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Abstract: Breast cancer is the most frequently diagnosed malignancy in women, and muta-

tions in the tumor suppressor p53 are commonly detected in the most aggressive subtypes. The 

majority of TP53 gene alterations are missense substitutions, leading to expression of mutant 

forms of the p53 protein that are frequently detected at high levels in cancer cells. P53 mutants 

not only lose the physiological tumor-suppressive activity of the wild-type p53 protein but also 

acquire novel powerful oncogenic functions, referred to as gain of function, that may actively 

confer a selective advantage during tumor progression. Some of the best-characterized onco-

genic activities of mutant p53 are mediated by its ability to form aberrant protein complexes 

with other transcription factors or proteins not directly related to gene transcription. The set of 

cellular proteins available to interact with mutant p53 is dependent on cell type and extensively 

affected by environmental signals, so the prognostic impact of p53 mutation is complex. Specific 

functional interactions of mutant p53 can profoundly impact homeostasis of breast cancer cells, 

reprogramming gene expression in response to specific extracellular inputs or cell-intrinsic 

conditions. The list of protein complexes involving mutant p53 in breast cancer is continu-

ously growing, as is the number of oncogenic phenotypes in which they could be involved. In 

consideration of the functional impact of such complexes, key interactions of mutant p53 may 

be exploited as potential targets for development of therapies aimed at defusing the oncogenic 

potential of p53 mutation.

Keywords: protein–protein interactions, mutant p53 gain of function, targeted therapy, cancer-

cell homeostasis

Introduction
The TP53 gene is the most frequent target for mutation in human cancer, and TP53 

mutations are associated with malignancy and adverse prognosis.1,2 According to the 

Catalogue of Somatic Mutation in Cancer (COSMIC), approximately 23% of human 

breast cancers display TP53 mutation, and this value oscillates from >80% in basal-like 

to <15% in luminal A subtypes.3,4 The critical implication of TP53 gene mutation in 

development of breast cancer is reinforced by the frequent occurrence of this cancer 

in Li–Fraumeni syndrome, a hereditary tumor-predisposing disorder associated with 

germ-line TP53 mutations.5

The predominance of mutations with respect to deletions indicates that TP53 muta-

tions may confer a selective advantage during cancer development. Tumor-associated 

TP53 alterations are most frequently missense mutations, leading to substitution of 

a single amino acid in the p53 protein.2,6 The majority of missense mutations occur 
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within the DNA-binding domain of p53, impairing its 

sequence-specific interaction with target gene promoters.2 

This implies loss of p53-transcriptional activity and related 

oncosuppressive responses. Because p53 normally acts as 

a tetramer, mutant p53 (mutp53) proteins may also act as 

dominant inhibitors of a remaining wild-type p53 allele. 

However, most importantly, mutations in the structured core 

of p53 can have significant consequences on its capability to 

establish novel protein interactions, and this may be a crucial 

step in the acquisition of oncogenic properties by mutp53, a 

phenomenon defined as “gain of function”, or GOF.6

Mutp53 protein complexes as mediators 
of breast cancer aggressiveness
In breast cancer, mechanisms supporting primary tumor 

growth and survival, as well as features required for metas-

tasis to secondary sites, can all be linked to mutp53 GOF.6,7 

Many such oncogenic functions have been ascribed to 

interactions between mutp53 and other transcription factors, 

determining specific gene-expression programs. In addition, 

some mutp53 oncogenic activities rely on its association with 

partners not involved in gene transcription. In any case, for-

mation of protein–protein interactions appear to be a crucial 

element of mutp53 GOF.

One compelling open question, therefore, regards whether 

different mutp53 mutants might have distinctive functions, 

depending on the specific conformational change imposed 

by each mutation. In fact, different p53 missense mutants 

may have different affinity for interacting proteins, generat-

ing phenotypic differences in their GOF.8 Indeed, knock-in 

mice expressing different p53 mutants display distinct cancer 

phenotypes, confirming that missense p53 mutations may 

have diverse biological effects.9,10 It should also be considered 

that a sizeable number of tumor-associated TP53 mutations 

fall outside the DNA-binding domain, potentially affecting 

protein conformation, tetramerization, and/or posttransla-

tional modifications, impinging on mutp53 interactions in 

additional ways. Nonetheless, evidence has demonstrated 

that different p53 mutants can interact with the same tran-

scription factors or proteins, activating identical target genes, 

and modulating the same signaling pathways.8,11 Therefore, it 

remains an open challenge to define the specific impact of p53 

mutations found in real tumors and to distinguish such activ-

ity from a more general pro-oncogenic action that depends 

on features common to all “misfolded” mutp53 proteins.

The accumulation of mutp53 observed in malignancies 

is also critical for its functions, suggesting that not only 

the altered conformation but also the increased amounts of 

mutp53 favor formation of nonphysiological complexes that 

contribute to the oncogenic phenotype.12 In line with this 

concept, various groups have provided evidence of prion-

like behavior of cancer-associated p53 mutants: mutp53 

accumulates in heterogeneous protein complexes composed 

of amorphous aggregates, oligomers, and amyloid-like fibrils 

that are involved in breast cancer progression.13,14 Several 

proteins found in mutp53 aggregates are involved in onco-

genic processes, including cell metabolism, inflammatory 

response, RNA processing, and regulation of proteotoxic 

and oxidative stresses.15

Whatever the mechanism and potential elements of 

specificity, it is legitimate to generalize that interaction 

with mutp53 can either potentiate the oncogenic activity of 

tumor promoting factors or destabilize the tumor suppressive 

action of oncosuppressors.6,8 There is a significant amount of 

literature on protein interactions of mutp53 in cancer, many 

of which can mechanistically explain some aspects of the 

GOF. Here, we focus exclusively on mutp53 interactions 

that have been detected in breast cancer models (Table 1). 

More general features of mutp53 GOF have been recently 

reviewed elsewhere.8,16–18

By forming complexes with other 
transcription factors, mutp53 
reprograms gene expression in 
cancer cells
It is well established that mutp53 can profoundly alter the 

gene-expression profile of the cancer cell.6,18 Various evidence 

has suggested that mutp53 binds DNA, thus raising the pos-

sibility that some mutp53 proteins can recognize a unique 

response element.19 Nevertheless, a consensus sequence for 

mutp53 binding has not been identified.6,20 Rather, mutp53 

has been found to interact with other transcription factors, 

enhancing or subverting their normal activity, thereby chang-

ing the expression profile of their target genes.

For example, in human breast cancer cells, mutp53 bind-

ing with the transcription factor E2F1 leads to transcriptional 

activation of ID4, which in turn promotes neovascularization 

of breast tumor tissue.21 Similarly, mutp53 binding with E2F4 

causes downregulation of genes involved in DNA repair,22 

promoting cell survival and escaping apoptosis. Perhaps 

the best-characterized transcriptional partner of mutp53 is 

NFY. Studies in human breast cancer cell lines have shown 

that mutp53 interaction with NFY neutralizes the cell-cycle 

checkpoint following low levels of DNA damage.23 Under 

these conditions, DNA TopBP1 recruits mutp53 and the cofac-

tor p300 to mediate their binding with NFY, and stimulates 
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transcription of genes involved in chemoresistance, cell-cycle 

progression, and cell proliferation.24 More recently, Krishnan 

et al demonstrated that the oncogenic coregulator PELP1 is 

necessary for the efficient recruitment of mutp53 on NFY 

target genes upon DNA damage.25 In triple-negative breast 

cancer (TNBC) cell models, knockdown of PELP1 improves 

the chemotherapeutic response, inhibiting cell-cycle progres-

sion and activating apoptosis (Figure 1A).

A molecular circuit involving mutp53–NFY links lipid 

metabolism to the control of cell proliferation and tumor-

tissue architecture (Figure 1B). This involves interaction 

with another transcription factor, YAP, a master regulator of 

tissue growth; formation of a YAP–NFY–mutp53 complex 

in human cancer cells drives transcription of prosurvival and 

proliferative genes, also promoting acquisition of invasive 

features.26 The function of this complex in breast cancer is 

finely regulated by lipid metabolism and mechanotransduc-

tion. First, both in physiology and malignancy, the activation 

of YAP is robustly controlled by the mevalonate pathway.27 

Inhibition of the mevalonate pathway by pharmacological 

treatment with statins, a class of drugs used to lower cellular 

cholesterol levels, counteracts YAP/TAZ nuclear activity, 

Table 1 List of published mutant p53 interactions and their functional impact

Interactor Biological effect Reference(s)

Transcription factors: positive regulation/cooperation

E2F1 ID4-dependent induction of proangiogenic mediators; enhanced angiogenesis 21
E2F4 Downregulation of DNA-repair genes; less efficient DNA-damage repair 22
ETS1 Upregulation of drug-resistance genes 88
ETS2 Upregulation of nucleotide biosynthesis genes; improved chemoresistance 89, 90
HSF1 Heat-shock gene transcription; enhanced resistance to proteotoxic stress 33
MAFF Repression of secreted IL1Ra; increased IL1 signaling and tumor growth 91
NFY/p300/TopBP1 Upregulation of cell-cycle genes; enhanced chemoresistance and cell survival 23, 24
NFY/YAP Enhanced YAP activity; transcription of proproliferative and prosurvival genes 26
NRF2 Transcription of genes encoding proteasome machinery 30
PELP1 Recruitment of mutp53 on its target genes; chemoresistance 25
SP1 Transcription of ENTPD5; enhanced folding and secretion of N-glycoproteins 35
SREBP2 Transcription of mevalonate pathway and fatty-acid biosynthesis genes; enhanced cell motility and self-

renewal; mutp53 stabilization
27, 29, 87

VDR Altered transcriptional response to vitamin D3; resistance to apoptosis 34
Transcription factors: negative regulation/inhibition
p63 Inhibition of TAp63 transcriptional activity; enhanced invasive phenotype 40, 42, 43
p63–SMAD complex Inhibition of TAp63-target genes (Sharp1/cyclin G2); enhanced invasive phenotype 43
p73 Reprogrammed p73-transcriptional activity; inhibition of apoptosis 37, 48, 49
Mediators of genomic stability and chromatin-remodeling complexes

Mre11
Disruption of Mre11–Rad50–NBS1 (MRN) complex, impaired ATM activation; defective DNA double-
strand break (DSB)-response pathways

55

SWI–SNF complex Enhanced VEGFR2 expression; enhanced VEGFR2 signaling, cell proliferation, and migration 59
Cytoplasmic interactors
AMPK Enhanced aerobic glycolysis in response to energy stress; increased tumor growth and invasion 64

DAB2IP
Enhanced cell invasion and survival in response to inflammatory stimuli; augmented proliferation and 
invasion upon insulin stimulation

62, 63

Rac1
Enhanced Rac1 activity by preventing Rac1 de-SUMOylation; enhanced growth and metastasis of tumor 
xenografts

65

Positive regulators of mutant p53 stability and activity
BAG2/BAG5 Inhibition of mutp53 ubiquitination and degradation by MDM2 75, 76
Pin1 Enhanced mutp53-dependent inhibition of p63; cancer growth and invasion 45
Plk2 Enhanced mutp53–NFY–p300 complex formation; increased expression of cell-cycle genes 77
Pontin Augmented mutp53-transcriptional activity; enhanced cell migration and invasion 79
HSP90 Increased mutp53 stability and accumulation 70
HSP70 Inhibition of mutp53 ubiquitination and degradation by MDM2 74
Negative regulators of mutant p53 stability and activity
ATF3 Prevents mutp53 interaction with p63; reactivates p63 function, with decreased drug resistance 92
CHIP Stimulates mutp53 degradation 68
Mdm2 Stimulates mutp53 degradation 69
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blunting the pro-oncogenic potential of mutp53.26,27 At the 

same time, mutp53 accumulation in breast cancer cells is 

sustained by RhoA geranylgeranylation downstream of the 

mevalonate pathway and by an actin-dependent transduction 

of mechanical inputs, sensing the stiffness of the surrounding 

tissue.28 In breast cancer cells, pharmacological inhibition 

of geranylgeranyl transferase 1 phenocopies the effects of 

statins, counteracting mutp53 GOF.28

Another important functional link between mutp53 and 

cellular lipid homeostasis relies on its capability to boost the 

mevalonate pathway and fatty-acid intermediates, by binding 

the SREBP family of transcription factors, master regulators 
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Figure 1 Mutant p53 (mutp53) interacts with various transcription factors (TFs) to reprogram gene expression in cancer cells.
Notes: (A) Mutp53 forms a complex with NFY, p300, PELP1, and TopBP1 to control expression of genes involved in cell proliferation and in resistance to DNA-damaging 
drugs.23–25 (B) Mutp53 binds with YAP and NFY on the promoters of genes involved in cell growth and proliferation; both mechanical inputs and activation of the mevalonate 
pathway control formation and activity of this protein complex.26–28,87 (C) By interacting with SREBP2, mutp53 controls expression of enzymes involved in the mevalonate 
pathway, promoting cholesterol and fatty-acid biosynthesis, sustaining disruption of mammary-tissue architecture, and inhibiting mechanisms of mutp53 degradation.27–29,87,93 
(D) By interacting with NRF2, mutp53 controls expression of multiple subunits of the proteasome, alleviating proteotoxic stress and accelerating turnover of cell-cycle 
inhibitors.30 (E) In a complex with HSF1, mutp53 controls expression of chaperones and heat-shock proteins that in turn promote mutp53 stability.33 (F) Mutp53 may interact 
with additional transcription factors, potentially controlling expression of different gene sets, to mediate its oncogenic gain of function.
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of fatty-acid and cholesterol biosynthesis.29 Forming a com-

plex with SREBP2, mutp53 enhances expression of SREBP 

target genes, reprogramming cancer-cell metabolism via 

induction of the mevalonate pathway, leading to the disrup-

tion of normal mammary-tissue architecture.29 In addition, 

the mutp53–SREBP complex indirectly potentiates nuclear 

localization and activation of YAP/TAZ in a positive-feedback 

loop (Figure 1C).27 Therefore, by forming complexes with 

YAP, NFY, and SREBP, mutp53 can coordinate lipid metabo-

lism, responses to mechanical cues (such as stiffness of the 

extracellular matrix), and a global pro-oncogenic transcrip-

tional program, favoring tumor growth and metastasis.

Mutp53 can also affect cellular homeostasis by upregu-

lating proteasome machinery, with a negative impact on 

tumor-suppressive mechanisms. This action relies at least 

in part on its interaction with the transcription factor Nrf2, 

characterized in human TNBC cells (Figure 1D). Upon pro-

tein stress, such as that induced by proteasome inhibition 

or by oxidants, mutp53 binds Nrf2 to enhance transcription 

of proteasome genes. This alleviates the protein load and 

favors proteasomal degradation of tumor-suppressor proteins 

involved in proliferation control and apoptosis, thus result-

ing in a pro-oncogenic response.30 Importantly, Nrf2 acts as 

a master regulator of oxidative stress response. Lisek et al 

very recently reported that mutp53–Nrf2 interaction not only 

promotes expression of proteasome subunits but also coor-

dinates transcription of a specific subset of Nrf2-dependent 

antioxidant-response genes, supporting survival of breast 

cancer cells.31

Interestingly, mutp53 can endow cancer cells with aug-

mented tolerance to proteotoxic stress by activating transcrip-

tion factors that are physiologically inhibited by the wild-type 

p53 protein. For instance, wild-type p53 negatively regulates 

the cytoprotective functions of the heat-shock protein HSF1, 

facilitating the induction of cell senescence upon DNA 

damage.32 In human TNBC cells, via direct interaction with 

HSF1, mutp53 promotes transcription of HSPs and broadly 

enhances oncogenic signals via HSF1 activation, thus provid-

ing survival advantages (Figure 1E).33

Along this line, mutp53 interaction with the zinc-finger 

VDR provides another example of how transcriptional 

complexes involving mutp53 can dramatically subvert cell 

response to various inputs. In fact, mutp53 has been reported 

to bind VDR and p300, and this complex converts the cyto-

toxic effect of vitamin D3 into an antiapoptotic stimulus in 

human breast cancer cells.34

Finally, in human pancreatic and breast cancer cell lines, it 

has been recently shown that mutp53 can be recruited by SP1 

on the promoter of the gene ENTPD5 to induce its expression. 

ENTPD5 is an enzyme involved in N-glycoprotein folding via 

the calnexin–calreticulin cycle in the ER; mutp53-induced 

expression of ENTPD5 may favor or accelerate folding 

and cell-surface localization of prometastatic receptors and 

ligands, eventually supporting tissue remodeling, extracel-

lular matrix invasion, and lung colonization in breast cancer.35

The emerging picture is that mutp53 can control gene 

expression by binding other transcription factors, changing 

their activity or influencing the selection of target genes. It 

is likely that additional such partners of mutp53 will be dis-

covered in the near future, further increasing the complexity 

of its transcriptional impact (Figure 1F).

Binding other p53 family members, 
mutp53 subverts their tumor-
suppressive transcriptional activities
The interaction of mutp53 with transcription factors can 

also be inhibitory. The best-understood example of this 

phenomenon is mutp53 inhibition of other members of the 

p53 family – p63 and p73.36 Multiple studies collectively 

suggest that conformational changes in the p53 core domain 

cause its interaction with p63/p73.37–39 Mutp53 binds DNA 

through p63 interaction, though at sites distinct from those 

that p63 would normally bind.40 Mutp53–p63 association 

impairs TAp63-transcriptional activity, hindering its metas-

tasis-suppressor functions.41–43 The capacity of mutp53 to 

bind and counteract p63 tumor-suppressive function is 

itself controlled at different levels, with the involvement 

of additional partners and intrinsic and extrinsic signals. 

For example, TGFβ acts in concert with oncogenic Ras to 

induce the assembly of a ternary complex in which Smad2 

serves as an essential platform, facilitating the interaction 

between mutp53 and TAp63, in both human and murine 

cell models. This protein complex leads to the inhibition of 

p63-dependent expression of two important suppressors of 

metastasis, Sharp1 and cyclin G2, fostering invasion of tumor 

cells.43 Similarly, phosphorylation-dependent isomerization 

by Pin1 favors mutp53 interaction with TAp63 in TNBC 

cells, contributing to define a proinvasive transcriptional 

program that can stratify breast cancer patients according 

to recurrence-free survival.44,45 Mutp53-mediated suppres-

sion of p63-transcriptional activity also results in enhanced 

RCP-driven recycling of the α
5
β

1
 integrin and EGFR. This 

activates Rho and PKB/Akt to promote cell migration and 

invasion.42 Enhancement of PI3k–Akt signaling mediated by 

integrin/receptor recycling also promotes the activation of 
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WIP, which stimulates the oncogenic phenotype by enhanc-

ing YAP/TAZ stability.46,47

P53 mutants also interact with multiple p73 isoforms,48 

reprogramming their transcriptional activity and counteract-

ing apoptosis.37,49 Various p53 missense mutants (R175H, 

Y220C, and R248W) have been demonstrated to bind 

with p63, and also p73 in human cancer cells, to subvert 

the transactivation of target genes.37,38 In transgenic mice, 

stable expression of mutp53 (R172H) in the mammary gland 

reduces both basal and DNA-damage-induced apoptosis;50 

pharmacological inhibition of mutp53 restores apoptosis 

induction via p73 reactivation.51–53 Finally, a study carried 

out in pancreatic cancer models, but also confirmed in breast 

cancer cells, uncovered a role for mutp53 in enhancing metas-

tasis by preventing the repressive interaction of p73 with the 

transcription factor NFY, thus increasing expression of the 

proinvasive PDGFRβ factor.54

Interacting with chromatin-
associated proteins, mutp53 can 
affect gene expression and genome 
stability
P53 mutants can perturb the DNA-damage response and 

promote breast cancer cell survival also by interacting with 

nuclear proteins that are not sequence-specific transcription 

factors. One noticeable example is the interaction of mutp53 

with the nuclease Mre11. By introducing two different 

mutations into a humanized p53 allele in mice, it has been 

demonstrated that high levels of mutp53 protein disrupt 

formation of the Mre11–Rad50–NBS1 complex at DNA 

double-strand breaks, leading to impaired ATM function 

and accumulation of mutations during proliferation of tumor 

cells.55,56 Accordingly, an increased number of chromosomal 

abnormalities have been observed in breast cancers bearing 

p53 mutations.57,58

Another mutp53 GOF involves direct binding of mutp53 

with the SWI–SNF chromatin-remodeling complex, observed 

in human breast cancer cell lines; via this interaction, hotspot 

p53 mutants might affect chromatin status and gene transcrip-

tion in breast cancer.59 The SWI–SNF complex associates 

genome-wide with transcription-regulatory elements to 

modulate nucleosome occupancy.60 Although the authors 

have only explored the impact of SWI–SNF–mutp53 interac-

tion in potentiating VEGFR2 signaling, SWI/SNF function 

is required at multiple mutp53 target genes, suggesting a 

more general role of this complex in mutp53-dependent 

gene regulation.59

In conclusion, although further studies are required to 

support this concept, p53 mutants may be linked to the 

control of chromatin status and structure, thus affecting the 

gene-expression profile of the cancer cell on multiple levels. 

This could explain why so many genes in tumor cells can 

be affected by the presence of p53 mutations, although the 

precise mechanism for this activity remains to be defined.

By forming complexes with 
cytoplasmic proteins involved in 
signal transduction, mutp53 alters 
the response of cancer cells to 
extracellular or intracellular inputs
Cytoplasm is where different signals are integrated, attenu-

ated, or amplified, and where signaling pathways can talk to 

each other. Some of the GOF activities of mutp53 are medi-

ated by its ability to form aberrant complexes with proteins 

not involved in gene transcription. Particularly interesting 

is mutp53 binding with cytoplasmic mediators of signal 

transduction.

For instance, mutp53 can bind the tumor suppressor 

DAB2IP in the cytoplasm of human breast cancer cells. 

DAB2IP is a cytoplasmic Ras GTPase-activating protein 

that also functions as a signaling scaffold to control the 

cell’s responses to multiple signals.61 The direct binding 

with mutp53 proteins interferes with physiological DAB2IP 

interactions, reprogramming the cell’s response to extrinsic 

inputs. The mutp53–DAB2IP complex facilitates breast can-

cer metastases promoted by inflammatory stimuli, reducing 

TNF-induced activation of the proapoptotic ASK1–JNK axis, 

thereby promoting activation of proinvasive NFκB transcrip-

tion factor (Figure 2A).62 Similarly, mutp53-mediated block 

of DAB2IP functions promotes insulin-induced activation 

of the PI3K–Akt pathway, enhancing cell proliferation 

and invasion in hormone-independent breast and prostate 

cancers (Figure 2B).63 Given the broad impact of DAB2IP 

in modulating signal transduction, it is possible that the 

mutp53–DAB2IP complex may also drive the acquisition 

of an aggressive phenotype in cancer cells exposed to other 

microenvironmental stimuli.

Another example of a cytoplasmic GOF for mutp53, 

observed in head and neck tumors but also confirmed in 

breast cancer models, is represented by the cytoplasmic inter-

action between mutp53 and AMPK. AMPK is an important 

energy sensor that regulates the balance between anabolism 

and catabolism. Under energy-stress conditions, mutp53 

preferentially binds the AMPKα subunit and inhibits AMPK 
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activation, thus leading to impaired metabolic checkpoint, 

increased anabolism, and consequent tumor growth and 

progression (Figure 2C).64

Very recently, Yue et al demonstrated that mutp53 can 

bind members of the monomeric GTPase family of proteins 

in the cytoplasm of multiple human cancer cell lines.65 

Specifically, mutp53 interacts with and activates Rac1, a 

small GTPase that regulates various cellular functions, 

including proliferation, cytoskeletal reorganization, and 

cell mobility. SUMOylation is critical to maintain Rac1 in 

an active GTP-bound form.66 The sumo-specific protease 

SENP1 de-SUMOylates Rac1, leading to its inactivation.67 

Yue et al found that mutp53 interaction with Rac1 inhib-

ited SENP1-mediated Rac1 de-SUMOylation, thereby 

promoting Rac1-dependent tumor growth and metastasis 

(Figure 2D).65

In conclusion, oncogenic conditions that lead to an 

increase in mutp53 protein levels also induce substantial 

cytoplasmic localization of the protein. It is legitimate to 

hypothesize that various nonphysiological protein interac-

tions might occur in the cytoplasm, and the list of nontran-

scriptional complexes that may contribute to mutp53 GOF 

is likely to increase.

Complexes formed by mutp53 
regulate its stability and functions
Factors that bind mutp53 may also promote its stabilization 

and activation, driving its oncogenic GOF. Consequently, 
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Figure 2 Mutant p53 (mutp53) forms complexes with cytoplasmic mediators of signal transduction.
Notes: (A) Mutp53 binds and inhibits the tumor suppressor DAB2IP in the cytoplasm of breast cancer cells, reducing TNF-induced activation of the proapoptotic ASK1–JNK 
axis, simultaneously promoting activation and of proinvasive NFκB transcription factor.62 (B) Mutp53 inhibitory action on DAB2IP promotes insulin-induced activation of the 
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understanding such interactions could have important clini-

cal implications.

Regulators of mutp53 stability
One important element of the oncogenic activity of mutp53 is 

its accumulation at significant levels in cancer cells. Interest-

ingly, the majority of E3 ubiquitin ligases are shared between 

wild-type and mutp53; mutp53levels, in particular, are con-

trolled through binding with Mdm2, CHIP, and Cop1.68,69 It is 

believed that accumulation of high levels of mutp53 protein 

in cancer cells derives from an acquired capability to avoid 

E3-mediated ubiquitination. For example, mutp53 proteins 

are protected from degradation by the binding of cellular 

chaperones. HSP90 has been shown to protect mutp53 from 

both CHIP- and Mdm2-mediated ubiquitination.70 Mutp53 

forms a ternary complex with MDM2 and HSP90; upon 

DNA damage, MDM2 is released, but mutp53 is retained 

in the HSP90 complex and is protected from degradation.71 

Accordingly, destabilization of this complex favors mutp53 

degradation and drug-induced cytotoxicity in tumor cells.71–73

Also, HSP70 binds mutp53 and partially inhibits Mdm2-

driven ubiquitination.74 In breast cancer cells and in mouse 

embryonic fibroblasts stably expressing exogenous human 

mutp53, elevated levels of HSP70 promote formation of 

nuclear HSP70 aggregates that include mutp53 and p73, lim-

iting p73-dependent induction of apoptosis.74 Analogously, 

BAG2 and BAG5 interact with mutp53 in breast and in other 

cancer cells, favoring accumulation of the mutp53 protein 

and the acquisition of oncogenic properties.75,76

Regulators of mutp53 activity
Research has suggested that mutp53 activity can also be 

modulated by posttranslational modifications. For instance, 

the transcriptional activity of mutp53 is potentiated by the 

action of Plk2. In human cell models, Plk2 binds and phos-

phorylates mutp53 in response to DNA damage, promoting 

formation of the p300–NFY–mutp53 complex on cell-cycle 

genes, thus favoring tumor progression and chemoresis-

tance.77 Intriguingly, mutp53 itself induces the transcription 

of Plk2, thereby potentiating this GOF circuit.77

Similarly, mutp53 function can be regulated by the pro-

lyl isomerase Pin1. In breast cancer cells, Pin1-mediated 

isomerization enhances the oncogenic activity of mutp53, 

possibly by enhancing its interaction with TAp63, and drives 

expression of a mutp53-dependent transcriptional program 

that fosters cancer-cell proliferation and invasion.45 Mutp53 

oncogenic functions can also be regulated by Pontin, an 

AAA+ (adenosine triphosphatase associated with diverse 

cellular activities) ATPase involved in multiple biological 

processes, including cellular energetic metabolism, transcrip-

tion, chromatin remodeling, and DNA-damage response.78,79 

The ATPase activity of Pontin promotes mutp53-mediated 

transcriptional upregulation of multiple genes involved in 

migration, invasion, and anchorage-independent growth of 

tumor cells.79 There are some analogies between the action 

of Pin1 and Pontin on mutp53; the fact that they both require 

catalytic activity raises interesting possibilities to blunt 

mutp53 GOF by development of specific pharmacological 

inhibitors.

Therapeutic approaches targeting 
mutp53 protein complexes
As reviewed here, the oncogenic properties of mutp53 are 

tightly related to its ability to form complexes with other pro-

teins. These can be downstream targets, directly or indirectly 

involved in DNA transcription or signal transduction, or can 

be upstream modulators, controlling mutp53 stability and 

activity. In any case, pharmacological approaches aimed at 

disrupting mutp53 complexes represent an appealing strategy 

for cancer therapy. Such approaches may operate along three 

possible lines of attack: stabilizing mutp53 structure to restore 

its wild-type functions, preventing or disrupting oncogenic 

complexes with specific target proteins, and reducing mutp53 

levels by targeting the axis that determines its accumulation 

and activity (Figure 3).

A variety of compounds that elicit mutp53 destabilization, 

inactivation, or reactivation of wild-type p53 functions have 

been developed.80 PRIMA-1 and its analogue PRIMA-1Met 

can refold various p53 mutants, restoring wild-type DNA 

binding and inducing apoptosis. PRIMA-1Met suppresses 

cancer progression in animal models and is currently under-

going clinical trials. Interestingly, other small molecules, such 

as RETRA and NSC59984, have been shown selectively to 

kill mutp53-bearing cancer cells in a p73-dependent manner: 

these molecules release p73 from the inhibitory interaction 

with mutp53, promoting drug-induced cell death.53,81

Another option is to try to disrupt complexes that are 

involved in mutp53 GOF. For instance, we used a chime-

ric “decoy” protein (GFP-KA2) to displace the mutp53–

DAB2IP complex.62 Expression of such a decoy abolished 

inflammation-driven invasion in vitro and xenograft growth 

and dissemination in breast cancer cell models.62 Similarly, 

expression of the GFP-KA2 decoy blocked insulin-induced 

proliferation and invasion in breast cancer cells.63 These 

results provided a proof of principle that peptide or nucleo-

tide aptamers designed to interfere with aberrant complexes 
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formed by mutp53 may have a putative application in targeted 

therapy of breast cancer malignancy. With the same logic, 

tools designed to prevent mutp53 interaction with crucial 

transcriptional partners, such as NFY, SP1, TAp63, and p73, 

would have useful applications in limiting cancer progression.

Other possible approaches aimed at destabilizing mutp53 

protein complexes involve disruption of mechanisms that 

promote mutp53 stability and activity. For instance, blocking 

the function of HSP90 via 17-AAG or ganetespib promotes 

degradation of p53 mutants, favoring apoptosis induc-

tion in in vivo tumor models.70,82 Ganetespib efficiency is 

under evaluation in clinical trials, with promising results, 

especially in lung carcinoma and in metastatic breast can-

cer.83,84 Similarly, SAHA, a histone deacetylase inhibitor, 

stimulates degradation of mutp53 by inhibiting HDAC6, a 

key positive regulator of HSP90. SAHA treatment disrupts 

HDAC6–HSP90–mutp53 complexes, leading to mutp53 

ubiquitination via MDM2 and CHIP.73 Recently, Wang et 

al demonstrated that in TNBC, SAHA specifically reduces 

the transcription of mutp53 by blocking the activity of the 

HDAC8–YY1 protein complex, with higher cytotoxic effect 

in cancer cells bearing p53 mutations with respect to those 

with wild-type or null p53.85

The Pontin-specific ATPase inhibitor rottlerin also 

gave efficient results on mutp53-bearing tumors, reducing 

cell migration, proliferation, and expression of oncogenic 

mutp53-target genes.79 Similarly, destabilization of mutp53/

Pin1 oncogenic functions by the employment of specific 

Pin1 inhibitors showed powerful tumor suppression in breast 

cancer preclinical models.86

Finally, knowledge of the molecular circuits at the base 

of mutp53 GOF may suggest possible lines of intervention 

that combine drugs targeting mutp53 with drugs target-

ing related molecular pathways. One such example is the 

mutp53–Nrf2 complex that drives expression of proteasome 

subunits, increasing protein turnover in breast cancer cells.30 

In this model, combination of the mutp53-inactivating agent 

PRIMA-1Met with the proteasome inhibitor carfilzomib 

showed high efficacy in reducing primary tumor growth and 

dissemination in mammary fat-pad xenografts.30 Another 

example is provided by the SREBP2–mutp53 complex and 

regulation of mutp53 levels by the mevalonate pathway. In 

fact, treatment with statins, compounds that inhibit HMG-

CoA reductase, induce mutp53 degradation and loss of func-

tion. Accordingly, statins suppress progression of mammary 

tumors bearing p53 mutations in preclinical models.27,28,87

In conclusion, a detailed understanding of the transcrip-

tional and nontranscriptional complexes involving mutp53 is 

an important prerequisite for the development of novel mol-

ecules to target mutp53 oncogenic functions, as well as for 

effective repurposing of existing drugs that may be employed 

to target these complexes or their related pathways. Together, 

Inhibitors of downstream mediators
and pathway

Rescue of the wild-type
p53 functions
i.e.
PRIMA-1
RETRA
NSC59984

Interference with mechanism
of mutp53 accumulation
i.e.
SAHA
HSP inhibitors

Oncogenic activity
of mutp53 complexes

Displacement of mutp53
binding with specific interactors
i.e.
KA2 decoy

Inhibitors of mutp53
activators
i.e.
Rottlerin
PIN1 inhibitors

i.e.
Statins/other mevalonate pathway
inhibitors
Proteasome inhibitors

Figure 3 Therapeutic approaches targeting mutant p53 (mutp53) protein complexes.
Notes: Pharmacological approaches aimed at disrupting mutp53 complexes represent an appealing strategy for cancer therapy. Such approaches involve stabilizing mutp53 
to restore its wild-type functions, reducing mutp53 levels by disrupting mechanisms of mutp53 accumulation, counteracting mutp53 activity by targeting specific mutp53 
modulators, preventing or disrupting oncogenic complexes with specific target proteins, and inhibiting mediators or pathways downstream of mutp53 protein complexes 
(see text for details).
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these approaches may develop into novel therapeutic strate-

gies for the treatment of tumors bearing mutp53.

Acknowledgments
Authors acknowledge financial support from an AIRC (Ital-

ian Association for Cancer Research) Investigator Grant 

(IG 14173) and Università di Trieste (FRA 2015) to LC, 

and AIRC Special Program Molecular Clinical Oncology 

“5 per mille” (grant 10016) to GDS. AB is supported by 

a Guglielmina Lucatello e Gino Mazzega fellowship from 

FIRC (Fondazione Italiana Ricerca sul Cancro).

Disclosure
The authors report no conflicts of interest in this work.

References
	 1.	 Kandoth C, McLellan MD, Vandin F, et al. Mutational landscape and sig-

nificance across 12 major cancer types. Nature. 2013;502(7471):333–339.
	 2.	 Kim MP, Zhang Y, Lozano G. Mutant p53: multiple mechanisms define 

biologic activity in cancer. Front Oncol. 2015;5:249.
	 3.	 Dumay A, Feugeas JP, Wittmer E, et al. Distinct tumor protein p53 mutants 

in breast cancer subgroups. Int J Cancer. 2013;132(5):1227–1231.
	 4.	 Forbes SA, Bindal N, Bamford S, et al. COSMIC: mining complete 

cancer genomes in the Catalogue of Somatic Mutations in Cancer. 
Nucleic Acids Res. 2011;39(D):D945–D950.

	 5.	 Malkin D. Li-Fraumeni syndrome. Genes Cancer. 2011;2(4):475–484.
	 6.	 Muller PA, Vousden KH. Mutant p53 in cancer: new functions and 

therapeutic opportunities. Cancer Cell. 2014;25(3):304–317.
	 7.	 Sabapathy K. The contrived mutant p53 oncogene: beyond loss of 

functions. Front Oncol. 2015;5:276.
	 8.	 Kim MP, Lozano G. Mutant p53 partners in crime. Cell Death Differ. 

2018;25(1):161–168.
	 9.	 Olive KP, Tuveson DA, Ruhe ZC, et al. Mutant p53 gain of function in two 

mouse models of Li-Fraumeni syndrome. Cell. 2004;119(6):847–860.
	10.	 Hanel W, Marchenko N, Xu S, Yu SX, Weng W, Moll U. Two hot spot 

mutant p53 mouse models display differential gain of function in 
tumorigenesis. Cell Death Differ. 2013;20(7):898–909.

	11.	 Freed-Pastor WA, Prives C. Mutant p53: one name, many proteins. 
Genes Dev. 2012;26(12):1268–1286.

	12.	 Yue X, Zhao Y, Xu Y, Zheng M, Feng Z, Hu W. Mutant p53 in 
cancer: accumulation, gain-of-function, and therapy. J Mol Biol. 
2017;429(11):1595–1606.

	13.	 Lasagna-Reeves CA, Clos AL, Castillo-Carranza D, et al. Dual role of 
p53 amyloid formation in cancer: loss of function and gain of toxicity. 
Biochem Biophys Res Commun. 2013;430(3):963–968.

	14.	 Ghosh S, Salot S, Sengupta S, et al. P53 amyloid formation leading 
to its loss of function: implications in cancer pathogenesis. Cell Death 
Differ. 2017;24(10):1784–1798.

	15.	 Silva JL, Cino EA, Soares IN, Ferreira VF, de Oliveira GA. Targeting 
the prion-like aggregation of mutant p53 to combat cancer. Acc Chem 
Res. 2018;51(1):181–190.

	16.	 Mantovani F, Walerych D, Sal GD. Targeting mutant p53 in cancer: a 
long road to precision therapy. FEBS J. 2017;284(6):837–850.

	17.	 Walerych D, Lisek K, del Sal G. Mutant p53: one, no one, and one 
hundred thousand. Front Oncol. 2015;5:289.

	18.	 Haupt S, Raghu D, Haupt Y. Mutant p53 drives cancer by subverting 
multiple tumor suppression pathways. Front Oncol. 2016;6:12.

	19.	 Thukral SK, Lu Y, Blain GC, Harvey TS, Jacobsen VL. Discrimina-
tion of DNA binding sites by mutant p53 proteins. Mol Cell Biol. 
1995;15(9):5196–5202.

	20.	 Dell’Orso S, Fontemaggi G, Stambolsky P, et al. ChIP-on-chip analysis 
of in vivo mutant p53 binding to selected gene promoters. OMICS. 
2011;15(5):305–312.

	21.	 Fontemaggi G, Dell’Orso S, Trisciuoglio D, et al. The execution of the 
transcriptional axis mutant p53, E2F1 and ID4 promotes tumor neo-
angiogenesis. Nat Struct Mol Biol. 2009;16(10):1086–1093.

	22.	 Valenti F, Ganci F, Fontemaggi G, et al. Gain of function mutant p53 
proteins cooperate with E2F4 to transcriptionally downregulate RAD17 
and BRCA1 gene expression. Oncotarget. 2015;6(8):5547–5566.

	23.	 Di Agostino S, Strano S, Emiliozzi V, et al. Gain of function of 
mutant p53: the mutant p53/NF-Y protein complex reveals an aber-
rant transcriptional mechanism of cell cycle regulation. Cancer Cell. 
2006;10(3):191–202.

	24.	 Liu K, Ling S, Lin WC. TopBP1 mediates mutant p53 gain of function 
through NF-Y and p63/p73. Mol Cell Biol. 2011;31(22):4464–4481.

	25.	 Krishnan SR, Nair BC, Sareddy GR, et al. Novel role of PELP1 in regu-
lating chemotherapy response in mutant p53-expressing triple negative 
breast cancer cells. Breast Cancer Res Treat. 2015;150(3):487–499.

	26.	 Di Agostino S, Sorrentino G, Ingallina E, et al. YAP enhances the pro-
proliferative transcriptional activity of mutant p53 proteins. EMBO Rep. 
2016;17(2):188–201.

	27.	 Sorrentino G, Ruggeri N, Specchia V, et al. Metabolic control of YAP and 
TAZ by the mevalonate pathway. Nat Cell Biol. 2014;16(4):357–366.

	28.	 Ingallina E, Sorrentino G, Bertolio R, et al. Mechanical cues control 
mutant p53 stability through a mevalonate-RhoA axis. Nat Cell Biol. 
2018;20(1):28–35.

	29.	 Freed-Pastor WA, Mizuno H, Zhao X, et al. Mutant p53 disrupts 
mammary tissue architecture via the mevalonate pathway. Cell. 
2012;148(1–2):244–258.

	30.	 Walerych D, Lisek K, Sommaggio R, et al. Proteasome machinery is 
instrumental in a common gain-of-function program of the p53 missense 
mutants in cancer. Nat Cell Biol. 2016;18(8):897–909.

	31.	 Lisek K, Campaner E, Ciani Y, Walerych D, del Sal G. Mutant p53 
tunes the NRF2-dependent antioxidant response to support survival of 
cancer cells. Oncotarget. 2018;9(29):20508–20523.

	32.	 Kim G, Meriin AB, Gabai VL, et al. The heat shock transcription 
factor Hsf1 is downregulated in DNA damage-associated senescence, 
contributing to the maintenance of senescence phenotype. Aging Cell. 
2012;11(4):617–627.

	33.	 Li D, Yallowitz A, Ozog L, Marchenko N. A gain-of-function mutant 
p53-HSF1 feed forward circuit governs adaptation of cancer cells to 
proteotoxic stress. Cell Death Dis. 2014;5:e1194.

	34.	 Stambolsky P, Tabach Y, Fontemaggi G, et al. Modulation of the 
vitamin D3 response by cancer-associated mutant p53. Cancer Cell. 
2010;17(3):273–285.

	35.	 Vogiatzi F, Brandt DT, Schneikert J, et al. Mutant p53 promotes tumor 
progression and metastasis by the endoplasmic reticulum UDPase 
ENTPD5. Proc Natl Acad Sci U S A. 2016;113(52):E8433–E8442.

	36.	 Muller PA, Vousden KH. P53 mutations in cancer. Nat Cell Biol. 
2013;15(1):2–8.

	37.	 Marin MC, Jost CA, Brooks LA, et al. A common polymorphism 
acts as an intragenic modifier of mutant p53 behaviour. Nat Genet. 
2000;25(1):47–54.

	38.	 Gaiddon C, Lokshin M, Ahn J, Zhang T, Prives C. A subset of 
tumor-derived mutant forms of p53 down-regulate p63 and p73 
through a direct interaction with the p53 core domain. Mol Cell Biol. 
2001;21(5):1874–1887.

	39.	 Bergamaschi D, Gasco M, Hiller L, et al. P53 polymorphism influences 
response in cancer chemotherapy via modulation of p73-dependent 
apoptosis. Cancer Cell. 2003;3(4):387–402.

	40.	 Martynova E, Pozzi S, Basile V, et al. Gain-of-function p53 mutants 
have widespread genomic locations partially overlapping with p63. 
Oncotarget. 2012;3(2):132–143.

	41.	 Strano S, Fontemaggi G, Costanzo A, et al. Physical interaction with 
human tumor-derived p53 mutants inhibits p63 activities. J Biol Chem. 
2002;277(21):18817–18826.

www.dovepress.com
www.dovepress.com
www.dovepress.com


Breast Cancer - Targets and Therapy 2018:10 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

111

Mutant p53 in breast cancer

	42.	 Muller PA, Caswell PT, Doyle B, et al. Mutant p53 drives invasion by 
promoting integrin recycling. Cell. 2009;139(7):1327–1341.

	43.	 Adorno M, Cordenonsi M, Montagner M, et al. A mutant-p53/Smad 
complex opposes p63 to empower TGFβ-induced metastasis. Cell. 
2009;137(1):87–98.

	44.	 Su X, Chakravarti D, Cho MS, et al. TAp63 suppresses metasta-
sis through coordinate regulation of Dicer and miRNAs. Nature. 
2010;467(7318):986–990.

	45.	 Girardini JE, Napoli M, Piazza S, et al. A Pin1/mutant p53 axis promotes 
aggressiveness in breast cancer. Cancer Cell. 2011;20(1):79–91.

	46.	 Escoll M, Gargini R, Cuadrado A, Anton IM, Wandosell F. Mutant p53 
oncogenic functions in cancer stem cells are regulated by WIP through 
YAP/TAZ. Oncogene. 2017;36(25):3515–3527.

	47.	 Gargini R, Escoll M, Garcia E, Garcia-Escudero R, Wandosell F, 
Anton IM. WIP drives tumor progression through YAP/TAZ-dependent 
autonomous cell growth. Cell Rep. 2016;17(8):1962–1977.

	48.	 Strano S, Munarriz E, Rossi M, et al. Physical and functional interac-
tion between p53 mutants and different isoforms of p73. J Biol Chem. 
2000;275(38):29503–29512.

	49.	 Di Como CJ, Gaiddon C, Prives C. P73 function is inhibited by tumor-
derived p53 mutants in mammalian cells. Mol Cell Biol. 1999;19(2): 
1438–1449.

	50.	 Murphy KL, Dennis AP, Rosen JM. A gain of function p53 mutant 
promotes both genomic instability and cell survival in a novel p53-null 
mammary epithelial cell model. FASEB J. 2000;14(14):2291–2302.

	51.	 Liu X, Sun C, Jin X, et al. Genistein enhances the radiosensitivity of 
breast cancer cells via G

2
/M cell cycle arrest and apoptosis. Molecules. 

2013;18(11):13200–13217.
	52.	 Huang L, Li A, Liao G, et al. Curcumol triggers apoptosis of p53 mutant 

triple-negative human breast cancer MDA-MB 231 cells via activation 
of p73 and PUMA. Oncol Lett. 2017;14(1):1080–1088.

	53.	 Kravchenko JE, Ilyinskaya GV, Komarov PG, et al. Small-molecule 
RETRA suppresses mutant p53-bearing cancer cells through a 
p73-dependent salvage pathway. Proc Natl Acad Sci U S A. 2008;105(17): 
6302–6307.

	54.	 Weissmueller S, Manchado E, Saborowski M, et al. Mutant p53 drives 
pancreatic cancer metastasis through cell-autonomous PDGF receptor 
β signaling. Cell. 2014;157(2):382–394.

	55.	 Song H, Hollstein M, Xu Y. P53 gain-of-function cancer mutants induce 
genetic instability by inactivating ATM. Nat Cell Biol. 2007;9(5): 
573–580.

	56.	 Hanel W, Moll UM. Links between mutant p53 and genomic instability. 
J Cell Biochem. 2012;113(2):433–439.

	57.	 Jong YJ, Li LH, Tsou MH, et al. Chromosomal comparative genomic 
hybridization abnormalities in early- and late-onset human breast can-
cers: correlation with disease progression and TP53 mutations. Cancer 
Genet Cytogenet. 2004;148(1):55–65.

	58.	 Kleivi K, Diep CB, Pandis N, Heim S, Teixeira MR, Lothe RA. TP53 
mutations are associated with a particular pattern of genomic imbalances 
in breast carcinomas. J Pathol. 2005;207(1):14–19.

	59.	 Pfister NT, Fomin V, Regunath K, et al. Mutant p53 cooperates with 
the SWI/SNF chromatin remodeling complex to regulate VEGFR2 in 
breast cancer cells. Genes Dev. 2015;29(12):1298–1315.

	60.	 Tolstorukov MY, Sansam CG, Lu P, et al. Swi/Snf chromatin remodeling/
tumor suppressor complex establishes nucleosome occupancy at target 
promoters. Proc Natl Acad Sci U S A. 2013;110(25):10165–10170.

	61.	 Bellazzo A, Di Minin G, Collavin L. Block one, unleash a hundred: 
mechanisms of DAB2IP inactivation in cancer. Cell Death Differ. 
2017;24(1):15–25.

	62.	 Di Minin G, Bellazzo A, dal Ferro M, et al. Mutant p53 reprograms TNF 
signaling in cancer cells through interaction with the tumor suppressor 
DAB2IP. Mol Cell. 2014;56(5):617–629.

	63.	 Valentino E, Bellazzo A, Di Minin G, et al. Mutant p53 potentiates the 
oncogenic effects of insulin by inhibiting the tumor suppressor DAB2IP. 
Proc Natl Acad Sci U S A. 2017;114(29):7623–7628.

	64.	 Zhou G, Wang J, Zhao M, et al. Gain-of-function mutant p53 promotes 
cell growth and cancer cell metabolism via inhibition of AMPK activa-
tion. Mol Cell. 2014;54(6):960–974.

	65.	 Yue X, Zhang C, Zhao Y, et al. Gain-of-function mutant p53 activates 
small GTPase Rac1 through SUMOylation to promote tumor progres-
sion. Genes Dev. 2017;31(16):1641–1654.

	66.	 Bid HK, Roberts RD, Manchanda PK, Houghton PJ. RAC1: an emerg-
ing therapeutic option for targeting cancer angiogenesis and metastasis. 
Mol Cancer Ther. 2013;12(10):1925–1934.

	67.	 Castillo-Lluva S, Tatham MH, Jones RC, et al. SUMOylation of the GTPa 
se Rac1 is required for optimal cell migration. Nat Cell Biol. 2010; 
12(11):1078–1085.

	68.	 Lukashchuk N, Vousden KH. Ubiquitination and degradation of mutant 
p53. Mol Cell Biol. 2007;27(23):8284–8295.

	69.	 Haupt Y, Maya R, Kazaz A, Oren M. Mdm2 promotes the rapid degrada-
tion of p53. Nature. 1997;387(6630):296–299.

	70.	 Li D, Marchenko ND, Schulz R, et al. Functional inactivation of endog-
enous MDM2 and CHIP by HSP90 causes aberrant stabilization of 
mutant p53 in human cancer cells. Mol Cancer Res. 2011;9(5):577–588.

	71.	 Peng Y, Chen L, Li C, Lu W, Chen J. Inhibition of MDM2 by hsp90 contrib-
utes to mutant p53 stabilization. J Biol Chem. 2001;276(44):40583–40590.

	72.	 Whitesell L, Sutphin PD, Pulcini EJ, Martinez JD, Cook PH. The physi-
cal association of multiple molecular chaperone proteins with mutant 
p53 is altered by geldanamycin, an hsp90-binding agent. Mol Cell Biol. 
1998;18(3):1517–1524.

	73.	 Li D, Marchenko ND, Moll UM. SAHA shows preferential cytotoxic-
ity in mutant p53 cancer cells by destabilizing mutant p53 through 
inhibition of the HDAC6-Hsp90 chaperone axis. Cell Death Differ. 
2011;18(12):1904–1913.

	74.	 Wiech M, Olszewski MB, Tracz-Gaszewska Z, Wawrzynow B, Zylicz 
M, Zylicz A. Molecular mechanism of mutant p53 stabilization: the 
role of HSP70 and MDM2. PLoS One. 2012;7(12):e51426.

	75.	 Yue X, Zhao Y, Liu J, et al. BAG2 promotes tumorigenesis through 
enhancing mutant p53 protein levels and function. Elife. 2015;4:e08401.

	76.	 Yue X, Zhao Y, Huang G, et al. A novel mutant p53 binding partner 
BAG5 stabilizes mutant p53 and promotes mutant p53 GOFs in tumori-
genesis. Cell Discov. 2016;2:16039.

	77.	 Valenti F, Fausti F, Biagioni F, et al. Mutant p53 oncogenic functions 
are sustained by Plk2 kinase through an autoregulatory feedback loop. 
Cell Cycle. 2011;10(24):4330–4340.

	78.	 Rosenbaum J, Baek SH, Dutta A, et al. The emergence of the conserved 
AAA+ ATPases Pontin and Reptin on the signaling landscape. Sci 
Signal. 2013;6(266):mr1.

	79.	 Zhao Y, Zhang C, Yue X, et al. Pontin, a new mutant p53-binding protein, 
promotes gain-of-function of mutant p53. Cell Death Differ. 2015;22(11): 
1824–1836.

	80.	 Parrales A, Iwakuma T. Targeting oncogenic mutant p53 for cancer 
therapy. Front Oncol. 2015;5:288.

	81.	 Zhang S, Zhou L, Hong B, et al. Small-molecule NSC59984 restores 
p53 pathway signaling and antitumor effects against colorectal can-
cer via p73 activation and degradation of mutant p53. Cancer Res. 
2015;75(18):3842–3852.

	82.	 Alexandrova EM, Yallowitz AR, Li D, et al. Improving survival by 
exploiting tumour dependence on stabilized mutant p53 for treatment. 
Nature. 2015;523(7560):352–356.

	83.	 Ramalingam S, Goss G, Rosell R, et al. A randomized phase II study 
of ganetespib, a heat shock protein 90 inhibitor, in combination with 
docetaxel in second-line therapy of advanced non-small cell lung cancer 
(GALAXY-1). Ann Oncol. 2015;26(8):1741–1748.

	84.	 Jhaveri K, Chandarlapaty S, Lake D, et al. A phase II open-label study 
of ganetespib, a novel heat shock protein 90 inhibitor for patients with 
metastatic breast cancer. Clin Breast Cancer. 2014;14(3):154–160.

	85.	 Wang ZT, Chen ZJ, Jiang GM, et al. Histone deacetylase inhibitors 
suppress mutant p53 transcription via HDAC8/YY1 signals in triple 
negative breast cancer cells. Cell Signal. 2016;28(5):506–515.

	86.	 Campaner E, Rustighi A, Zannini A, et al. A covalent PIN1 inhibitor 
selectively targets cancer cells by a dual mechanism of action. Nat 
Commun. 2017;8:15772.

	87.	 Parrales A, Ranjan A, Iyer SV, et al. DNAJA1 controls the fate of 
misfolded mutant p53 through the mevalonate pathway. Nat Cell Biol. 
2016;18(11):1233–1243.

www.dovepress.com
www.dovepress.com
www.dovepress.com


Breast Cancer - Targets and Therapy 2018:10submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

Breast Cancer - Targets and Therapy

Publish your work in this journal

Submit your manuscript here: https://www.dovepress.com/breast-cancer---targets-and-therapy-journal 

Breast Cancer - Targets and Therapy is an international, peer- 
reviewed open access journal focusing on breast cancer research, 
identification of therapeutic targets and the optimal use of preven-
tative  and integrated treatment interventions to achieve improved 
outcomes, enhanced survival and quality of life for the cancer patient. 

The manuscript management system is completely online and includes 
a very quick and fair peer-review system, which is all easy to use. Visit 
http://www.dovepress.com/testimonials.php to read real quotes from 
published authors.

Dovepress

112

Bellazzo et al

	88.	 Sampath J, Sun D, Kidd VJ, et al. Mutant p53 cooperates with ETS 
and selectively up-regulates human MDR1 not MRP1. J Biol Chem. 
2001;276(42):39359–39367.

	89.	 Kollareddy M, Dimitrova E, Vallabhaneni KC, et al. Regulation of 
nucleotide metabolism by mutant p53 contributes to its gain-of-function 
activities. Nat Commun. 2015;6:7389.

	90.	 Do PM, Varanasi L, Fan S, et al. Mutant p53 cooperates with ETS2 to 
promote etoposide resistance. Genes Dev. 2012;26(8):830–845.

	91.	 Ubertini V, Norelli G, d’Arcangelo D, et al. Mutant p53 gains new func-
tion in promoting inflammatory signals by repression of the secreted 
interleukin-1 receptor antagonist. Oncogene. 2015;34(19):2493–2504.

	92.	 Wei S, Wang H, Lu C, et al. The activating transcription factor 3 protein 
suppresses the oncogenic function of mutant p53 proteins. J Biol Chem. 
2014;289(13):8947–8959.

	93.	 Parrales A, Thoenen E, Iwakuma T. The interplay between mutant p53 
and the mevalonate pathway. Cell Death Differ. 2018;25(3):460–470.

www.dovepress.com
www.dovepress.com
www.dovepress.com

	_GoBack
	_ENREF_1
	_ENREF_2
	_ENREF_3
	_ENREF_4
	_ENREF_5
	_ENREF_6
	_ENREF_7
	_ENREF_8
	_ENREF_9
	_ENREF_10
	_ENREF_11
	_ENREF_12
	_ENREF_13
	_ENREF_14
	_ENREF_15
	_ENREF_16
	_ENREF_17
	_ENREF_18
	_ENREF_19
	_ENREF_20
	_ENREF_21
	_ENREF_22
	_ENREF_23
	_ENREF_24
	_ENREF_25
	_ENREF_26
	_ENREF_27
	_ENREF_28
	_ENREF_29
	_ENREF_30
	_ENREF_31
	_ENREF_32
	_ENREF_33
	_ENREF_34
	_ENREF_35
	_ENREF_36
	_ENREF_37
	_ENREF_38
	_ENREF_39
	_ENREF_40
	_ENREF_41
	_ENREF_42
	_ENREF_43
	_ENREF_44
	_ENREF_45
	_ENREF_46
	_ENREF_47
	_ENREF_48
	_ENREF_49
	_ENREF_50
	_ENREF_51
	_ENREF_52
	_ENREF_53
	_ENREF_54
	_ENREF_55
	_ENREF_56
	_ENREF_57
	_ENREF_58
	_ENREF_59
	_ENREF_60
	_ENREF_61
	_ENREF_62
	_ENREF_63
	_ENREF_64
	_ENREF_65
	_ENREF_66
	_ENREF_67
	_ENREF_68
	_ENREF_69
	_ENREF_70
	_ENREF_71
	_ENREF_72
	_ENREF_73
	_ENREF_74
	_ENREF_75
	_ENREF_76
	_ENREF_77
	_ENREF_78
	_ENREF_79
	_ENREF_80
	_ENREF_81
	_ENREF_82
	_ENREF_83
	_ENREF_84
	_ENREF_85
	_ENREF_86
	_ENREF_87
	_ENREF_88
	_ENREF_89
	_ENREF_90
	_ENREF_91
	_ENREF_92
	_ENREF_93

	Publication Info 4: 


