancer intermediate state. This is because the cancer OXPHOS

state becomes more stable compared with the intermediate state. In a similar way, the regulation changes

are for promoting the cancer glycolysis state if the barrier changes of the cancer state are more than that of

the intermediate state. For these gene-gene regulations, the most important ones for promoting cancer

OXPHOS state are PI3K->mTOR, HIF-1->PDK, Akt->cMyc, mTOR->HIF-1, AMPK-jNOX, cMyc->HIF-1,

HIF-1-jAMPK, and Akt->mTOR, whereas the most important ones for promoting the cancer glycolysis state

are VEGF->SOD, SOD->p53, HIF-1->NOX, p53-jPDK, p53-jHIF-1, PTEN-jHIF-1, p53->PTEN, mTOR->HIF-

1, PTEN->p53, AMPK-jmTOR, and HIF-1-jAMPK. Akt->cMyc is a major signaling pathway for survival in the

lymphoid cell (Domı́nguez-Cáceres et al., 2004). PDK is upregulated by HIF-1 in the lymphocyte cell line.

Activation of the PI3K/mTOR signaling pathway is recurrent in different lymphoma types (Tarantelli

et al., 2017). Lymphomas belong to the OXPHOS-dependent cancer type (Lehuédé et al., 2016). Activation

of the PI3K/Akt/mTOR pathway caused by aberrations at numerous points of genes contributes to the

development of breast cancer (McAuliffe et al., 2010). The regulation mTOR->HIF-1 enhanced the expres-

sion of GLUT1, which is an important enzyme for glycolysis (Lien et al., 2016). Increasing of NOX could be

caused by promoting of HIF-1->NOX. NOX has also been identified as amajor source of ROS in endothelial

cells (Diebold et al., 2012). It has been reported that an increase of ROS profits glycolysis (Molavian et al.,

2016).

Landscape Topography Changes upon Changes in Important Regulations

Different types of cancer cells are located in different organs and depend on different microenvironments.

Thus, in the realistic conditions, the underlying gene and metabolic regulation strengths might be varied.

To understand this further, we explored the changes of landscape topography upon the changes in impor-

tant regulation strengths. Here, we change the gene-gene regulations VEGF->SOD as an example; the

landscape topography changes by other important regulations are showed in Figures 4, S4, and S5. In pre-

vious experiments, the VEGF can induce SOD mRNA and the proteins in human endothelial cells (Abid

et al., 2001). SOD can catalyze the dismutation of ROS into either O2 or H2O2. Thus, it promotes ROS clear-

ance, when the strength of VEGF->SOD is enhanced. The landscape topography changes upon the in-

crease of the VEGF->SOD regulation are shown in Figure 4.

At gVEGF�>SOD = 1.34, only the cancer glycolysis state emerges as shown in Figure 4A. As gVEGF�>SOD is

increased to 1.67, the cancer intermediate state emerges as shown in Figure 4B. At these two regulation

strengths, the system is poor for cleaning ROS. Cancer cells exhibit an increased intrinsic ROS stress,

which leads to mitochondrial malfunction (Pelicano et al., 2004). Under these conditions, the system ex-

hibits only the cancer glycolysis state or the cancer intermediate state. It is impossible to switch from the

cancer state to the normal state. When gVEGF�>SOD is increased to 1.88, the ROS stress is alleviated and

the normal state emerges. When the gVEGF�>SOD is increased to 2, the cancer OXPHOS state emerges.

Along with the increase of gVEGF�>SOD , the cancer intermediate state moves toward the cancer OXPHOS

state. Then the cancer intermediate state and cancer OXPHOS state merge together. The system be-

comes tri-stable as shown in Figure 4E. If we reverse the process, the original cancer OXPHOS state splits

into the cancer OXPHOS state and the intermediate state. This can explain why some cancer types

exhibit glycolysis at the early stage and mixed cancer type at the late stage, such as prostate cancer

(Costello et al., 2005). Similar landscape topography changes are shown in Figure S6, as the regulation

strength of gHIF�1�>GPI is increased. When the regulation strength gVEGF�>SOD continues to increase, the

cancer glycolysis state disappears as shown in Figure 4F. In the whole process, the landscape topog-

raphy changes from the cancer glycolysis state to the coexistence of the normal state and cancer
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OXPHOS state. Although the cancer glycolysis state is destroyed by increasing gVEGF�>SOD , the OXPHOS

cancer state eventually emerges. This indicates the complexity of cancer metabolic mechanism and the

difficulty for treating cancer.

It is worthy to mention, the glycolysis cancer state and the intermediate cancer state coexist in certain con-

ditions as shown in Figure 4B. Regulation strengths can be perturbed by drug therapy, and this could lead

to the lower expression levels of the cancer markers. However, owing to the lack of the normal state under

these conditions, the cancer can come back to one of the cancer states after stopping the drugs, if the regu-

lation strengths are not influenced significantly during the therapy.

Landscape Changes of Normal Cell Glycolysis Switch through Decreasing O2 Level

Cancer cells can generate ATP through glycolysis. However, normal cells also utilize glycolysis for gener-

ating ATP in specific conditions or developmental stages, such as hypoxia or embryogenesis. To reveal

the different characteristics between cancer cells and normal cells, we depict the landscape changes of

normal cells by decreasing the O2 level. We showed the landscape of normal cell at normal O2 level([O2] =

0.05) as shown in Figure 5. The level of LDH and PDH is low. It stays at the normal state. When the O2 level is

decreased to 0.02, the landscape starts to become shallower and the diameter of the basin expands along

the LDH axis significantly. Simultaneously the LDH level increases slowly. This means that the glycolysis of

the normal cells increases and becomes less stable. When the O2 level is decreased to 0.01, the landscape

Figure 4. Landscape Topography Changes upon Increases in Regulation gVEGF�>SOD
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basin becomes deeper and the diameter of the basin shrinks along the LDH axis significantly. The basin

state becomes more stable. When the level of O2 level is decreased to 0.005, the level of LDH is near to

that of the cancer glycolysis state (G). Finally, the normal glycolysis state (NG) emerges, which is distinct

from the cancer glycolysis state (G).

Although the glycolysis state can be reached in cancer cells and normal cells in hypoxia, the characteristics

are different. We decrease the regulation strength VEFG->SOD to view the landscape change as shown in

Figure S7. When VEFG->SOD is increased to 1.5, the cancer glycolysis state emerges. For cancer cells, it

has to go over the barrier to reach the cancer glycolysis state (G) and the cancer cell can have the glycolysis

function. The switching to glycolysis is difficult. But once the barrier is crossed over, the switching will be

fast. The reverse switching is also difficult. Conversely, for normal cells, switching from the normal state

(N) to the normal glycolysis state (NG) can be realized by decreasing the O2 level without barrier crossing.

When the O2 level becomes normal, the switching back to normal function spontaneously occurs.

Figure 5. Landscape Change upon Glycolysis Switch of Normal Cells by Decreasing O2 Level

N, normal state; NG, normal glycolysis state.
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Probability Flux as a Dynamical Origin and Entropy Production as a Thermodynamic Origin of

the Bifurcation from Normal State to Cancer State

Up to now, we discussed the landscape perspective of the cancer metabolism. Since the probability flux is

also a driving force in addition to the landscape for the underlying cancer gene-metabolic network dy-

namics, we need to explore its role in cancer metabolism. For doing so, we calculate the mean probability

flux and the associated nonequilibrium thermodynamic cost in terms of the entropy production rate (EPR)

for glycolysis switching of normal cells and cancer cells, respectively.

We explore the bifurcation diagram for describing the changes of the states or phases for glycolysis switch-

ing for normal cells and cancer cells. As we can see, the switching between normal state and normal glycol-

ysis state occurs at the O2 level of around 0.01, whereas the switching between the normal state and the

coexistence of normal state and cancer glycolysis state occurs at the regulation strength VEFG->SOD of

around 1.5 as shown in Figure 7A. Above the O2 level of around 0.01, the system is dominated with the

normal state, whereas below the O2 level of around 0.01, the system is dominated with the normal glycol-

ysis state. At the O2 level of around 0.01, the bifurcation or phase transition point between the normal state

and the normal glycolysis state occurs. On the other hand, below the regulation strength VEFG->SOD of

around 1.5, the system is dominated with the normal state, whereas above the regulation strength VEFG-

>SOD of around 1.5, the system is dominated with the coexistence between the normal state and the can-

cer glycolysis state as shown in Figures 7C and 7D. At the regulation strength VEFG->SOD of around 1.5,

the bifurcation or phase transition between the normal state and coexistence of normal state and cancer

glycolysis state occurs.

For normal cells, both themean probability flux and the associate thermodynamic cost EPR are shown to be

low at the ranges of O2 level from 0.05 to 0.02 as shown in Figure 6A. As the O2 level decreases further, both

the mean probability flux and EPR increase sharply and then decrease sharply. Both the mean probability

flux and EPR form peaks at almost the location (0.01) where the bifurcation or the phase transition appears

between the normal state and the glycolysis state.

For cancer cells, both the mean probability flux and the associate thermodynamic cost EPR are low when

the regulation strength VEFG->SOD is more than 1.6 as shown in Figure 6B. When the regulation strength

decreases further, switching emerges from monostability to bistability, with the coexistence of the normal

state and the cancer glycolysis state. Themean probability flux and EPR increase sharply and then decrease

quickly with decreasing regulation strength. Both mean probability flux and EPR form peaks at almost the

same location where the bifurcation or the phase transition occurs between monostability and bistability.

The landscape and probability flux have different impacts on the stability of the states. The landscape flux

tends to stabilize the point attractor states due to the gradient nature of the associated force, whereas the

probability flux tends to destabilize the point attractor states due to the rotational nature of the associated

force. Although the different states or phases are stabilized by the landscape attractors, in order to

generate new states or phases one needs to destabilize the old states and stabilize the new states. There-

fore, during the switching via bifurcations or phase transitions, the probability flux becomes crucial for the

changes in stabilities. In fact, the probability flux provides a dynamical origin of the bifurcation with the sta-

bility changes and state switching. The thermodynamic cost in terms of the entropy production rate is

closely related to the probability flux, as illustrated in Figure 6. In steady state, the EPR is equal to the

heat dissipation rate. An increase of EPRmeans more thermodynamic dissipation for maintaining the state.

A peaked EPR suggests that the glycolysis switching process of normal cells and cancer cells require signif-

icantly more thermodynamic dissipation. In other words, to have the glycolysis switching of normal cells

and cancer cells, higher mean probability flux and EPR are necessary.

As we can see, both the glycolysis switching of normal and cancer states have clear quantitative signatures

of peaked probability flux and entropy production rate. The probability flux provides a dynamical origin of

the bifurcation or phase transitions for glycolysis switching in normal and cancer cells. The entropy produc-

tion rate provides the thermodynamic origin of the bifurcations or phase transitions for glycolysis switching

in normal and cancer cells. Another example shows the peaked mean probability flux and EPR at the bifur-

cation from the bistability of normal state and cancer glycolysis state to tristability of normal state, cancer

glycolysis state, and intermediate state as shown in Figures 6C, 7B, 7E, and 7F. We expect that bifurcations

or phase transitions of all the processes involving cancer formation and recovery are driven by the
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probability flux and the associated entropy production rate. The probability flux and EPR can be quantified.

They may provide an indicator or marker for cancer formation useful for early diagnosis and prevention.

Cancer Metabolism Oscillation Landscape

It is interesting to see that oscillation emerges under certain regulatory interactions. The glycolytic oscilla-

tions have been observed in individual HeLa cervical cancer cells (Amemiya et al., 2017). A model of HeLa

cancer cells growing under hypoxic conditions shows that the oscillations persist in a wide range of param-

eters (Martin et al., 2017). In our study, the oscillations have been found and the corresponding landscape

has a shape of inhomogeneous Mexican hat displayed in Figure 8A. Although landscape attracts the system

down to the oscillation ring valley, it is the probability flux that drives the stable oscillation flow. Interest-

ingly, the normal state, the cancer OXPHOS state, and the cancer glycolysis state attractors are deeper

A

B

C

Figure 6. EPR and Mean Probability Flux Changes by Changing Parameters

Circles: monostability (N); squares: bistability (N,G); triangles: tristability (N,G,I).

(A) EPR and mean probability flux changes upon glycolysis switch of normal cells by decreasing O2 level.

(B) EPR and mean probability flux changes upon glycolysis switch of cancer cells by regulating VEGF->SOD.

(C) The EPR and probability flux change for cancer cells upon increases in regulation SOD->p53.
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than the other places on the limit cycle oscillation ring. This infers the longer residence time of these states

along the oscillation paths. As shown in Figure 8B, the limit cycle oscillates from the normal state to the

cancer OXPHOS state and then to the cancer glycolysis state forming a clockwise cycle. Glycolysis has

the advantage of producing ATP at a high rate and generating intermediate metabolites required for rapid

cell proliferation (Heiden et al., 2009), whereas OXPHOS contributes significantly to the cancer metastasis

(Viale et al., 2015; Roesch et al., 2013; Tan et al., 2015; Porporato et al., 2014). The limit cycle oscillation be-

tween the proliferation and metastasis illustrates serious malignancy of cancer in clinics such as systemic

metastasis (Burton et al., 2008). As shown in Figure 8B, the LDH expression level decreases from the cancer

glycolysis state to the normal state. The ability of proliferation descends. At this state, the cancer cells

behave like normal cells. Previous studies suggest that the balance between dormancy and death of cancer

cells may be mediated by the precise levels of proliferation and survival signals (Yeh and Ramaswamy,

2015). Then, the PDH expression level increases from the normal state to the cancer OXPHOS state. The

ability of metastasis ascends. The LDH expression level increases and PDH expression level decreases

from the cancer OXPHOS state to the cancer glycolysis state. Metabolic oscillation of cancer cell can

lead to the switching of proliferation and metastasis of cancer cell physiologically. Once cancer cells

emerge and reach a certain amount, the nutrition in the microenvironment is limited to support cancer cells.

Figure 7. Bifurcation Diagrams and Landscape Change upon Regulating VEGF->SOD and SOD->p53 Strength

(A) Bifurcation diagrams with regulation of VEGF->SOD.

(B) Bifurcation diagrams with regulation of SOD->p53.

(C) Landscape at gVEGF�>SOD = 1.3.

(D) Landscape at gVEGF�>SOD = 1.8.

(E) Landscape at gSOD�>p53 = 3.4.

(F) Landscape at gSOD�>p53 = 4.4. Solid line: In (A) and (B), blue, red, and yellow solid lines represent normal, cancer glycolysis, and cancer intermediate

steady state, respectively. Colored dashed lines represent unstable steady states.
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For survival, cancer cells with metabolic oscillation promote metastasis, when it stays at the OXPHOS state

in the limit cycle. However, to acquire the ability for metastasis, cancer cells need required mutations, which

may happen at the glycolysis state in the limit cycle. Once the required conditions mature and cancer cells

stay at the OXPHOS state in the limit cycle, they may start to metastasize. Cancer cells can colonize at any

place good enough for cancer cells to survive for a long time in the oscillation. The switching between pro-

liferation and metastasis demonstrates the great malignancy of cancer. It has been reported that certain

lung cancers metastasize quickly to multiple sites (Chaffer and Weinberg, 2011).

We also quantified the changes of the oscillation landscape topography upon the changes of the regula-

tion strength of VEGF�>SOD. As shown in Figure 9, we increase the regulations of VEGF� > SOD starting

from the monostable state, cancer glycolysis state. As the VEGF�>SOD regulation strength increases, the

expression level of LDH decreases. When gVEGF�>SOD is increased to 5, the system changes from the orig-

inal glycolysis cancer state to the normal state. The limit cycle emerges when gVEGF�>SOD is increased to 6.

As the regulation strength gVEGF�>SOD increases further, the limit cycle expands. The maximum expression

levels of LDH and PDH are increased. When gVEGF�>SOD is increased to 10, the maximum expression levels

of LDH and PDH reach to the expression levels of the cancer glycolysis state and the cancer OXPHOS state,

Figure 8. The Landscape of Cancer Metabolism Oscillation

The white arrows represent the directions of cancer metabolism oscillation.

(A) The landscape of cancer metabolism oscillation in 3D.

(B) The landscape of cancer metabolism oscillation in 2D.
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respectively. The limit cycle oscillates coherently among the normal state, the cancer OXPHOS state, and

the cancer glycolysis state.

We also calculate the probability flux integral as a measure of the magnitude of the probability flux and the

coherence of the oscillation when the oscillation emerges as shown in Figure 9H. The probability flux inte-

gral correlates with the coherence. This indicates that the higher probability flux leads to higher oscillation

coherence or the stability of the oscillation flow. The probability flux integral and coherence are increased

sharply when the system switches from the original normal state phase to the oscillation phase. This indi-

cates that a larger probability flux leads to a stronger driving force for the tendency of the oscillation. In

addition, we calculate the entropy production rate (EPR) for the phase transition from monostability to

oscillation by increasing the regulation strength of VEGF� >SOD as shown in Figure 9G. The EPR repre-

sents the total entropy production rate. In steady state, the EPR is equal to the heat dissipation rate. There-

fore, increasing of EPR means more dissipation for maintaining the state. When the system switches to the

Figure 9. The Landscape Topography of Oscillation Changes upon the Increase of Regulation of gVEGF�>SOD

(A and B) Emergence of cancer glycolysis state with gVEGF�>SOD from 3.5 to 4. gVEGF�>SOD = 3.5(A). gVEGF�>SOD = 4(B).

(C) Emergence of normal state with gVEGF�>SOD = 5.

(D–F) Emergence of cancer metabolism oscillation with gVEGF�>SOD from 6 to 10. gVEGF�>SOD = 6(D). gVEGF�>SOD = 6.5(E). gVEGF�>SOD = 10(F).

(G) Entropy production rate of monostability and oscillation.

(H) Probability flux integral and coherence of oscillation.

(I) Switching time between glycolysis and OXPHOS. Ttotal: oscillation time; TG�>P : switching time from G to P; TP�>G: switching time from P to G.
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oscillation, the EPR is sharply increased. This implies that the oscillation phase requires much more energy

cost to maintain. Therefore, more energy has to be pumped into the system for switching to the oscillation.

This also implies that cancer metabolism oscillation consumes more energy in order to support the malig-

nancy of cancer. We notice that both probability flux integral and EPR have a sharp increase at the regula-

tion strength of VEGF�>SOD around 6. This is also near the bifurcation point from the monostable normal

state to the oscillation as seen in the bifurcation diagram. This again illustrates that the probability flux pro-

vides a dynamical origin and EPR provides a thermodynamic origin for the emergence of the bifurcation or

phase transition to the oscillation. Besides, we also calculate the oscillation and switching times between

glycolysis and OXPHOS as shown in Figure 9I. The switching time from glycolysis to OXPHOS is much

greater than fromOXPHOS to glycolysis. The oscillation time is determined by both the flux and the circum-

ference in the limit cycle. The timescale of the oscillation is much greater than the oscillation timescale in

the previous experimental studies (Amemiya et al., 2017). The oscillation of glycolysis in the previous exper-

imental studies is damped and caused by the sudden change of microenvironment such as the starvation of

cells. It is based on the short time period regulations between genes andmetabolites. The oscillation in our

model is stable, and the model is focused on the studies of steady characteristics of cancer cells. It is based

on the long time period regulations between genes and metabolites.

Metabolic Therapeutic Target Prediction

The metabolic characteristics of cancer cells are different from those of the normal cells. Targeting on

cellular metabolism is a promising strategy for cancer therapy (Zhao et al., 2013). Here, we predict themeta-

bolic therapeutic targets based on the landscape analysis. For each gene or enzyme xi, FðxiÞ is changed to

F 0ðxiÞ = FðxiÞ + ci. The term ci represents the corresponding changes in activation or inhibition regulations

due to the perturbations on the variable. The potential landscape of the four steady-state attractors are

quantified for the corresponding ci, respectively. If ci>0, it represents the activation of the gene or the

enzyme. If ci<0, it represents the inhibition of the gene or the enzyme. We define the changes of the cancer

OXPHOS state as the degree of therapeutic effect on the OXPHOS cancer type and the changes of the can-

cer glycolysis state as the degree of therapeutic effect on the glycolysis cancer type. If the changes of the

barrier height are negative, this leads to the instability of certain cancer steady state. This represents the

positive effect on the therapeutic target.

The effects of metabolic therapeutic target are shown in Figure 10. The gene or the enzyme name starting

with ‘-’ means the inhibition in the expressions of the therapeutic target, and the one starting with ‘+’ means

the activation in the expressions of the therapeutic target. We predict five important OXPHOS cancer ther-

apeutic targets, -PDH, +p53, +mTOR, +PTEN, and -Akt, and three important glycolysis cancer therapeutic

targets, -PTEN, -p53, and +mTOR. Melanoma belongs to the OXPHOS cancer type. It is reported that the

suppression of PDH phosphorylation leads the melanoma cells to death in vitro (Kaplon et al., 2013). Inhi-

bition of Akt expression converts the melanoma cells to be less invasive (Govindarajan et al., 2007). What is

interesting is that +mTOR is both anOXPHOS cancer therapeutic target and a glycolysis cancer therapeutic

target.

It has been reported that combined therapies give more effectiveness on cancer metabolism than the in-

dividual therapy (Sahra et al., 2010; Cheong et al., 2011). Thus, we predicted the effects of combination

therapy. This is according to the landscape topography changes in terms of the barrier heights, which

lead to the higher stability/lower stability for the cancer basins of attraction. The combination therapy

for OXPHOS and glycolysis cancer is predicted in Figures S8 and S9. The values in the color matrix repre-

sent the degrees of therapeutic effect. The red color represents the positive therapeutic effect, whereas the

blue color represents the negative therapeutic effect. The most effective combinations of therapy for the

OXPHOS cancer type are +GluT1 and -PKM2. The most effective combinations of therapy for glycolysis

cancer type are +mTOR and +NOX.

For themalignancy of cancer metabolism oscillation, we aim to weaken the oscillation capability of the limit

cycle and drive the system to become monostable at the normal state by promoting or inhibiting certain

genes or enzymes. The oscillation capability can be estimated by the barrier height from the highest point

at the center island to the lowest point on the limit cycle. We predict the effect of the therapeutic target for

cancer oscillations as shown in Figure S10. The most effective therapeutic targets are +mTOR, +PTEN,

and +PDH.
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DISCUSSION

Reprogramming of cellular metabolism for cancer cell is complex. It is still challenging to reveal the under-

lying mechanism for influencing the biological function of the cancer cells by metabolism variation. In this

study, the cancer gene-metabolism integrative network model was built including 13 genes, 17 enzymes,

and 23 metabolites. The network includes metabolic reactions of the glycolysis pathway and TCA cycle. In

order to reflect the realistic metabolic pathway, we include the whole network on cancer metabolism for

modeling. Four steady-state basins of attractors emerge, including the normal state (N), the cancer OXH-

POS state (P), the cancer glycolysis state (G), and the cancer intermediate state (I). It is interesting that the

three cancer states correspond to the oxidative-phosphorylation-dependent cancer cell type, the glycol-

ysis-dependent cancer cell type, and the mixed cancer cell type. These cancer types have been observed

in the experiments, respectively (Amann and Hellerbrand, 2009; Calvisi et al., 2011; Elia et al., 2015; Gra-

ziano et al., 2016; Haber et al., 1998; Ma et al., 2013; Obre and Rossignol, 2015).

In the realistic biological environment, the regulation/interaction strengths might not be fixed. We explore

the changes of landscape topography upon changes of important regulation strengths. The cancer cells in

different organs or microenvironments exhibit different characteristics. For example, the oxidative-phos-

phorylation-dependent cancer type such as melanomas and glioblastomas resides at certain location on

the landscape shown in Figure 4B, owing to itsmicroenvironment. In a similar way, the glycolysis-dependent

cancer type resides at another location on the landscape shown in Figure 4F. Besides, cancer cells can switch

metabolism for ATP generation such as prostate cancer at different stages (Costello et al., 2005). This can be

explained by the changes of the landscape topography in Figures 4D and 4E. Regulation/interaction

A

B

Figure 10. Predictions of Metabolic Therapeutic Targets for OXPHOS Cancer and Glycolysis Cancer

The parameter ci = 2 3 10�4.

(A) Therapeutic effect for inhibiting the expressions of the genes and the enzymes.

(B) Therapeutic effect for promoting the expressions of the genes and the enzymes.
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strengths of each patient cancer cells are different owing to individual conditions. This implies that a patient

can relapse if the regulation strengths are not influenced significantly during the therapy as shown clearly on

the landscape.However, different patients with different regulation strengths can havedifferent therapeutic

results shown on the landscape topography in Figure 4F. Thus, the landscape topography provides a frame-

work to study specific cancer types, specific cancer stages, and specific individual patients.

Both cancer cells and normal cells can depend on glycolysis for generating ATP at specific conditions.

Some types of cancer cells can generate energy through glycolysis, even at the microenvironment contain-

ing enough O2. Normal cells have to switch to glycolysis owing to hypoxia. The glycolysis switching for

normal and cancer cells can be described by the bifurcation. The glycolysis switching process or bifurcation

shows the peaks in both the mean probability flux and entropy production rate. We also calculate the mean

probability flux and EPR for another bifurcation and obtain similar results as shown in Figures 7B and 6C. It

shows that the peak of mean probability flux and EPR appears near the bifurcation point. The bifurcation

leads to the emergence of the cancer states (G,I,P) and gives rise to the possibility of appearance of cancer

cells. Themean probability flux provides a dynamical origin of the bifurcation, whereas EPR provides a ther-

modynamic origin of the bifurcation. The cell metabolic and cancer states can be measured through Sea-

horse analyzer Fluorescence-lifetime imaging microscopy (Jia et al., 2020; Lukina et al., 2019). The heat

change of cells can be measured through isothermal titration calorimetry (Rodenfels et al., 2020). However,

these may not be quantitatively accurate enough to clearly distinguish different states, although these

methods can be used to measure the metabolic change qualitatively or semi-quantitatively. Thus, there

seems no obvious quantitative boundary between the cell metabolic states and cancer states. In other

words, these measurements usually give continuous values and it is not clear if there is a clear separation

between the cell metabolic states and cancer states. There seems no other clear indicators from the

perspective of biology for seeing the emergence of the cancer and cell metabolic states. In contrast,

from the physics perspective, we found that there is an obvious peak of the nonequilibrium driving force

for dynamics in terms of the mean probability flux and the nonequilibrium thermodynamic cost in terms

of the entropy production rate EPR to clearly indicate the emergence of different states, the switching pro-

cess between these states, and the corresponding bifurcations/phase transitions based on the landscape

and flux theory. Therefore, the physical measures in terms of nonequilibrium dynamics and thermody-

namics can provide quantitative predictors and indicators for clearly seeing the emergence of the cell

states such as cancer and the cell metabolic states as well as the corresponding switching in terms of bi-

furcations/phase transitions between them. The mean probability flux and the EPR can provide as a quan-

titative indicator or marker for the emergence of cell metabolic states and cancer states useful to the early

diagnosis and prevention.

Cancer metabolism oscillations emerge upon certain cell-cell regulations/interactions. The glycolytic oscil-

lations have been observed in individual HeLa cervical cancer cells (Amemiya et al., 2017). In our study, we

found that the cell can oscillate between the cancer glycolysis state, normal state, and cancer OXPHOS

state clockwise. Along with the oscillation, the cell can switch between proliferation and metastasis. This

can lead to serious malignancy of cancer in clinics (Burton et al., 2008). Compared with other cases, cancer

metabolism oscillation is more dangerous for patients. Through the analysis of the probability flux integral

and coherence as well as entropy production rate, it is suggested that more energy is dissipated to support

the malignancy of cancer.

We predict five most effective metabolic therapeutic targets for the OXPHOS cancer type and three most

effective metabolic therapeutic targets for the glycolysis cancer type. We suggest that +mTOR is effective

for both the OXPHOS cancer type and the glycolysis cancer type. Combinations of therapy have been sug-

gested to be more effective (Sahra et al., 2010; Cheong et al., 2011). We predict the most effective combi-

nation for OXPHOS cancer type as +GluT1 and -PKM2 and the one for glycolysis cancer type as +mTOR

and +NOX, respectively. We also predict three most effective metabolic therapeutic targets for cancer

oscillation as +mTOR, +PTEN, and +PDH.

In summary, our model provides insights into the metabolism of different cancer types. The landscape and

probability flux approach provides a framework for studying the underlying mechanism of the specific can-

cer type, specific cancer stage, and specific individual. The probability flux and associated entropy produc-

tion rate provide, respectively, a dynamic and thermodynamic origin as well as a quantitative indicator for

the bifurcations or phase transitions of cell switching and cancer formation. The cancer metabolism
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oscillation uncovered in our model brings a perspective on howmalignant cancer cells switch between pro-

liferation and metastasis. The predicted metabolic therapeutic targets maybe useful in developing anti-

cancer strategies.

Limitations of the Study

The metabolism of cancer cell is complex. Cancer cell can utilize multiple ways to acquiring nutrient. Be-

sides uptake of glucose, cancer cells can swallow proteins, living cells, and apoptotic bodies, which are

resolved into small molecules as nutrient for metabolism (Pavlova and Thompson, 2016). The model in

our study is not able to include these kinds of complex function of cancer metabolism. Besides the hallmark

of metabolism reprogramming, cancer involves other complex hallmarks (Hanahan and Weinberg, 2011).

Although the model in our study contains many important genes, it is difficult to include all the genes for all

the hallmarks of cancer, owing to the intrinsic complexity. A comprehensive network including all cancer

hallmarks is still very challenging. We provide the metabolic therapeutic targets for cancer based on our

current model and the landscape-flux theory. The differences in cancer cell microenvironments between

tissues can give rise to the differences in the metabolism and gene regulation strengths of cancer cells.

Owing to the lack of the precise measurements of the model parameters for different tissues, the effect

of cancer metabolic therapeutic target predicted may vary in different tissues. The predicted cancer meta-

bolic therapeutic targets can still be challenging for precise treatment.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

DATA AND CODE AVAILABILITY

All code are given in GitHub https://github.com/lwb422/cancer_metabolism.
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Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2020.101002.
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Rodrı́guez-Enrı́quez, S., Encalada, R., Moreno-
Sánchez, R., and Saavedra, E. (2011). Modeling
cancer glycolysis. Biochim. Biophys. Acta 1807,
755–767.

Marı́n-Hernández, A., López-Ramı́rez, S.Y., Mazo-
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Figure S1: Glycolysis, TCA cycle and OXPHOS related gene expressions from GDC (related to Figure 2).
(A,C,E)Gene expression data with normal and cancer samples. (B,D,F)Gene expression data clustered by K-
means. LUSC: lung squamous cell carcinoma; LUAD: lung adenocarcinoma; UCEC: uterine corpus endometrial
carcinoma. N: normal state; P: cancer OXPHOS state; G: cancer glycolysis state; I: cancer intermediate state.
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Figure S2: Global sensitivity analysis for the 13 metabolite-gene regulations (related to Figure 3). X-axis rep-
resents the 13 metabolite-gene regulations. Y-axis represents the barrier changes. Each parameter is increased
by 1% individually. ∆Barriers1n: the change of the barrier from s1 to normal steady state. ∆Barriers1i: the
change of the barrier from s1 to cancer intermediate state. ∆Barriers2n: the change of the barrier from s2
to normal state. ∆Barriers2p: the change of the barrier from s2 to cancer OXPHOS state. ∆Barriers3n: the
change of the barrier from s3 to cancer normal state. ∆Barriers3i: the change of the barrier from s3 to cancer
intermediate state. ∆Barriers4i: the change of the barrier from s4 to cancer intermediate state. ∆Barriers4g:
the change of the barrier from s4 to cancer glycolysis state.
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Figure S3: Global sensitivity analysis for the 28 gene-enzyme regulations (related to Figure 3). X-axis represents
the 28 gene-enzyme regulations. Y-axis represents the barrier changes. Each parameter is increased by 1%
individually. ∆Barriers1n: the change of the barrier from s1 to normal steady state. ∆Barriers1i: the change
of the barrier from s1 to cancer intermediate state. ∆Barriers2n: the change of the barrier from s2 to normal
state. ∆Barriers2p: the change of the barrier from s2 to cancer OXPHOS state. ∆Barriers3n: the change of the
barrier from s3 to cancer normal state. ∆Barriers3i: the change of the barrier from s3 to cancer intermediate
state. ∆Barriers4i: the change of the barrier from s4 to cancer intermediate state. ∆Barriers4g: the change of
the barrier from s4 to cancer glycolysis state.



Figure S4: Landscape topography changes upon increases in regulation γHIF−1−>PDK (related to Figure 4).



Figure S5: Landscape topography changes upon increases in regulation γP53−>PDK (related to Figure 4).



Figure S6: Landscape topography changes upon increases in regulation γHIF−1−>GPI (related to Figure 4).



Figure S7: Landscape topography changes upon increases in regulation γV EGF−>SOD (related to Figure 6).
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parameter ci = 1e-4.
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Figure S10: Predictions of metabolic target for cancer metabolism oscillation (related to Figure 10). The param-
eter ci = 1e-4. (A)Therapeutic effect for inhibiting the expressions of the genes and the enzymes. (B)Therapeutic
effect for promoting the expressions of the genes and the enzymes.



Table S1: Genes, enzymes and metabolites for cancer gene-metabolism integrative network modeling (related
to Figure 1).

Genes Enzymes Metabolites
Gene symbol Abbr. Name Abbr. Name
Akt GluT1 Glucose transporter 1 Glu Glucose
AMPK HK Hexokinase G6P Glucose 6-phosphate
cMyc G6PD/6PGD glucose-6-phosphate dehydro-

genase/Phosphogluconate de-
hydrogenase

F6P Fructose 6-phosphate

HIF-1 GPI Phosphoglucose isomerase FBP Fructose 1,6-bisphosphate
mTOR PFKFB2/3 6-phosphofructo-2-

kinase/fructose-2,6-
biphosphatase 2/3

G3P Glyceraldehyde 3-phosphate

NOX PFK-1 Phosphofructokinase DHAP Dihydroxyacetone phosphate
p53 ALD Aldolase 1,3BPG 1,3-Bisphosphoglycerate
PDK TPI Triose phosphate isomerase 3PG 3-phosphoglycerate
PI3K GAPDH Glyceraldehyde 3-phosphate

dehydrogenase
2PG 2-phosphoglycerate

PTEN PGK Phosphoglycerate kinase PEP phosphoenolpyruvate
RAS PHGDH Phosphoglycerate dehydroge-

nase
Pyr Pyruvate

SOD PGAM Phosphoglycerate mutase Lac Lactate
VEGF ENO Enolase R5P Ribose 5-phosphate

PKM2 Pyruvate kinase isozymes M2 F2,6BP Fructose 2,6-bisphosphate
PDH Pyruvate dehydrogenase Ser Serine
ACC Acetyl-CoA carboxylase Cit Citrate
LDH Lactate dehydrogenase AMP Adenosine monophosphate

ADP Adenosine diphosphate
ATP Adenosine triphosphate
NAD+ Nicotinamide adenine dinu-

cleotide
NADH Nicotinamide adenine dinu-

cleotide reduced
complex2 Succinate-Q reductase
ROS Reactive oxygen species



Table S2: Regulations among genes, enzymes and metabolites (related to Figure 1).

Source Target p/n type Refs
Akt cMyc p g2g (Landeghem et al., 2013; Lien et al., 2016)
Akt p53 n g2g (Landeghem et al., 2013)
Akt mTOR p g2g (Lien et al., 2016)
AMPK Akt p g2g (Landeghem et al., 2013)
AMPK mTOR n g2g (Mulukutla et al., 2010)
AMPK NOX n g2g (Song and Zou, 2012; Wang et al., 2010c)
cMyc HIF-1 p g2g (Faubert et al., 2013; Doe et al., 2011)
cMyc VEGF p g2g (Landeghem et al., 2013)
HIF-1 AMPK n g2g (Emerling et al., 2009; Zhang et al., 2008)
HIF-1 NOX p g2g (Yuan et al., 2011)
HIF-1 PDK p g2g (Justus et al., 2015; Courtnay et al., 2015; Lien et al., 2016)
HIF-1 VEGF p g2g (Justus et al., 2015; Courtnay et al., 2015)
mTOR HIF-1 p g2g (Lien et al., 2016; Harada et al., 2008)
p53 cMyc n g2g (Landeghem et al., 2013)
p53 HIF-1 n g2g (Landeghem et al., 2013)
p53 PDK n g2g (Saunier et al., 2015)
p53 PTEN p g2g (Landeghem et al., 2013)
PDK Akt p g2g (Landeghem et al., 2013)
PI3K Akt p g2g (Courtnay et al., 2015)
PI3K mTOR p g2g (Courtnay et al., 2015)
PI3K VEGF p g2g (Landeghem et al., 2013)
PTEN HIF-1 n g2g (Landeghem et al., 2013)
PTEN p53 p g2g (Landeghem et al., 2013)
PTEN PI3K n g2g (Landeghem et al., 2013; Courtnay et al., 2015)
RAS AMPK p g2g (Mihaylova and Shaw, 2011)
RAS HIF-1 p g2g (Mihaylova and Shaw, 2011; Lim et al., 2004)
RAS NOX p g2g (Landeghem et al., 2013)
RAS PI3K p g2g (Landeghem et al., 2013)
SOD p53 p g2g (Landeghem et al., 2013)
VEGF AMPK p g2g (Landeghem et al., 2013)
VEGF RAS n g2g (Landeghem et al., 2013)
VEGF SOD p g2g (Landeghem et al., 2013)
ATP AMPK n m2g (Wegner et al., 2015)
ATP PDK p m2g (Saunier et al., 2015)
Lactate HIF-1 p m2g (Pavlova and Thompson, 2016)
Lactate PI3K p m2g (Pavlova and Thompson, 2016)
Lactate VEGF p m2g (Pavlova and Thompson, 2016)
R5P AMPK n m2g (Hammad et al., 2016)
ROS cMyc p m2g (Landeghem et al., 2013)
ROS HIF-1 p m2g (Li et al., 2014; Brunelle et al., 2005)
ROS NOX p m2g (Landeghem et al., 2013)
ROS PI3K p m2g (Landeghem et al., 2013)
ROS RAS p m2g (Landeghem et al., 2013)
ROS SOD p m2g (Landeghem et al., 2013)
ROS VEGF p m2g (Landeghem et al., 2013)
G6P ACC p m2e (Wegner et al., 2015)
F2,6BP ACC p m2e (Wegner et al., 2015)
Akt GluT1 p g2e (Courtnay et al., 2015; Lien et al., 2016)
Akt HK p g2e (Courtnay et al., 2015; Lien et al., 2016)
Akt PFKFB2/3 p g2e (Lien et al., 2016)
AMPK ACC p g2e (Wegner et al., 2015)
AMPK PFKFB2/3 p g2e (Landeghem et al., 2013)
cMyc GluT1 p g2e (Justus et al., 2015)
cMyc LDH p g2e (Landeghem et al., 2013; Justus et al., 2015; Lien et al., 2016)
HIF-1 GluT1 p g2e (Justus et al., 2015; Courtnay et al., 2015)



HIF-1 HK p g2e (Landeghem et al., 2013; Justus et al., 2015; Courtnay et al., 2015)
HIF-1 G6PD/6PGD p g2e (Landeghem et al., 2013)
HIF-1 GPI p g2e (Landeghem et al., 2013)
HIF-1 PFKFB2/3 p g2e (Landeghem et al., 2013)
HIF-1 PFK-1 p g2e (Hasawi et al., 2014)
HIF-1 ALD p g2e (Landeghem et al., 2013)
HIF-1 TPI p g2e (Landeghem et al., 2013)
HIF-1 GAPDH p g2e (Landeghem et al., 2013)
HIF-1 PGK p g2e (Landeghem et al., 2013)
HIF-1 PGAM p g2e (Landeghem et al., 2013)
HIF-1 ENO p g2e (Landeghem et al., 2013)
HIF-1 PKM2 p g2e (Landeghem et al., 2013; Justus et al., 2015)
HIF-1 LDH p g2e (Justus et al., 2015; Courtnay et al., 2015)
p53 GluT1 n g2e (Justus et al., 2015)
p53 G6PD/6PGD p g2e (Justus et al., 2015)
PDK PDH n g2e (Justus et al., 2015; Lien et al., 2016)
PTEN PDH n g2e (Landeghem et al., 2013)
RAS PFK-1 p g2e (Hasawi et al., 2014)

There is three types of regulations, g2g, m2g and g2e. The g2g type represents the regulations between genes.
The m2g type represents the regulations from metabolite to gene. The g2e type represents the regulations from
gene to enzyme.



Table S3: Metabolic reactions of glycolysis, TCA and oxidative phosphorylation (related to Figure 1).

Enzymes Reactions
r1 GluT1 Gluout −−⇀↽−− Gluin

r2 HK Gluin + ATP −−⇀↽−− G6P + ADP
r3 GPI G6P −−⇀↽−− F6P
r4 PFK-1 F6P + ATP −−⇀↽−− FBP + ADP
r5 ALD FBP −−⇀↽−− DHAP + G3P
r6 TPI DHAP −−⇀↽−− G3P
r7 GAPDH G3P + NAD+ −−⇀↽−− 1,3BPG + NADH
r8 PGK 1,3BPG + ADP −−⇀↽−− 3PG + ATP
r9 PGAM 3PG −−⇀↽−− 2PG
r10 ENO 2PG −−⇀↽−− PEP
r11 PKM2 PEP + ADP −−⇀↽−− Pyruvate + ATP
r12 LDH Pyruvate + NADH −−⇀↽−− Lactate + NAD+

r13 G6PD 6PGD G6P −−⇀↽−− R5P
r14 ATPases ATP −−→ ADP
r15 AK AMP + ATP −−⇀↽−− 2ADP
r16 PFKFB2 3 F6P −−⇀↽−− F2,6BP
r17 PHGDH 3PG −−→ Serine
r18 PDH Pyruvate + ADP −−→ Citrate + ATP + Complex2
r19 ACC Complex2 + 3ATP + AC-CoA −−→ mal-CoA + 3ADP + NAD+

r20 SOD ROS −−→ Null
r21 Lactate −−→ Null
r22 3R5P −−⇀↽−− 2F6P + G3P

r23
NUCLEOTIDE
BIOSYNTHESIS

R5P −−→ Null

r24 SERINE CONSUMPTION Serine −−→ Null
r25 GPDH NADH + ADP −−→ Complex2 + ATP + NAD+

r26 Citrate + 3ADP −−→ 3ATP + 4Complex2
r27 Complex2 + 1.5ADP −−→ 1.5ATP
r28 Complex2 −−→ ROS
r29 NOX null −−→ ROS
r30 Citrate −−→ Null



Table S4: Parameters for modeling the regulations (related to Figure 1).

Parameter Value Parameter Value Parameter Value

γAkt−>cMyc 2.23 γAkt−>mTOR 1.33 γAkt−>p53 0.1
γAkt−>GluT1 1.5 γAkt−>HK 1.5 γAkt−>PFKFB2/3 1.71
γAMPK−>Akt 2.26 γAMPK−>mTOR 0.21 γAMPK−>NOX 0.72
γAMPK−>PFKFB2/3 1.84 γAMPK−>ACC 1.51 γcMyc−>HIF−1 2
γcMyc−>VEGF 3.78 γcMyc−>GluT1 1.58 γcMyc−>LDH 2.6
γHIF−1−>AMPK 0.08 γHIF−1−>NOX 2.82 γHIF−1−>PDK 5.81
γHIF−1−>VEGF 3.77 γHIF−1−>GluT1 2.41 γHIF−1−>HK 1.57
γHIF−1−>G6PD/6PGD 1.12 γHIF−1−>GPI 1.01 γHIF−1−>PFKFB2/3 1
γHIF−1−>PFK−1 1.78 γHIF−1−>ALD 1.03 γHIF−1−>TPI 1.46
γHIF−1−>GAPDH 3.07 γHIF−1−>PGK 3.54 γHIF−1−>PGAM 2.52
γHIF−1−>ENO 1.28 γHIF−1−>PKM2 2.18 γHIF−1−>LDH 3.61
γmTOR−>HIF−1 3 γp53−>cMyc 0.29 γp53−>HIF−1 0.4
γp53−>PDK 0.8 γp53−>PTEN 10 γp53−>GluT1 0.8
γp53−>G6PD/6PGD 1.38 γPDK−>Akt 5.69 γPDK−>PDH 0.14
γPI3K−>Akt 2 γPI3K−>mTOR 1.08 γPI3K−>VEGF 1.25
γPTEN−>HIF−1 0.36 γPTEN−>p53 5.86 γPTEN−>PI3K 0.83
γPTEN−>PDH 0.09 γRAS−>AMPK 3.47 γRAS−>HIF−1 1.5
γRAS−>NOX 7.39 γRAS−>PI3K 28.78 γRAS−>PFK−1 1.41
γSOD−>p53 12.87 γVEGF−>AMPK 8.36 γVEGF−>RAS 0.06
γVEGF−>SOD 2 γG6P−>ACC 1.21 γLactate−>HIF−1 10.94
γLactate−>PI3K 4.22 γLactate−>VEGF 3 γR5P−>AMPK 0.05
γF2,6BP−>ACC 1.34 γATP−>AMPK 0.36 γATP−>PDK 29.6
γROS−>cMyc 4.78 γROS−>HIF−1 10 γROS−>NOX 4.07
γROS−>PI3K 5.12 γROS−>RAS 5.99 γROS−>SOD 2.03
γROS−>RAS 3 A 0.005 D 0.005



Table S5: Parameters for modeling the metabolic reactions (related to Figure 1).

Parameter Value Refs Parameter Value Refs

Gluout 5 (Maŕın-Hernández et al., 2011) Pi 4 (Maŕın-Hernández et al., 2011)
bx6PG 0.39 (Maŕın-Hernández et al., 2011) Ery4P 0.016 (Maŕın-Hernández et al., 2011)
Lacout 2.57 (Maŕın-Hernández et al., 2014) O2 0.03
Citrate 1.7 (Moreno-Sánchez et al., 2010) Vmf 1 0.03 (Maŕın-Hernández et al., 2011)
Keq 1 1 (Maŕın-Hernández et al., 2011) Kgluout 1 9.3 (Rodŕıguez-Enŕıquez et al., 2009)
Kgluin 1 10 (Maŕın-Hernández et al., 2011) Vm 2 0.0475 (Maŕın-Hernández et al., 2011)
Ka 2 0.1 (Maŕın-Hernández et al., 2011) Kb 2 1.1 (Maŕın-Hernández et al., 2011)
Keq 2 651 (Maŕın-Hernández et al., 2011) Kp 2 0.02 (Wilson, 2003)
Kq 2 3.5 (Maŕın-Hernández et al., 2011) Vmf 3 0.24
Kg6p 3 0.4 (Maŕın-Hernández et al., 2014) Vmr 3 0.54
Kf6p 3 0.05 (Maŕın-Hernández et al., 2014) Kery4p 3 0.001 (Maŕın-Hernández et al., 2014)
Kfbp 3 0.06 (Maŕın-Hernández et al., 2014) Kpg 3 0.015 (Maŕın-Hernández et al., 2014)
Vm 4 0.026 (Maŕın-Hernández et al., 2014) Katp 4 0.0292 (Maŕın-Hernández et al., 2014)
beta 4 1.18 (Maŕın-Hernández et al., 2014) alfa 4 0.75 (Maŕın-Hernández et al., 2014)
Kf26bp 4 0.00099 (Maŕın-Hernández et al., 2014) Kf6p 4 1.1 (Maŕın-Hernández et al., 2014)
L 4 6.6 (Maŕın-Hernández et al., 2014) Kcit 4 6.7 (Maŕın-Hernández et al., 2014)
Kiatp 4 1.1 (Maŕın-Hernández et al., 2014) Kadp 4 5 (Maŕın-Hernández et al., 2011)
Kfbp 4 5 (Maŕın-Hernández et al., 2011) Keq 4 247 (Maŕın-Hernández et al., 2014)
Vmf 5 0.08 (Maŕın-Hernández et al., 2011) Kfbp 5 0.009 (Maŕın-Hernández et al., 2011)
Vmr 5 0.063 (Maŕın-Hernández et al., 2011) Kdhap 5 0.08 (Maŕın-Hernández et al., 2011)
Kg3p 5 0.16 (Maŕın-Hernández et al., 2011) Kms 6 1.6 (Maŕın-Hernández et al., 2011)
Kmp 6 0.51 (Maŕın-Hernández et al., 2011) Vf 6 3.4 (Maŕın-Hernández et al., 2011)
Vr 6 28 (Maŕın-Hernández et al., 2011) Vmf 7 0.58 (Maŕın-Hernández et al., 2011)
Knad 7 0.09 (Maŕın-Hernández et al., 2011) Kg3p 7 0.19 (Maŕın-Hernández et al., 2011)
Kp 7 29 (Maŕın-Hernández et al., 2011) Vmr 7 0.72 (Maŕın-Hernández et al., 2011)
Kdpg 7 0.022 (Maŕın-Hernández et al., 2011) Knadh 7 0.01 (Maŕın-Hernández et al., 2011)
Vmf 8 8.7 (Maŕın-Hernández et al., 2011) alfa 8 1 (Maŕın-Hernández et al., 2011)
Ka 8 0.079 (Maŕın-Hernández et al., 2011) Kb 8 0.04 (Maŕın-Hernández et al., 2011)
Vmr 8 2.5 (Maŕın-Hernández et al., 2011) beta 8 1 (Maŕın-Hernández et al., 2011)
Kp 8 0.13 (Maŕın-Hernández et al., 2011) Kq 8 0.27 (Maŕın-Hernández et al., 2011)
Kms 9 0.19 (Maŕın-Hernández et al., 2011) Kmp 9 0.12 (Maŕın-Hernández et al., 2011)
Vf 9 0.94 (Maŕın-Hernández et al., 2011) Vr 9 0.36 (Maŕın-Hernández et al., 2011)
Kms 10 0.038 (Maŕın-Hernández et al., 2011) Kmp 10 0.06 (Maŕın-Hernández et al., 2011)
Vf 10 0.34 (Maŕın-Hernández et al., 2011) Vr 10 0.38 (Maŕın-Hernández et al., 2011)
Vmax 11 0.083333 (Maŕın-Hernández et al., 2014) Kpep 11 0.05 (Maŕın-Hernández et al., 2014)
Kadp 11 0.4 (Maŕın-Hernández et al., 2014) Keq 11 195172.4 (Maŕın-Hernández et al., 2014)
Kpyr 11 10 (Maŕın-Hernández et al., 2014) Katp 11 0.86 (Maŕın-Hernández et al., 2014)
Vmf 12 3.4 (Maŕın-Hernández et al., 2011) alfa 12 1 (Maŕın-Hernández et al., 2011)
Ka 12 0.002 (Maŕın-Hernández et al., 2011) Kb 12 0.3 (Maŕın-Hernández et al., 2011)
Vmr 12 0.54 (Maŕın-Hernández et al., 2011) beta 12 1 (Maŕın-Hernández et al., 2011)
Kp 12 4.7 (Maŕın-Hernández et al., 2011) Kq 12 0.07 (Maŕın-Hernández et al., 2011)
Vm 13 0.01 Km 13 0.5
k 14 0.01 k1 15 1 (Maŕın-Hernández et al., 2011)
k2 15 2.26 (Maŕın-Hernández et al., 2011) Vf 16 0.5
Vr 16 0.1 Kms 16 0.5
Kmp 16 0.5 Vm 17 0.001
Km 17 0.5 Vm 18 0.2
Km 18 0.5 Vm 19 0.01
Km 19 0.5 Vm 20 0.01
Km 20 0.05 Vmf 21 0.053333 (Maŕın-Hernández et al., 2014)
Keq 21 1 (Maŕın-Hernández et al., 2014) Klacin 21 8.5 (Maŕın-Hernández et al., 2014)
Klacout 21 0.5 (Maŕın-Hernández et al., 2014) k1 22 0.001
k2 22 0.01 k 23 0.01
k 24 0.001 k 25 0.074
k 26 0.015 k 27 0.1



k 28 0.5 Vm 29 0.05
Km 29 0.5 k 30 0.01



Table S6: Genes related to glycolysis, TCA cycle and oxidative phosphorylation (related to Figure 2).

Glycolysis TCA cycle/OXPHOS
Gene/Enzyme Symbols Gene/Enzyme Symbols
Akt AKT1 AMPK PRKAA1

AKT2 PRKAA2
AKT3 PRKAB1

HIF-1 HIF1A PRKAB2
HIF1B PRKAG1

mTOR MTOR PRKAG2
NOX NOX1 PRKAG3

NOX2 cMyc MYC
NOX3 p53 TP53
NOX4 SOD SOD1
NOX5 SOD2
DUOX1 SOD3
DUOX2 Pyruvate dehydrogenase complex PDHA1

PDK PDK1 PDHA2
PDK2 PDHB
PDK3 DLAT
PDK4 DLD

PI3K PIK3CA Citrate synthase CS
PIK3CB Aconitase ACO1
PIK3CG ACO2
PIK3CD Isocitrate dehydrogenase IDH3A
PIK3R1 IDH3B
PIK3R2 IDH3G
PIK3R3 IDH1
PIK3R4 IDH2
PIK3R5 Alpha-Ketoglutarate dehydrogenase complex OGDH
PIK3R6 DHTKD1
PIK3C2A OGDHL
PIK3C2B DLST
PIK3C2G Succinyl CoA synthetase SUCLG2
PIK3C3 SUCLG1

RAS KRAS SUCLA2
HRAS Succinate dehydrogenase SDHA
NRAS SDHB

Hexokinase HK1 Fumarase FH
HK2 Malate dehydrogenase MDH1
HK3 MDH2
HKDC1 NADH-Q oxidoreductase NDUFS7

Phosphoglucose isomerase GPI ND1
Phosphofructokinase PFKL ND2

PFKM ND3
PFKP ND4

Aldolase ALDOA ND4L
ALDOB ND5
ALDOC ND6

Triose phosphate isomerase TPI1 NDUFS1
Glyceraldehyde 3-phosphate dehydrogenase GAPDH NDUFS2

GAPDHS NDUFS3
Phosphoglycerate kinase PGK1 NDUFV1

PGK2 NDUFS8
Phosphoglycerate mutase PGAM4 NDUFV2

PGAM1 Succinate-Q oxidoreductase SDHC
PGAM2 SDHD
BPGM Q-cytochrome c oxidoreductase UQCRFS1

Enolase ENO1 Cytochrome c oxiddase COX1
ENO2



ENO3
ENO4

Pyruvate kinase PKLR
PKM

lactate dehydrogenase LDHA
LDHB



Transparent Methods

Metabolic Kinetic Equations

The metabolic reactions are listed in Table S3. The metabolic reactions contain single directional and bidi-
rectional reactions. For every bidirectional reaction, which is reversible reaction, the kinetic velocity can be
positive or negative determined by the metabolite concentrations. As an example, the simplest representation
of enzyme-catalyzed reversible reaction is(Segel, 1975):

E + S
k1−−⇀↽−−−
k−1

ES
k2−−⇀↽−−−
k−2

E + P

Each k represents rate constant for each reaction respectively. If we focus on only one central complex , the
net velocity in the forward direction is given by:

vnet = k2[ES]− k−2[E][P ] (1)

The condition at steady state is given as:

d[ES]

dt
= 0 (2)

+
d[ES]

dt
= k1[E][S] + k−2[E][P ] (3)

−d[ES]

dt
= k2[ES] + k−1[ES] (4)

Eq. 1 can be transformed into(Segel, 1975):

vnet =
Vmaxf

[S]
Kms

− Vmaxr [P ]
Kmp

1 + [S]
Kms

+ [P ]
Kmp

(5)

where:

k2[E]t = Vmaxf (6)

k−1[E]t = Vmaxr (7)

k2 + k−1
k1

= Kms (8)

k2 + k−1
k−2

= Kmp (9)



[E]t = [E] + [ES] (10)

[ES] represents the concentration of total enzyme. Vmaxf represents the maximal velocity in the forward
reaction and Vmaxr represents the maximal velocity in the reverse reaction.

The metabolic kinetic velocities are showed as follow.

1. Reaction r1(GluT1):

v = V mf
[Gluout]− [Gluin]/Keq

KGluout(1 + [Gluin]/KGluin) +Gluout
(11)

The kinetics of GluT1 is described as a monosubstrate reversible Michaelis–Menten equation (Segel, 1975).
Gluout and Gluin are the extra-cellular and intra-cellular glucose concentrations. KGluout and KGluin are the
enzyme’s affinity respectively. Keq is the equilibrium constant. V mf is the maximal velocity in the forward
reaction.

2. Reaction r2(HK) and reaction r11(PKM2):

v = V mf
([A][B]− [P ][Q]

Keq )/(KaKb)

1 + [A]
Ka + [B]

Kb + [A][B]
KaKb + [P ]

Kp + [Q]
Kq + [P ][Q]

KpKq + [A][Q]
KaKq + [P ][B]

KpKb

(12)

The kinetics of HK and PKM2 are described as random bi-substrate Michaelis–Menten (Segel, 1975). For
reaction r2 [A] and [B] represent the Gluin and ATP concentrations, whereas [P] and [Q] represent the G6P and
ADP concentrations. For reaction r11 [A] and [B] represent the PEP and ADP concentrations, whereas [P] and
[Q] represent the Pyruvate and ATP concentration. Ka, Kb, Kp and Kq represent the enzymes Km values for
their respective ligands.

3. Reaction r3(GPI):

v =
V mf [G6P ]

KG6P
− V mr [F6P ]

KF6P

1 + [G6P ]
KG6P

+ [F6P ]
KF6P

+ [ERY 4P ]
KERY 4P

+ [6PG]
K6PG

+ [FBP ]
KFBP

(13)

The kinetics of GPI is described as a monoreactant reversible equation with competitive inhibition by Ery4P,
6PG and FBP (Maŕın-Hernández et al., 2011). V mf is the maximal velocity in the forward reaction, while
V mr is the maximal velocity in the reverse reaction.

4. Reaction r4(PFK-1):

v = V m((

[ATP ]
KATP

1 + [ATP ]
KATP

)(
1 + β[F26BP ]

αKaF26BP

1 + [F26BP ]
αKaF26BP

)(

[F6P ](1+
[F26BP ]

αKaF26BP
)

KF6P (1+
[F26BP ]
KaF26BP

)(1 +
[F6P ](1+

[F26BP ]
αKaF26BP

)

KF6P (1+
[F26BP ]
KaF26BP

)
)3

L(1+
[Citrate]
KiCit

)4(1+
[ATP ]
KiATP

)4

(1+
[F26BP ]
KaF26BP

)4
+ (1 +

[F6P ](1+
[F26BP ]

αKaF26BP
)

KF6P (1+
[F26BP ]
KaF26BP

)
)4

)

−
[ADP ][ATP ]

KADPKFBPKeq

[ADP ]
KADP

+ [FBP ]
KFBP

+ [ADP ][FBP ]
KADPKFBP

+ 1
)

(14)

The kinetics of PFK-1 could be considered as the concerted transition model of Monod, Wyman and
Changeux for exclusive ligand binding (F6P, activators, and inhibitors) together with mixed-type activation
(F2,6BP or AMP or Pi) and simple Michaelis–Menten terms for ATP and reverse reaction (Maŕın-Hernández
et al., 2011). L is the allosteric transition constant.

5. Reaction r5(ALD):

v =
V mf [FBP ]

KFBP
− V mr [DHAP ][G3P ]

KDHAPKG3P

1 + [FBP ]
KFBP

+ [DHAP ]
KDHAP

+ [G3P ]
KG3P

+ [DHAP ][G3P ]
KDHAPKG3P

(15)



The kinetics of ALD rate equation is the reversible Uni–Bi Michaelis–Menten equation(Segel, 1975). V mf
is the maximal velocity in the forward reaction, while V mr is the maximal velocity in the reverse reaction.

6. Reaction r6(TPI), reaction r9(PGAM) and reaction r10(ENO):

v =
V mf [S]

Ks − V mr
[P ]
Kp

1 + [S]
Ks + [P ]

Kp

(16)

The kinetics of TPI, PGAM and ENO are described as monosubstrate simple reversible Michaelis–Menten
equation (Segel, 1975). [S] and [P] represent the respective concentrations of substrates and products with their
respective affinity constants. V mf is the maximal velocity in the forward reaction, while V mr is the maximal
velocity in the reverse reaction.

7. Reaction r7(GAPDH):

v =
V mf [NAD][G3P ][Pi]

KNADKG3PKPi
− V mr [BPG][NADH]

KBPGKNADH

1 + [NAD]
KNAD

+ [NAD][G3P ]
KNADKG3P

+ [NAD][G3P ][Pi]
KNADKG3PKPi

+ [BPG][NADH]
KDPGKNADH

+ [NADH]
KNADH

(17)

The kinetics of GAPDH is described as a simplified ordered Ter–Bi reversible Michaelis–Menten equation
(Maŕın-Hernández et al., 2011). V mf is the maximal velocity in the forward reaction, while V mr is the maximal
velocity in the reverse reaction.

8. Reaction r8(PGK) and reaction r12(LDH):

v =
V mf [A][B]

αKaKb − V mr
[P ][Q]]
βKpKq

1 + [A]
Ka + [B]

Kb + [A][B]
αKaKb + [P ][Q]

βKpKq + [P ]
Kp + [Q]

Kq

(18)

The kinetics of PGK and LDH are described as the random Bi–Bi reversible Michaelis–Menten equa-
tion(Maŕın-Hernández et al., 2011). For reaction r8, [A] and [B] represent the 1,3BPG and ADP concentrations,
whereas [P] and [Q] represent the 3PG and ATP concentrations. For reaction r12, [A] and [B] represent the
Pyruvate and NADH concentrations, whereas [P] and [Q] represent the intra-cellular Lactate and NAD con-
centrations. V mf is the maximal velocity in the forward reaction, while V mr is the maximal velocity in the
reverse reaction.

9. Reaction r13(G6PD/6PGD), reaction r18(PDH), reaction r19(ACC) and reaction r20(SOD):

v = V m
[S]

[S] +Km
(19)

The kinetics of G6PD/6PGD, PDH, ACC, SOD are described as Michaelis–Menten equation. [S] represent
the G6P, Pyruvate, complex2 and ROS concentrations respectively.

10. Reaction r14(ATPases):

v = k[ATP ] (20)

The kinetics of ATPases is described as the irreversible mass-action reaction, in which k is the rate constant.

11. Reaction r15(AK):

v = k1[ATP ][AMP ]− k2[ADP ]2; (21)

The kinetics of AK is described as reversible mass-action reactions, in which k1 and k2 are the rate constants.

12. Reaction r16(PFKFB2/3):



v =
V mf [F6P ]

Ks − V mr
[F2,6BP ]

Kp

1 + [F6P ]
Ks + [F2,6BP ]

Kp

(22)

The kinetics of PFKFB2/3 is described as monosubstrate simple reversible Michaelis–Menten equation
(Segel, 1975). V mf is the maximal velocity in the forward reaction, while V mr is the maximal velocity in
the reverse reaction.

13. Reaction r17(PHGDH):

v =
V mf [3PG]

Ks − V mr
[Serine]
Kp

1 + [3PG]
Ks + [Serine]

Kp

(23)

The kinetics of PHGDH is described as monosubstrate simple reversible Michaelis–Menten equation (Segel,
1975). V mf is the maximal velocity in the forward reaction, while V mr is the maximal velocity in the reverse
reaction.

14. Reaction r21:

v =
V mf([Lacin]− [Lacout]

Keq )

Klacin(1 + [Lacout]
Klacout

) + [Lacin]
(24)

The kinetics is described as the monosubstrate reversible Michaelis–Menten equation. [Lacin] and [Lacout]
are the extra-cellular and intra-cellular lactate concentrations. Klacin and Klacout are the enzyme’s affinity
respectively. Keq is the equilibrium constant.

15. Reaction r22:

v = k1[R5P ]3 − k2[F6P ]2[G3P ]; (25)

The kinetics is described as reversible mass-action reactions, in which k1 and k2 are the rate constants.

16. Reaction r23(NUCLEOTIDE BIOSYNTHESIS) and Reaction r24(SERINE CONSUMPTION):

v = k[S] (26)

The kinetics of Nucleotide biosynthesis and Serine consumption are described as the irreversible mass-action
reaction, in which k is the rate constant. [S] represent the R5P and Serine concentration respectively.

17. Reaction r25, Reaction r26 and Reaction r27:

v = k[S]; (27)

The kinetics are described as the irreversible mass-action reaction, in which k is the rate constant. [S]
represent the NADH, Citrate and complex2 concentration respectively.

18. Reaction r28:

v = k[Complex2][O2]; (28)

The kinetics is described as the irreversible mass-action reaction, in which k is the rate constant.

19. Reaction r29(NOX):

v = V m
[O2]

[O2] +Km
; (29)



The kinetics of NOX is described as Michaelis–Menten equation.

20. Reaction r30:
v = k[Citrate] (30)

The kinetics is described as the irreversible mass-action reaction, in which k is the rate constant. Citrate
consumption could be used for other biological functions such as substrate for fatty acids biosynthesis.

Parameter Setting

The driving forces of the dynamics for the gene expression or enzyme levels regulated by one gene could be
described as:

Ẋ = AH(Y )−DX (31)

H(Y ) =
Sn

Sn + Y n
+ γ

Y n

Sn + Y n
(32)

where X represents the regulated gene expression or enzyme level and Y represents expression of the regulating
gene. At the steady state, where Ẋ = 0, the regulated gene expression or enzyme levels can be determined as:

X =
A

D
H(Y ) (33)

As shown in Eq. 33, if there is no regulations on X(γ = 1), the gene expression or enzyme level at steady
state can be represented as:

X0 =
A

D
(34)

The fold change of gene expression regulated by gene Y can be represented as:

fold changer =
X

X0
=

A
DH(Y )

A
D

= H(Y ) (35)

The fold change of gene expression between cancer sample and normal sample can be represented as the
ratio of gene expression level of cancer cell to normal cell at steady state:

fold changec2n =
Xc

Xn
=
H(Yc)

H(Yn)
(36)

Xc and Xn represent the gene expression level at steady state in cancer cell and normal cell respectively.
If X is regulated by Y and Y → +∞, the gene expression or enzyme level is equal to γ(A/D). Thus the gene
regulation strength γ reflects the regulation of X from Y when saturate. We consider that the gene regulation
could get the saturation in cancer cell(γ ≈ H(Yc))). The gene regulation strength can be represented as:

γ ≈ H(Yc) = H(Yn)× H(Yc)

H(Yn)
= fold changer × fold changec2n (37)



The fold change of gene expressions in response to knockdown of certain gene is around 4 in adult fibrob-
lasts(Trapnell et al., 2012). The fold changes of gene expressions between cancer and normal sample in all 13
cancer types reach 10 in previous studies(Hu et al., 2017). Thus we choose the gene regulation strength within
range from 1/40 to 40. The degradation rate of certain gene can be estimated from previous study(Chua et al.,
2010). We set the degradation of all genes with same order amplitude as D=0.005/min, the range of which
consistent with the available inferred values(Lu et al., 2014) . Genes have different expression or concentration
range. To study the gene expression dynamics, it is more convenient to normalize the gene expression as the
relative level to be in the range around 1. As shown in Eq. 33, without any gene regulation, X is equal to 1 when
A=D. Thus we can represent the gene expression as relative level for each gene and set the basic production
rate of the gene or the enzyme as A=0.005. The parameter set of gene regulations are listed in Table S4. The
parameters for kinetic velocity equations are from previous studies and listed in Table S5.

Landscape and Flux Decomposition

For the non-equilibrium biological networks, the dynamics of the whole networks can be described stochastically
as:

dx

dt
= F(x) + ζ (38)

The variable, x represents the concentrations of genes, enzymes or metabolites. F(x) is the driving force.
The term ζ represents the noise caused by the fluctuations, of which is statistical nature is assumed as Gaussian
and < ζ(t)ζ(t′) > = 2Dδ(t− t′). D is the diffusion coefficient tensor describing the level of noise.

The probabilistic evolution in terms of the diffusion equation can be depicted as(NG, 1992):

∂P

∂t
+∇ · J(x, t) = 0 (39)

Eq. 39 represents the conservation law of probability. The local change of the probability is equal to the
net flux. The probability flux vector J of the system in space x is defined as(Feng and Wang, 2011):

J(x, t) = FP −D · ∇P (40)

If the steady state of the system exists, i.e. ∂P
∂t = 0 then ∇ · J(x) = 0. There are several outcomes.

When J = 0, the zero net flux is the detailed balance condition and the system is in equilibrium. As the
definition of flux, F = −D ·∇U , where U = −lnPeq. So the driving force F can be represented as a gradient of a
potential U . The equilibrium probability represents the weight of each state of the equilibrium system, thus the
global nature and stability can be quantified as the equilibrium potential(equilibrium probability). The driving
force is the gradient of potential, which controls the dynamics of the system.

For the other outcome, J(x) 6= 0, J is a rotational curl vector field, due to the divergent free nature of the flux
in steady state. For example of J(x) = ∇×A in three dimensions, A is a vector with non-zero curl. J(x) 6= 0
represents the deviation from detailed balance. Even in steady state, the system is still in non-equilibrium.
The magnitude of flux quantifies the degree away from detailed balance or degree away from equilibrium. The
probability landscape at steady state represents the weight of each state of the system. It is able to quantify the
global nature and stability of the system. Therefore, for non-equilibrium systems and networks, the dynamical
driving force F can be decomposed into a gradient of a potential and a curl flow flux(Wang et al., 2008; Feng
and Wang, 2011) as:

F = −D∇U +
Jss(x)

Pss
(41)

The potential U is defined as U = −lnPss and Pss represents steady state probability distribution. In detailed
balance, the underlying dynamics of the system is controlled by the gradient of the potential. The equilibrium
potential quantifies the global nature and the stability of the system. For non-equilibrium systems or networks,
the global nature and stability are determined by the underlying non-equilibrium potential landscape. The
dynamics in this case is determined by both the gradient of potential landscape and probabilistic flux.



Self Consistent Mean Field Approximation

The evolution of probability distribution on dynamic system can be described by the probabilistic Fokker-Planck
diffusion equations in continuous variables such as concentrations. Given the state (X1,X2,...,Xn,t), where X1,
X2, ...,Xn represent the expression levels of genes or the enzymes, it is difficult to exactly solve high dimensional
partial differential equations for the probability P(X1,X2,...,Xn,t). Here, we apply self consistent mean field
approximation for the individual variable. The probability P(X1,X2,...,Xn,t) can be splitted into the products
of the probability of the individual variable,

∏
P (Xi, t) according to (Li and Wang, 2013, 2014; Wang et al.,

2010a; Sasai and Wolynes, 2003; Zhang and Wolynes, 2014). Thus the dimensionality of the system is reduced
to polynomial M × N from exponential MN , which makes the computation and storage tractable. Here M
represents the possible number of values of a specific variable X.

It is often difficult to solve self-consistent mean field equation due to its non-linearity. We then start from the
moment equations. In principle, once all the moments are known, we can obtain the probability distributions of
the dynamic system. Here, Gaussian distribution ansatz is used as an approximation to calculate the probability,
and the two moments, mean and variance are needed to compute.

When the diffusion coefficient D is small, the moment equations can be approximated to (NG, 1992):

˙̄x(t) = F( ¯x(t)) (42)

σ̇(t) = σ(t)AT(t) + A(t)σ(t) + 2D(x̄(t)) (43)

Here, x̄(t) is the mean of the certain variable and σ(t) is the covariance matrix of the system evolution.

A(t) is a tensor and its matrix element is Aij = ∂Fi(x(t))
∂xj(t)

. AT(t) is the transpose of A(t). In terms of these

equations, we can solve x(t) and σ(t). The diagonal elements of σ(t) is considered. Therefore the evolution
of probabilistic distribution for each variable can be expressed by Gaussian approximation determined by the
mean and variance:

P (x, t) =
1√

2πσ(t)
e−

(x−x̄(t))2

2σ(t) (44)

The equation above represents the expression of the probability for one steady state. For multistable system,
the total probability is equal to the combination of the probabilities of all the steady states. The probability
of x in multistable system has the form: P (x, t) =

∑
wiPi(x). Here the weight factor wi for each individual

attractors can be obtained through Langevin simulations with multiple initial conditions. In this way, the weight
can be computed by the partitions of how many trajectories with different initial conditions fall into different
attractors. Finally, the landscape can be quantified through the steady state probability, U(x) = −lnPss(x).

Langevin Stochastic Dynamics Method

For the system in fluctuating environments, the dynamics is often described by the stochastic ordinary dif-
ferential equations as ẋ = F(x) + ζ. Here, x(t) represents the vector of the gene expression level and en-
zyme concentration level. F(x) represents the vector for the driving force through the gene-gene regulations,
gene-enzyme regulations/interactions or metabolite-gene regulations/interactions. External fluctuations and
intrinsic fluctuations are important to the biology systems(Kærn et al., 2005; Swain et al., 2002). The fluctu-
ation term ζ is added to the force ẋ = F(x), the deterministic dynamics of the system. The fluctuation term
ζ is assumed to follow Gaussian distribution and the correlation functions are given as: ζj(x, t) >= 0 and
< ζi(x, t)ζj(x, t′) >= 2Dijδijδ(t − t′) (δij = 1 for i = j and δij = 0 for i 6= j). Here δ(t) is the Dirac delta
function and D is diffusion coefficient matrix. The fluctuation term is associated with the intensity of cellular
fluctuations either from the environmental external sources or intrinsic sources. Under long time Langevin
dynamics simulations, we can obtain the steady state distribution P (x) for the state variable x through the
cumulation of statistics. Finally the potential landscape is obtained by U = −ln(P (x)).



Path Integral

There are in general many paths from one state to another state. The dominant path is important for biological
process and functional switch. Under fluctuations, the dominant path determined based on the path integral
method over many possible paths (Wiener, 1921; Onsager and Machlup, 1953).

We can formulate the dynamics for the probability of starting from initial configuration xi at t = 0 and
end at the final configuration of xf at time t. The probability from initial state to the end state is determined
by(Wang et al., 2010b, 2011):

P (xf , t|xi, 0) =

∫
Dxe−S(x) (45)

S(x) =

∫
L[x(t)]dt (46)

In Eq. 45, S(x) is the action, Dx represents the sum of all possible path from state xi at t = 0 to the state
xf . L(x) is Lagrange and is determined by:

L =
1

4
D−1ẋ ·D−1 · ẋ− 1

2
D−1F ·D−1 · ẋ + V (47)

V =
1

4
D−1F ·D−1 +

1

2
D∇ · (D−1 · F) (48)

D is the diffusion coefficient matrix tensor. The probability of the path is decided by e−S(x). The path is
dominant, when the action S is the least.

Not all the paths give the same contribution. We can approximate the path integrals with a set of dominant
paths. Because each path is exponentially weighted, contributions of the other sub-leading paths are often small
and can be ignored. The optimal paths of the biological paths or transition paths between steady states can be
identified.

Entropy Production Rate

In a nonequilibrium system, exchange in energy and information results the dissipation of energy. It depicts
a global physical characterization of the nonequilibrium system. In the steady state, the dissipation of energy
is closely associated with the entropy production rate, which could be described as the well-known entropy
formula(Qian, 2001):

S = −kB
∫
P (x, t)lnP (x, t)dx (49)

By differentiating the Eq. 49, the increase of the entropy at constant temperature T is shown as follows:

T Ṡ = kB ∗ T
∫

(lnP + 1)∇ · Jdx = −
∫

(kBT∇lnP − F) · Jdx−
∫

F · Jdx = ep − hd (50)

ep = −
∫

(kBT∇lnP − F) · Jdx (51)



hd =

∫
F · Jdx (52)

As shown in Eq. 50, the entropy can be transformed into the difference between two terms. The former
term, ep is the entropy production rate following Onsager(Onsager and Machlup, 1953), and the latter term,
hd is the mean rate of the heat dissipation. For a steady state, and the entropy production ep equal to the heat
dissipation hd.

Metabolic Therapeutic Target Prediction

We predict the metabolic therapeutic targets based on the landscape analysis. For each gene or enzyme xi,
F (xi) is changed to F ′(xi) = F (xi) + ci. The term ci represents the corresponding changes in activation or
inhibition regulations due to the perturbations on the variable. The potential landscape of the four steady state
attractors are quantified for the corresponding ci respectively. If ci > 0, it represents the activation of the gene
or the enzyme. If ci < 0, it represents the inhibition of the gene or the enzyme. We define the changes of the
cancer OXPHOS state as the degree of therapeutic effect on the OXPHOS cancer type and the changes of the
cancer glycolysis state as the degree of therapeutic effect on glycolysis cancer type. If the changes of the barrier
height is negative, this leads the instability of certain cancer steady state. This represents the positive effect on
the therapeutic target.

We also predicted the effects of combination therapy. This is according to the landscape topography changes
in terms of the barrier heights which lead to the higher stability/lower stability for the cancer basins of attraction.

For the malignancy of cancer metabolism oscillation, we aim to weaken the oscillation capability of the limit
cycle and drive the system to become mono-stable at normal state by promoting or inhibiting certain genes or
enzymes. The oscillation capability can be estimated by the barrier height from the highest point at the center
island to the lowest point on the limit cycle.
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