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Abstract

Background: Protein complexes are one of the keys to deciphering the behavior of a cell system. During the past
decade, most computational approaches used to identify protein complexes have been based on discovering densely
connected subgraphs in protein-protein interaction (PPI) networks. However, many true complexes are not dense
subgraphs and these approaches show limited performances for detecting protein complexes from PPI networks.

Results: To solve these problems, in this paper we propose a supervised learning method based on network node
embeddings which utilizes the informative properties of known complexes to guide the search process for new
protein complexes. First, node embeddings are obtained from human protein interaction network. Then the protein
interactions are weighted through the similarities between node embeddings. After that, the supervised learning
method is used to detect protein complexes. Then the random forest model is used to filter the candidate complexes
in order to obtain the final predicted complexes. Experimental results on real human and yeast protein interaction
networks show that our method effectively improves the performance for protein complex detection.

Conclusions: We provided a new method for identifying protein complexes from human and yeast protein
interaction networks, which has great potential to benefit the field of protein complex detection.
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Background
In recent years, with the development of human genomics
and the development of high-throughput techniques,
massive protein-protein interaction (PPI) data have been
generated. These PPI data have enable to automatically
detect protein complexes from PPI networks. During
the past decade, most computational approaches used
to identify protein complexes have been based on dis-
covering densely connected subgraphs in protein-protein
interaction (PPI) networks [1, 2]. However, many true
complexes are not dense subgraphs and these approaches
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show limited performances for detecting protein com-
plexes from PPI networks. At the same time, the unreliable
relations in the PPI data also poses a great challenge for
protein complex identification [3–5].
Recently, a number of methods have been developed

for protein complex identification. Dongen et al. [6] pro-
posed a protein complex discovery algorithm named
MCL, which manipulates the adjacency matrix of yeast
PPI networks with two operators called expansion and
inflation. By iterating these two operators, it will find the
clusters that have higher possibility to becoming protein
complexes. Bader et al. [7] proposed a protein complex
detection algorithm named MCODE which is based on
local density to cluster nodes. Zhang et al. [8] introduced
a protein complex detection method which measures the
likelihood of a subgraph being a real complex based on
the number of three node cliques. Liu et al. [9] came
up with an algorithm named CMC for protein complex
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discovery, which uses maximum complete subgraphs as
seeds and searches for protein complexes from weighted
PPI networks. In this algorithm, the protein interactions
are weighted by an iterative scoring weight method called
AdjustCD. What’s more, some methods, such as COACH
[10] and Core&Peel [11], are proposed for detecting pro-
tein complexes based on the core-attachment observation
of protein complex. However, most of the above meth-
ods are unable to detect overlapping complexes. Recently,
Nepuse et al. [12] proposed a method named ClusterONE
which utilizes greedy algorithm aggregation for identify-
ing overlapping protein complexes. Some methods, such
as Prorank+ [13], also consider the overlapping of protein
complexes. In addition, some researchers tried to decrease
the negative effects of unreliable PPI data for protein com-
plex detection. For example, Zaki et al. [14] introduced a
novel graph mining algorithm (PEWCC) which assesses
the reliability of protein interaction by weighting cluster-
ing coefficients and removing unreliable edges, then it
identifies protein complexes from the new weighted PPI
network. All of these algorithms are based on the topo-
logical structure of the PPI network and do not utilize
the information of known complexes, and these methods
have been applied only on the yeast protein interaction
networks.
In recent years, some supervised learning methods have

been proposed to detect complexes from PPI network by
using informative properties of known complexes, includ-
ing SCI-BN [15], NN [16] and ClusterEPs [17]. These
methods usually have three main steps, first they extract
features from the known complexes, and then train a
supervised classification model or score function to judge
whether a subgraph is a true complex, finally use the
trained classification model or score function to guide
the search process for new protein complexes. However,
insufficient extracted features and noise in the PPI data
make the classification model imprecise [18]. At the same
time, some features are often related to the characteristics
of the network, so the features only work on the pro-
tein network which has such characteristics, otherwise the
performance of complex detection will decrease when the
network doesn’t have such characteristics [19]. Therefore,
with the increasing amount of data with different char-
acteristics, using traditional features alone fails to further
improve the performance of complex detection methods.
However, with the rapid development of deep learn-

ing, using self-learned features becomes an alternative
way to obtain effective features from networks even with
various characteristics. Tang et al. [20] proposed a spec-
tral clustering method based on graph theory in 2011.
The basic idea of this method is to use the similarity
matrix of the sample data to decompose the features, and
then to cluster the obtained eigenvectors, which is only
related to sample size rather than sample characteristics.

In 2014, Perozzi et al. [21] proposed a method named
DeepWalk which learns latent representations of ver-
tices in a network from truncated random walks. This
method has achieved a remarkable performance formulti-
label network classification task in social networks. In
2015, Tang et al. [22] proposed a method name LINE
which learns the d-dimensional feature in two phases: d/2
breadth-first search simulations and another d/2 2 hop
distant nodes. In 2016, Grover et al. [23] proposed an
algorithm, node2vec, to learn the representations of the
nodes in the network. This method creates the ordered
sequence simulating breadth-first search and depth-first
search approaches. All these above mentioned feature
learning approaches aims to learn node embeddings by
exploring the structure of networks, and node embedding
methods have gained prominence since they produce con-
tinuous and low-dimensional features, which obviate the
need for task-specific feature engineering and are effec-
tive for various task [24]. Thus, those methods enable us
to further extract the hidden information from networks,
so as to effectively improve the performances of complex
detection methods.
Because of above-mentioned reasons, in this paper, we

propose a method, NodeEmbed-SLPC-RF, which is based
on node embeddings to identify protein complexes on
PPI networks. Firstly, it learns the node representations
of protein interaction network, then uses the similarities
between node representations to quantify the reliability
of the PPI interactions in order to filter existing inter-
actions or add new interactions. Secondly, supervised
learning method (SLPC [25, 26]) is used to identify candi-
date protein complexes. Finally, random forest (RF) model
is utilized to classify candidate protein complexes and
candidate protein complexes with positive labels are out-
putted as the final predicted complexes. Experimental
results show that our method outperforms the state-of-
the art methods in detecting protein complexes from PPI
networks.

Methods
We detail our NodeEmbed-SLPC-RF method in this
section. Specifically, Node embeddings used in the algo-
rithm are presented, and then SLPC and RF are briefly
described, finally NodeEmbed-SLPC-RF algorithm is
introduced.

NodeEmbeded
At present, there are many approaches to generate
network node embeddings. Node embeddings are dis-
tributed representations for the network nodes, which
can be automatically learned based on the network adja-
cency information and topology structure obtained from
the network. Compared with the traditional network
structural features, node embedding methods can learn
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different vector representations for different networks
according to their own structures, and thus can quickly
mine the characteristics of different networks. And this
kind of features are often not expressed by single values,
but by dense vectors.
In order to obtain high quality node embeddings, we

use node2vecmethod [23] to automatically get vector rep-
resentations for all the nodes in the network. Node2vec
method learns the low dimensional representations for
each nodes and at the same time preserves the struc-
tural informations of both the nodes and the network.
Particularly, node2vec adapts random walk and aliasing
sampling strategy to capture the different local structure
of a node. Therefore, the low dimensional representations
of the nodes are essentially the feature representations for
the nodes.
The node2vec algorithm can be roughly divided into

three steps: step 1: obtain transition probability matrix
π based on return parameter p and in-out parameter q;
step 2: generate node sequences for each node based on G
and π and, walk denotes all the node sequences. Specifi-
cally, r node sequences are generated for each node vi by
using alias sampling strategy and the length of each node
sequence is l; step 3: use stochastic gradient descent (SGD)
strategy to train the model according to walk and obtain
vectors for each node. Here, the sliding window size for
training process is k, and the dimension of each vector is
d. In the algorithm, a graph G is searched according to a
certain strategy. Particularly, a number of node sequences
are generated for each node, and the length of each node
sequence is fixed to l. The number of sequences is deter-
mined by the hyperparameter r. And in the algorithm, k is
the size of the sliding window and p determines the prob-
ability of traversal from the original path. The larger the
p, the less likely to return to the same path. Parameter q
decides the traversal strategy, the larger the q, the more
likely to use breadth-first search strategy. Node2vec firstly
generates the node sequences and all the generated node
sequences are used as the contexts of the corresponding
nodes. Then the skip-gram architecture [27] is utilized to
train the node2vec model and after the training process,
the vectors obtained for each node are the learned feature
representations for each node. Note that, the time com-
plexity of alias sampling strategy for choosing a node to
add into a node sequence is O(1).
In this paper, a concept of protein complex vector is pro-

posed. A protein complex is a set of proteins and a protein
complex vector is generated by the protein vectors in the
set, which is calculated as follows:

complex(φ1,φ2, · · · ,φm) = max Z(·, j) 0 ≤ j < d (1)

where φi(i = 1, 2, · · · ,m) denotes the node embedding of
the corresponding protein in the complex, Z is the matrix
which is composed by φi in the complex set, d denotes the

dimension of φi, and Z(·, j) denotes the j-th column of the
matrix Z.
In addition, as the obtained node embedding vectors not

only are the continuous feature representations for nodes
in network, but also can reflect the similarities between
nodes, we use them to further quantify the reliability of
the relations. The vector similarity between two nodes is
used to weight the relation between them, and it is defined
as follows:

similarity(X,Y ) =

n∑

i=1
xiyi

√
n∑

i=1
x2i ∗

√
n∑

i=1
y2i

(2)

where X = (x1, x2, · · · , xn), Y = (y1, y2, · · · , yn) and n is
the dimension of the corresponding vector.

Supervised learning method SLPC
The detail of the supervised learning method (SLPC) used
in our work can be found in references [25] and [26]. The
SLPC method mainly includes three steps: firstly, a train-
ing set, including positive, middle and negative data, is
constructed. Secondly, construct the feature vector space
for the complexes in the training set from the networks
and train the regression model. Specifically, a rich feature
set of eleven topological features is constructed for com-
plexes and the regression model is trained with the feature
vectors. After that, the proteins whose degrees are greater
than the average degree of the network are selected as
the initial cliques. Then, the initial cliques are expanded
according to the scores obtained by the regression model
in order to generate the final cliques which are likely to
be the real complexes. The main reason for using super-
vised learning method in this work is that it can combine
the manually selected features with automatic self-learned
features to further improve the performance for protein
complex detection.

Random forest
Random forest [28] is a model that uses a large number of
sample data to train the decision trees for classification,
and the class labels are determined by the output of the
decision tree. The main idea of random forest model is as
follows. A forest is established in a random way, and the
forest is composed of many decision trees, and there is
no relation between the trees. When a new sample comes
in, each tree makes a decision and a class label is deter-
mined if the majority decision trees select this label for the
classification task.
Random forest model is tolerant to missing data and

unbalanced data as well as it can handle high-dimensional
data. During the training process of the random forest
model, the number of trees is randomly selected in order
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to avoid the over-fitting problem.What’s more, it can pro-
cess the high-dimensional data directly without feature
selection process. On the other hand, the importances
of each feature can be obtained after training and it can
maintain good accuracy even with the missing data and
unbalanced data. For protein complex detection task, it is
well known that there exist false negative relations in the
PPI networks [4, 5], and the number of known standard
complexes is quite limited. Therefore, we use random for-
est model to further filter the candidate complexes based
on their features.

NodeEmbed-SLPC-RF method
In this paper, we propose a method named NodeEmbed-
SLPC-RF method to detect protein complexes from PPI
networks. Figure 1 shows the overall workflow of the
NodeEmbed-SLPC-RF method, it can be divided into two
main steps. In the first step: the embedding representation
of each node is obtained by using node2vec algorithm,
then the relations in the PPI network are quantified by
using the similarity of node embeddings, and the PPI net-
work is modified based on the reliabilities of the relations.
After that, complex vectors of sample complexes are gen-
erated according to their corresponding protein vectors
for training RF model. At the same time, the SLPC model
is trained by using eleven extracted features of sample
complexes. In the second step, the trained SLPC model
is used to guide the search process for candidate pro-
tein complexes from the PPI network. Then the RF model
is used to classify the candidate protein complexes, and
the protein complexes which are labeled as positive ones
are considered to be the final predicted complexes. Spe-
cially, there are three categories generated by RF model
like SLPC model.

Results
Dataset and parameter setting
We conducted the experiments on two different types
of PPI networks: Human and Yeast. For human, protein
and protein relations were downloaded from the human
protein reference database (HPRD) [29], and there were
39,254 interactions and 9678 proteins. For yeast, com-
monly usedDIP network [30] was obtained and there were
17,203 interactions among 4930 proteins in the DIP net-
work. After removing the duplicated and self-linked rela-
tions, we obtained 37,060 interactions and 9521 proteins
for human and 17,201 interaction and 4928 proteins for
yeast. The golden standard of human protein complexes
were also downloaded from HPRD, while the golden stan-
dard of yeast protein complexes were constructed by com-
bining MIPS [31], Aloy [32], SGD [33] with TAP06 [34].
The total numbers of golden protein complexes are 1514
and 673 and the size of them ranges from 3 to 129, 3 to
359 for human and yeast, respectively.
We evaluated the performance of NodeEmbed-SLPC-

RF against SLPC, ClusterONE, MCODE, MCL, CMC,
Coach, ProRank+ and PEWCC. We referred to the pre-
vious studies [10, 12–14] and used their recommended
settings. For ClusterONE, the density threshold, merg-
ing threshold, and penalty value of each node were
set to 0.6, 0.8 and 2, respectively. For MCODE, MCL,
CMC and Coach, we used the recommended settings
for unweighted network. For ProRank+ and PEWCC, we
used their default settings. In the NodeEmbed-SLPC-RF,
the node2vec algorithm is used to learn the feature rep-
resentations for the nodes on PPI network. In order to
embed nodes which have similar structure closer, as sug-
gested by [23], the parameters of node2vec were set as
follows: p = 1, q = 8, r = 10, l = 10, k = 10. Besides, 1000

(a) (b)

Fig. 1 The overall workflow of NodeEmbed-SLPC-RF method. a P1,P2,P3,P4,P5 and P6 are the proteins in the PPI network, and P1,P5 and P6 compose
a protein complex. b The red node in the left network is the seed node, and the nodes in slash circles of the right network is a candidate protein
complex discovered by using SLPC model
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trees were used to make decision in the Random forest
model.
For the purpose of evaluating the predicted protein

complexes, three statistic measures which are widely used
in related studies: precision, recall and F − score are used
as evaluationmetrics. Precision is the fraction of the num-
ber of the predicted complexes which match at least one
golden complex among all predicted complexes. Addi-
tionally, recall is the fraction of the golden complexes
which match at least one predicted complex over the total
number of all golden complexes. The F-score which shows
the overall performance is the harmonicmean of precision
and recall.

F − score = 2 ∗ precision ∗ recall
precision + recall

(3)

Here, the neighborhood affinity score NA(p, b), which
is defined as follows, was used to measure the similar-
ity between predicted complex (p) with golden standard
complex (q).

NA(p, b) = |Vp ∩ Vq|2
|Vp| ∗ |Vq| (4)

where |V | denotes the set of proteins belong to the cor-
responding complex. Similar to many previous studies,
a predicted complex p is regarded to be matched with
a golden complex q if the NA(p, q) score is not lower
than 0.25.

Experimental results
Using complex vectors to classify the candidate complexes
In the experiment, SLPC was used to detect candidate
protein complexes from the original network and then RF
model was trained to further classify the candidate com-
plexes. Both SLPC and RF are supervised learning meth-
ods and the training set for them including the samples of
three categories: positive, intermediate and negative sam-
ples. Similar to the construction of training set in SLPC
[25], the state-of-the-art COACH method [10] was uti-
lized to generate the intermediate complexes since the
predicted complexes obtained by COACH have higher
possibilities of being true complexes than the negative
samples, but lower than the positive ones. Hence, 1175
and 422 complexes predicted by the COACH method for
human and yeast were used as the intermediate samples.
Therefore, the training sets contain three categories sam-
ples, for human: 1521 true complexes from the HPRD
database are used as the positive samples, 1175 com-
plexes predicted by the COACH method as the interme-
diate samples, and 2135 subgraphs obtained by randomly
selecting nodes as the negative samples respectively. For
yeast: 673 true yeast complexes are used as the posi-
tive samples, 422 complexes predicted by the COACH
method as the intermediate samples, and 673 subgraphs

obtained by randomly selecting nodes as the negative
samples respectively. What’s more, the candidate com-
plexes obtained by SLPC were the test data for RF model,
and the candidate complexes which were labeled as posi-
tive ones were outputted as the final predicted complexes.
In the experiment, we used different dimensions of node
embedding to generate the complex vector and the exper-
imental results are shown in Table 1. From the Table 1,
we can see that using RF model to classify the candidate
complexes can decrease the number of predicted com-
plexes but increase the precision and F-score. And the

Table 1 Performance comparison results on HPRD and DIP
datasets

Methods No. of complexes Precision Recall F-score

HPRD

ClusterONE 789 0.2307 0.1724 0.1973

MCODE 102 0.2059 0.0258 0.0458

MCL 1291 0.1255 0.1704 0.1445

CMC 44 0.3636 0.0178 0.0340

Coach 1762 0.2469 0.3890 0.3021

ProRank+ 500 0.2820 0.1625 0.2062

PEWCC 1194 0.2739 0.2299 0.2499

SLPC only 2713 0.3693 0.4901 0.4212

d=32 858 0.7005 0.3785 0.4914

d=64 871 0.7107 0.3983 0.5105

d=128 841 0.7099 0.3890 0.5026

d=256 882 0.6961 0.3877 0.4980

d=512 823 0.7096 0.3831 0.4976

d=1024 867 0.7105 0.3970 0.5093

DIP

ClusterONE 363 0.5069 0.4012 0.4479

MCODE 82 0.0244 0.0030 0.0053

MCL 436 0.3463 0.3952 0.3692

CMC 262 0.4389 0.2912 0.3501

Coach 747 0.4351 0.5156 0.4719

ProRank+ 167 0.4731 0.1516 0.2296

PEWCC 666 0.5916 0.3744 0.4586

SLPC only 1061 0.6447 0.4829 0.5522

d=32 719 0.8108 0.4428 0.5728

d=64 710 0.8070 0.4473 0.5755

d=128 702 0.8148 0.4368 0.5688

d=256 708 0.8263 0.4413 0.5753

d=512 711 0.8158 0.4413 0.5728

d=1024 691 0.8249 0.4354 0.5699

d denotes the dimension of each vector. No. of complexes denotes the total
number of predicted complexes by each method. Bold value denotes the best
score corresponding to F-score



Liu et al. BMC Bioinformatics  (2018) 19:332 Page 6 of 14

best performance in terms of F-score is obtained when the
dimension is set to 64 for both HPRD and DIP networks.
The default dimension for the rest of the experiments is
64 for both networks.
We also compared our methods with some supervised

methods, namely SCI-BN [15], NN [16] and ClusterEPs
[17], on on DIP dataset, which follows the approach
used by ClusterEPs. Because the programs of SCI-BN
and RM are not available, ClusterEPs compared them
based on their published results: therefor, we also com-
pared with their published results. In their experiments,
they used MIPS [31] as the known complexes, we tested
NodeEmbed-SLPC-RF method under same settings. The
results are presented in Table 2. As shown in this table,
NodeEmbed-SLPC-RF method has considerably higher
scores compared with other supervised methods in terms
of F-score.
In order to measure the effectiveness of RF model, Sup-

port Vector Machine (SVM) and Logistic Regression (LR)
which have been proved to be prevalent in classification
task [35–37] were used to compare with RF. The experi-
mental results on HRPD are shown in Fig. 2. The y-axis
in Fig. 2 denotes the F-score of corresponding positive
results obtained by the RF, LR and SVM, respectively. And
the x-axis represents different dimensions of node embed-
dings. It can be seen from the Fig. 2 that the RF model
can learn more information from the complex feature
vectors and is more effective than LR and SVM in classi-
fying candidate protein complexes in both HPRD and DIP
networks.

Using node embedding similarities to filter edges from
original PPI network
In order to construct more reliable network, the relations
in the network were assigned with weights which were
calculated by the node embedding cosine similarities, and
then some relations with lower weights in the original net-
work were filtered out. In order to find the appropriate
similarity threshold (semi-thres) for filtering the edges,
we analyzed how many edges could be removed from the
original network according to their weights from the orig-
inal network as shown in Fig. 3. As can be seen from

Table 2 Performance comparison results on DIP datasets using
the MIPS gold standard

Methods Precision Recall F-score

Ours 0.893 0.581 0.704

SPLC only 0.419 0.670 0.514

ClusterEPs 0.649 0.751 0.695

SCI-BN 0.273 0.473 0.346

NN 0.333 0.491 0.397

Bold value denotes the best score corresponding to F-score. Ours denotes the
NodeEmbed-SLPC-RF method

Fig. 3a, when the similarities value increases from 0.8 to
0.9, the number of remaining edges in HPRD decreases
greatly. In order to ensure that only noise edges are filtered
from the original network, therefore in the experiment,
the range of similarity threshold (simi-thres) used in the
experiment for HPRD is from 0.8 to 0.9, and the step
size is chosen to be 0.01. In addition, from Fig. 3b we
can see that when the similarities value increases from
0.65 to 0.75, the number of remaining edges in DIP
decreases greatly, even thought the total number of edges
in DIP is smaller than HPRD. Therefore, in the experi-
ment, the range of similarity threshold (simi-thres) used
in the experiment for DIP is from 0.65 to 0.75, and the step
size is chosen to be 0.01. What’s more, the detailed results
obtained by using NodeEmbed-SLPC-RF method on the
modified network with different simi-thres are shown in
Tables 3 and 4.

Using node embedding similarities to augment the original
network
Since the feature vector representations for each node in
the network were obtained by node2vec and the simi-
larities between vector representations might reflect the
connectivity between two protein nodes, for each target
node, a new relation was generated by determining which
one had the highest similarity with the target node. Then
some of the new relations were integrated into the origi-
nal network if the similarity between two nodes was larger
than a certain threshold. Finally, the NodeEmbed-SLPC-
RF algorithm was used to identify candidate complexes
from the integrated network.
In order to find the appropriate simi-thres to add new

relations, the similarities of all the new relations were ana-
lyzed and Fig. 4 shows the distribution of the similarities
of the new relations for HPRD and DIP. As can be seen
from Fig. 4a, when the similarity increases from 0.65 to
0.75, the number of added edges for HPRD significantly
decreases. In order to ensure the number and the quality
of new added edges, the similarity threshold (simi-thres)
used in the experiment for HPRD ranges from 0.65 to 0.75,
and the step size is set to be 0.01. As we can see from
Fig. 4b, when the similarity increases from 0.35 to 0.45,
the number of added edges for DIP significantly decreases,
although the total number of added edges is smaller than
HPRD. The similarity threshold (simi-thres) used in the
experiment for DIP ranges from 0.35 to 0.45 in order to
ensure the number of added edges, and the step size is set
to be 0.01. Specifically, after integrating new edges into
original networks according to the different simi-thres,
SLPC algorithm is used to identify candidate complexes,
and then RF model is used to classify the candidate com-
plexes in terms of their complex feature vectors to obtain
the final predicted complexes. The detailed experimental
results are shown in Tables 5 and 6.
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(a) (b)
Fig. 2 The performance comparison in terms of F-score obtained by SVM, LR and RF with different dimensions on a HPRD and b DIP

Link prediction by using differentmethods
The node2vec algorithm is used to obtain the node
embeddings in our method, since it can learn rich feature
representations for nodes in a network. We conducted
link prediction experiments in order to validate the effec-
tiveness of node2vec algorithm. Link prediction problem
aims to predict whether a link exists between two nodes
in a network. It is well known that nodes with common
neighbors tend to form future links [38], so we compared
node2vec with two methods which are based on the com-
mon neighbors. One is the AdjustCD algorithm [9] and
the other is PE-measure [14]. Given a pair of nodes u and v,
the AdjustCD score is calculated as:

AdjustCD(u, v) = 2|Nu ∩ Nv|
max(|Nu|, |Navg |) + max(|Nv|, |Navg |)

(5)

where Nu and Nv are the numbers of the neighbors of
each node, and Navg =

∑
x∈V |Nx|
N is the average number

of neighbors in the network and N is the total number of
nodes in the network. PE-measure is an iterative method
for calculating the score between node u and v. Suppose
that matrix P(k) is the score matrix in k iteration, then the
score between u and v is the element p(k)uv of matrix P(k)
which can be calculated as:

p(k)uv = 1 −
∏

(1 − p(k − 1)ul · p(k − 1)vl) (6)

where it takes the product by all l: (u, l) ∈ E, (v, l) ∈ E. In
the experiment, the number of iterations k was set to 2 as
suggested by [14].
For node2vec, cosine similarity is used to calculate the

score of two nodes based on their obtained embeddings.
In the test, we first hide a T percentage of edges ran-
domly sampled from the network, while ensuring that the

(a) (b)
Fig. 3 The numbers of edges left after filtering by using different simi-thres on HPRD and DIP. a HPRD. b DIP
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Table 3 Experimental results obtained by using RF to filter the candidate complexes which are predicted from the modified HPRD
network by filtering edges with different simi-thres

Simi-thres No. of edges left No. of complexes Precision Recall F-score �

0.80 36164 999 0.6617 0.4181 0.5124 +0.0912

0.81 36009 999 0.6547 0.4306 0.5195 +0.0983

0.82 35869 1019 0.6487 0.4280 0.5157 +0.0945

0.83 35710 1006 0.6531 0.4293 0.5181 +0.0969

0.84 35523 999 0.6607 0.4326 0.5229 +0.1017

0.85 35311 992 0.6552 0.4359 0.5235 +0.1023

0.86 35117 992 0.6673 0.4326 0.5249 +0.1037

0.87 34887 979 0.6599 0.4313 0.5216 +0.1004

0.88 34621 975 0.6728 0.4221 0.5187 +0.0975

0.89 34278 950 0.6505 0.4207 0.5110 +0.0898

0.90 33921 943 0.6585 0.4221 0.5144 +0.0932

� denotes the improvement of F-score compare with using SLPC alone. Bold values denote the best scores corresponding to the specific metric

remaining network remains connected. These "hidden"
edges are considered as the ground truth, then we would
like to predict these edges. In this test, mean ranking and
Hits@N are adopted to evaluate the effectiveness of link
prediction, and for each pair of nodes u and v, another
100 nodes that are not connected to u are selected as
candidate nodes. Considering the fact that the predicted
top-ranked results are more important in practice, we
measure the performance of different methods in terms
of the top-ranked results, i.e, the mean ranking of true
edges, and the proportion of true edges ranked in the top
N results. Usually, it is regarded as more effective if the
method can rank more true edges in the top portions. In
the test, 10% percentage of edge were removed from the
network. We summarize our results for link prediction in
Table 7. The dimension of node2vec is 64 and the random

denotes using random vectors with dimension equals to
64. From the Table 7 we can see that node2vec outper-
forms in terms of all metrics in all the datasets except that
AdjustCD has better performance in terms of Hits@10 on
HPRD. We also tested the effects of different dimensions
for link prediction, Table 8 shows the results with different
dimensions, and the performance is the best when dimen-
sion equals to 64 in both HPRD and DIP. To sum up, the
results demonstrate the efficacy of node2vec on link pre-
diction in two real-world PPI networks, which suggests
that node2vec is able to effectively learn the proper feature
representations for the nodes in the PPI networks.

Using different strategies to generate complex vectors
As described in the method section, the complex vector
is generated based on its corresponding node embeddings

Table 4 Experimental results obtained by using RF to filter the candidate complexes which are predicted from the modified DIP
network by filtering edges with different simi-thres

Simi-thres No. of edges left No. of complexes Precision Recall F-score �

0.65 12167 653 0.8760 0.4413 0.5869 +0.0347

0.66 11941 667 0.8726 0.4428 0.5875 +0.0353

0.67 11683 652 0.8712 0.4368 0.5819 +0.0297

0.68 11423 634 0.8801 0.4324 0.5799 +0.0277

0.69 11174 617 0.8995 0.4294 0.5813 +0.0291

0.70 10946 612 0.9020 0.4235 0.5764 +0.0242

0.71 10673 610 0.8918 0.4235 0.5743 +0.0221

0.72 10410 616 0.8929 0.4235 0.5745 +0.0223

0.73 10184 622 0.8939 0.4264 0.5774 +0.0252

0.74 9907 608 0.8947 0.4160 0.5680 +0.0158

0.75 9633 594 0.9091 0.4190 0.5736 +0.0214

� denotes the improvement of F-score compare with using SLPC alone. Bold values denote the best scores corresponding to the specific metric
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(a) (b)
Fig. 4 The numbers of edges added by using different simi-thres on HPRD and DIP. a HPRD. b DIP

of proteins in the complex. In order to evaluate how
the generation strategy of complex vector affects the
performance of NodeEmbed-SLPC-RF, we conducted
experiments with three different complex vector gener-
ation strategies on both HPRD and DIP networks. The
Table 9 shows the effectives of different vector gener-
ation strategies with the dimension sets to 64. As we
can see from the table, using max value of each col-
umn of the matrix Z, which is composed by the corre-
sponding node embeddings in the complex, to generate
complex vector obtains better performance than others
on both HPRD and DIP, the reason may be that max
operation gathers the global important features from all
the node embeddings of proteins in the specific protein
complex.

Discussion
In the previous section, complex vector is generated by its
corresponding node embeddings and the complex vectors
are considered as features for RF model to further classify
the candidate complexes. From the Table 1 we can see
that using RF model to further classify candidate com-
plexes could improve the performance of protein complex
detection in terms of F-score, however the improvement
on DIP is relatively slight. For example, when the dimen-
sion of vector is set to be 64, the F-score could improve
8.93% compared with that of using SLPC alone on HPRD
network, however the F-score only improves 2.33% com-
pared with that of using SLPC alone on DIP network. In
order to measure the effectiveness of RF, we also com-
pare it with SVM and LR, and the comparison result is

Table 5 Experimental results obtained by using RF to filter the candidate complexes which are predicted from the modified HPRD
network by adding edges with different simi-thres

Simi-thres No. of added edges No. of complexes Precision Recall F-score �

0.65 7889 717 0.6137 0.2893 0.3932 -0.0280

0.66 7572 824 0.6104 0.3454 0.4412 +0.0200

0.67 7174 829 0.6164 0.3487 0.4455 +0.0243

0.68 6531 940 0.6266 0.3983 0.4870 +0.0658

0.69 5546 952 0.6313 0.4003 0.4899 +0.0687

0.70 4121 1030 0.6544 0.4168 0.5092 +0.0880

0.71 2522 1021 0.6513 0.4148 0.5068 +0.0856

0.72 1390 1028 0.6566 0.4207 0.5129 +0.0917

0.73 850 1015 0.6611 0.4155 0.5102 +0.0890

0.74 583 1024 0.6563 0.4188 0.5113 +0.0901

0.75 447 1017 0.6608 0.4168 0.5111 +0.0899

� denotes the improvement of F-score compare with using SLPC alone. Bold values denote the best scores corresponding to the specific metric
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Table 6 Experimental results obtained by using RF to filter the candidate complexes which are predicted from the modified DIP
network by adding edges with different simi-thres

Simi-thres No. of added edges No. of complexes Precision Recall F-score �

0.35 3351 702 0.8305 0.4428 0.5776 +0.0254

0.36 3153 707 0.8317 0.4458 0.5804 +0.0282

0.37 2979 698 0.8295 0.4398 0.5748 +0.0226

0.38 2784 696 0.8290 0.4473 0.5810 +0.0288

0.39 2586 691 0.8234 0.4413 0.5746 +0.0224

0.40 2378 677 0.8198 0.4339 0.5674 +0.0152

0.41 2196 685 0.8161 0.4354 0.5678 +0.0156

0.42 2019 698 0.8095 0.4383 0.5687 +0.0165

0.43 1831 689 0.8084 0.4339 0.5647 +0.0125

0.44 1634 703 0.8108 0.4413 0.5715 +0.0193

0.45 1473 710 0.8056 0.4413 0.5702 +0.0180

� denotes the improvement of F-score compare with using SLPC alone. Bold values denote the best scores corresponding to the specific metric

shown in Fig. 2. It can be seen from the figure that using
classifier does not necessarily improve the experimental
results. Compared with RFmodel, SVM and LRmodel are
less effective, especially on HPRD network. This shows
that RF can learn effective information of complex feature
vectors, while SVM and LR can learn relatively limited
information. The reason may be that they have different
ways for learning features. In addition, the decision func-
tion of SVM is determined by a small number of support
vectors, and the overlap between the complexesmay inter-
fere with the its decision function thus leading to the poor
performance of SVM.What’s more, the LRmodel is based
on a linear function which normally can’t achieve promis-
ing result when it encounters linearly non-separable
problem [38].

Table 7 Comparison results for link prediction on HPRD and DIP

Method Mean ranking Hits@1 Hits@10 Hits@50

HPRD

random 52.87 2 7.8 47.8

node2vec 24.79 29.8 53.4 78.4

PE 35.53 25.64 52.14 70.09

AdjustCD 35.07 23.93 60.68 68.38

DIP

random 49.01 2.8 10.8 51.4

node2vec 10.50 59 80.4 91.4

PE 30.73 3.8 29.8 75.4

AdjustCD 29.03 8.8 37.8 77.4

Bold values denote the best scores corresponding to the specific metric. The value
of each column in terms of Hit@N with different N is the percentage of true edges
ranked in top N

As mentioned in section of filtering edges, the original
PPI network was reconstructed by filtering lower reliable
edges based on the node embedding similarities between
nodes, then SLPC was used to identify candidate com-
plexes from the modified PPI network, and finally RF
model was utilized to classify the candidate complexes
based on their complex feature vectors in order to obtain
the final predicted complexes. It can be seen from Fig. 3,
the similarities of the majority relations in the original
PPI network are greater than 0.8 and 0.65 on HPRD and

Table 8 Comparison results for link prediction with different
dimensions by using node2vec on HPRD and DIP

Dimension Mean ranking Hits@1 Hits@10 Hits@50

HPRD

d=32 25.37 28.6 51.2 76.4

d=64 24.79 29.8 53.4 78.4

d=128 25.83 27.6 52.8 76.2

d=256 27.62 26.6 49 74

d=512 27.74 27.8 47.2 75.4

d=1024 27.22 25.8 50 74.2

DIP

d=32 12.76 54 74.4 89.2

d=64 10.50 59 80.4 91.4

d=128 11.45 59 80.2 90

d=256 10.77 57 79 91.6

d=512 11.19 54.4 79 90.6

d=1024 10.65 52 77 91.2

Bold values denote the best scores corresponding to the specific metric. The value
of each column in terms of Hit@N with different N is the percentage of true edges
ranked in top N
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Table 9 Performance comparison using different vector
generation strategies on HPRD and DIP datasets

Methods No. of complexes Precision Recall F-score

HPRD

Max 871 0.7107 0.3983 0.5105

Min 854 0.7037 0.3824 0.4956

Average 937 0.6126 0.354 0.4487

DIP

Max 710 0.8070 0.4473 0.5755

Min 701 0.8160 0.4368 0.5690

Average 698 0.8181 0.4354 0.5683

Bold value denotes the best score corresponding to F-score. Max denotes selecting
the max value of each column of the matrix Z which is composed by the
corresponding node embeddings in the complex. Min denotes selecting the min
value of each column of the matrix Z. Average denotes getting the average value of
each column of the matrix Z

DIP respectively, which indicates that the entire network
is closely related for HPRD than DIP. However, there are
still some relations which have lower similarities. By filter-
ing the relations which have lower connectivity can help to
delete the unreliable relations, so as to effectively improve
the performance of complex detection methods. As can
be seen from Tables 3 and 4, using NodeEmbed-SLPC-
RF method on the modified networks can greatly improve
the experimental results. The highest F-score is obtained
on the modified network with the simi-thres equals to
0.86 for HPRD, which is about 10.37% higher than that
on the original network with using SLPC alone. In addi-
tion, the highest F-score on the modified DIP network
is with the simi-thres equals to 0.66, but it is only 3.53%
higher than that on the original network with using SLPC
alone. However, the results show that filtering the rela-
tions according to their similarities with proper simi-thres
can help to improve the performance for protein complex
detection.
As mentioned in the section of augmenting networks,

we calculated the similarities between all the node pairs
using their node embeddings and then added new rela-
tions whose similarities were greater than a threshold
to the original PPI networks. Then the candidate com-
plexes were predicted by the SLPC algorithm, and finally
the candidate complexes were further classified by RF
model to obtain the final predicted complexes. It can
be seen from Fig. 4 that the number of the addable
edges varies when the simi-thres ranges from 0.65 to
0.75 and 0.35 to 0.45 on HPRD and DIP respectively,
which indicates that the similarity scores of most rela-
tions are greater than 0.65 and 0.35 on HPRD and DIP
respectively. In order to obtain a more effective thresh-
old of similarity for adding new relations into the original

networks, we tested the performance of NodeEmbed-
SLPC-RF method with the threshold of similarity rang-
ing from 0.65 to 0.75 and 0.35 to 0.45 on HPRD and
DIP respectively. The experimental results are shown in
Tables 5 and 6. As can be seen from the Table 5, when
the similarity threshold is 0.72, the highest F-score can
be obtained, which is 9.17% higher than that on the
original network with SLPC alone. In addition, from the
Table 6 we can see that the best F-score is obtained
with simi-thres equals to 0.36, but the improvement is
slight compared with the F-score obtained by SLPC alone
on the original network. All in all, these results show
that adding reliable relations according to their similar-
ity scores can effectively improve the performance of our
model.
In addition, we also conducted a experiment which was

designed by filtering edges in accordance with the idea
of the section of filtering lower reliable edges and then
adding new relations in accordance with the idea of the
section of augment networks. In order to find the appro-
priate threshold, for HRPD we first fixed the filtering
simi-thres to be 0.86 as using this semi-thres our model
can reach best F-score as shown in Table 3, then the
adding simi-thres varied from 0.65 to 0.75 to find the
appropriate threshold for adding new relations. Table 10
shows the detailed results by using different simi-thres on
HPRD. It can be seen from the Table 10, when the filter-
ing simi-thres is set to 0.86 while the adding simi-thres
is set to 0.74, the model obtains the best performance in
terms of F-score. Also, we fixed the adding simi-thres to
0.72 according to the best result in terms of F-score in
Table 4, and then the filtering score varied from 0.80 to
0.90. The results is shown in Table 10. Furthermore, for
DIP we first fixed the filtering simi-thres to be 0.66 as
using this semi-thres our model can reach best F-score
as shown in Table 4, then the adding simi-thres varied
from 0.35 to 0.45. Table 11 shows the detailed results by
using different simi-thres on DIP. It can be seen from the
Table 11, when the filtering simi-thres is set to 0.66 while
the adding simi-thres is set to 0.40, the model obtains
the best performance in terms of F-score on DIP. Simi-
lar to HPRD, we then fixed the added simi-thres for DIP
with 0.38, and the filtering simi-thres ranged from 0.65 to
0.75. The detailed results can be found in Table 11. It can
be seen from Table 11 that using node embedding sim-
ilarities to filter the relations first and then adding new
relations into the network can slightly improve the per-
formance of NodeEmbed-SLPC-RF for protein complex
detection. For example, the F-score of our method on
DIP network can be increased by about one point com-
pared with that of only filtering relations from the original
DIP network, which demonstrates that node embedding
similarity can reflect the connectivity between nodes and
further proves that adding new reliable relations based
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Table 10 Experimental results obtained by using RF to filter the candidate complexes which are predicted from the modified HPRD
network by filtering edges first and then adding edges with different simi-thres

Simi-thres No. of complexes Precision Recall F-score �

fixing filtering sime-thres to 0.86

0.86_0.65 1018 0.6234 0.3547 0.4521 +0.0309

0.86_0.66 1137 0.5638 0.4075 0.4731 +0.0519

0.86_0.68 1151 0.5656 0.4095 0.4751 +0.0539

0.86_0.67 874 0.6545 0.4135 0.5068 +0.0856

0.86_0.69 868 0.6544 0.4135 0.5068 +0.0856

0.86_0.70 872 0.6514 0.4148 0.5068 +0.0856

0.86_0.71 872 0.6560 0.4135 0.5072 +0.0860

0.86_0.72 952 0.6702 0.4293 0.5234 +0.1022

0.86_0.73 967 0.6660 0.4267 0.5201 +0.0989

0.86_0.74 981 0.6758 0.4293 0.5251 +0.1039

0.86_0.75 978 0.6708 0.4300 0.5240 +0.1028

fixing adding sime-thres to 0.72

0.80_0.72 903 0.6755 0.4062 0.5073 +0.0861

0.81_0.72 897 0.6778 0.4188 0.5177 +0.0965

0.82_0.72 975 0.5908 0.3791 0.4619 +0.0407

0.83_0.72 905 0.6862 0.4221 0.5226 +0.1014

0.84_0.72 888 0.6926 0.4194 0.5224 +0.1012

0.85_0.72 907 0.6880 0.4221 0.5232 +0.1020

0.86_0.72 952 0.6702 0.4293 0.5234 +0.1022

0.87_0.72 871 0.6820 0.4161 0.5169 +0.0957

0.88_0.72 890 0.6685 0.4102 0.5084 +0.0872

0.89_0.72 853 0.6694 0.4089 0.5076 +0.0864

0.90_0.72 856 0.6600 0.4055 0.5024 +0.0812

� denotes the improvement of F-score compare with using SLPC alone. Bold values denote the best scores corresponding to the specific metric

on their similarities can be an effective way to improve
the performance of detecting protein complexes from PPI
network.

Conclusion
In this paper, we propose a protein complex detec-
tion method which is based on node embeddings, and
the results demonstrate that our method can effectively
improve the performance for detecting protein com-
plexes from PPI network. Specifically, compared with
using SLPC alone, when using RF model to classify the
candidate complexes generated by SLPC based on their
complex feature vectors and the candidate complexes
labeled as positive by RF model were considered as the
final predicted complexes, the performance in terms of
F-score can be improved up to 8.93% and 2.33% on HPRD
and DIP, receptively. In addition, When the original rela-
tions were filtered based on the similarity scores of node
embeddings and the candidate complexes were further

classified according to their complex vectors, the per-
formance in terms of F-score can be increased up to
10.37% and 3.53% on HPRD and DIP respectively com-
pared with using SLPC alone. The results indicate that
the performance of protein complex detection methods
could be improved by using node embeddings obtained
by node2vec to measure the reliability of exiting rela-
tions in the PPI networks. What’s more, when adding new
relations according to their similarity scores and using
complex vectors to filter the candidate complexes, the per-
formance in terms of F-score can be increased by up to
9.17% and 2.88% on HPRD and DIP respectively com-
pared with using SLPC algorithm alone. To sum up, the
experiment results demonstrate the effectiveness of using
node embeddings and complex vectors for detecting pro-
tein complexes from PPI networks. In future work, we will
further explore how to combine node embeddings with
biological resources for predicting complexes from PPI
network.
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Table 11 Experimental results obtained by using RF to filter the candidate complexes which are predicted from the modified DIP
network by filtering edges with simi-thres 0.66 first and then adding edges with different simi-thres

Simi-thres No. of complexes Precision Recall F-score �

fixing filtering sime-thres to 0.66

0.66_0.35 665 0.8797 0.4428 0.5891 +0.0369

0.66_0.36 659 0.8786 0.4398 0.5862 +0.0340

0.66_0.37 667 0.8741 0.4398 0.5852 +0.0330

0.66_0.38 660 0.8758 0.4443 0.5895 +0.0373

0.66_0.39 673 0.8678 0.4413 0.5851 +0.0329

0.66_0.40 669 0.8789 0.4443 0.5902 +0.0380

0.66_0.41 669 0.8714 0.4428 0.5872 +0.0350

0.66_0.42 667 0.8786 0.4428 0.5888 +0.0366

0.66_0.43 672 0.8705 0.4398 0.5844 +0.0322

0.66_0.44 667 0.8741 0.4413 0.5865 +0.0343

0.66_0.45 667 0.8771 0.4398 0.5859 +0.0337

fixing adding sime-thres to 0.38

0.65_0.38 594 0.8064 0.4086 0.5424 -0.0098

0.66_0.38 660 0.8758 0.4443 0.5895 +0.0373

0.67_0.38 707 0.7765 0.4250 0.5493 -0.0029

0.68_0.38 681 0.7797 0.4190 0.5451 -0.0071

0.69_0.38 687 0.7729 0.4160 0.5409 -0.0113

0.70_0.38 676 0.7678 0.4086 0.5334 -0.0188

0.71_0.38 664 0.7636 0.4071 0.5311 -0.0211

0.72_0.38 678 0.7478 0.4071 0.5272 -0.0250

0.73_0.38 677 0.7518 0.4042 0.5257 -0.0265

0.74_0.38 678 0.7552 0.4012 0.5240 -0.0282

0.75_0.38 655 0.7588 0.3923 0.5172 -0.0350

� denotes the improvement of F-score compare with using SLPC alone. Bold values denote the best scores corresponding to the specific metric
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