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Abstract

The factors that determine Serum Thyrotropin (TSH) levels have been examined through

different methods, using different covariates. However, the use of machine learning meth-

ods has so far not been studied in population databases like NHANES (National Health and

Nutritional Examination Survey) to predict TSH. In this study, we performed a comparative

analysis of different machine learning methods like Linear regression, Random forest, Sup-

port vector machine, multilayer perceptron and stacking regression to predict TSH and clas-

sify individuals with normal, low and high TSH levels. We considered Free T4, Anti-TPO

antibodies, T3, Body Mass Index (BMI), Age and Ethnicity as the predictor variables. A total

of 9818 subjects were included in this comparative analysis. We used coefficient of determi-

nation (r2) value to compare the results for predicting the TSH and show that the Random

Forest, Gradient Boosting and Stacking Regression perform equally well in predicting TSH

and achieve the highest r2 value = 0.13, with mean absolute error of 0.78. Moreover, we

found that Anti-TPO is the most important feature in predicting TSH followed by Age, BMI,

T3 and Free-T4 for the regression analysis. While classifying TSH into normal, high or low

levels, our comparative analysis also shows that Random forest performs the best in the

classification study, performed with individuals with normal, high and low levels of TSH. We

found the following Areas Under Curve (AUC); for low TSH, AUC = 0.61, normal TSH, AUC

= 0.61 and elevated TSH AUC = 0.69. Additionally, we found that Anti-TPO was the most

important feature in classifying TSH. In this study, we suggest that artificial intelligence and

machine learning methods might offer an insight into the complex hypothalamic-pituitary

-thyroid axis and may be an invaluable tool that guides us in making appropriate therapeutic

decisions (thyroid hormone dosing) for the individual patient.
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Introduction

TSH (Thyroid Stimulating Hormone, also called Thyrotropin) is secreted by the pituitary

gland to stimulate the production of thyroid hormone by the thyroid. Primary hypothyroidism

(approximately 99% of the cases) is characterized by an elevated TSH level while secondary

hypothyroidism is due to lack of stimulation of a normal thyroid gland, as result of TSH defi-

ciency from hypothalamic or pituitary disease[1]. TSH is the main target of thyroid hormone

replacement in primary hypothyroidism [2]. The goal of hypothyroidism treatment is, to

relieve the symptoms of hypothyroidism and achieve normalization of TSH levels and thyroid

hormones[2]. Normal TSH based on epidemiological data, ranges widely between 0.4 and 4.0

and within this range, there is substantial variation in the population with respect to the TSH

levels[2]. Clinicians often find it challenging to alleviate the symptoms of hypothyroidism and

target the TSH at the appropriate level simultaneously. Moreover, each individual appears to

have a predetermined optimal personal TSH level(may be genetically individualized) that is

often unknowable, once primary hypothyroidism has developed as a clinical condition, and

variations in assays, concurrent illness etc make it hard to achieve the right TSH level for the

individual patient [3].

The factors that determine serum TSH levels have been examined through different meth-

ods, using different covariates. In a cohort of over 4000 participants from the Busselton Health

Study, it was shown that logarithmic transformed TSH was related to free T4 in a complex,

nonlinear way, and was influenced by age, smoking status, and the presence of Anti-TPO

(Thyroperoxidase) antibodies [4]. Others have suggested that the relationship could be fourth-

order polynomial, with gender and smoking both influencing the results [5]. In an earlier epi-

demiological study using NHANES (The National Health and Nutritional Examination Sur-

vey) III population-based database, higher TSH and the prevalence of anti-thyroid antibodies

was more likely in females and elderly, with a higher prevalence in Whites and Mexican Amer-

icans[6]. African- Americans had a lower TSH and lower prevalence of thyroid autoantibodies

[6].

Different machine learning methods have been used in recent times in health care settings,

especially in the predictive analytics of high blood pressure, and diabetes [7]. As early as 1993,

Artificial Neural Network was first used to assess thyroid function from in-vitro laboratory

tests[8]. Since then, neural network has been used to distinguish between benign and malig-

nant thyroid nodules using a feed- forward architecture[9]. The capability of AI methods to

predict TSH from most commonly measured laboratory parameters and collected demo-

graphic information is largely unknown. We performed a comparative analysis of different

machine learning methods. The aim of the research was to explore the potential of artificial

intelligence for understanding the determinants of TSH based on usually obtained demo-

graphic information and laboratory parameters.

Materials and methods

This was a retrospective study done after obtaining publicly available data from the CDC

(https://wwwn.cdc.gov/nchs/nhanes/Default.aspx). The data had been collected after NCHS

research ERB (Ethics Board Review) approval and we obtained local IRB exempt status after

expedited review. The NHANES publishes continuous data from 1999–2000 annually. The

continuously obtained data from 2007–2012 was compiled analysed [10]. The household ques-

tionnaire and phlebotomy files were linked to the laboratory data file using the unique survey

participant identifier SEQN (Sequence) as per the analysis guidelines (https://wwwn.cdc.gov/

nchs/nhanes/analyticguidelines.aspx). NHANES encourages combining multiple years for a

large analytical sample.
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The thyroid function tests that have been measured in the NHANES include total and free

thyroxine (ft4), total and free Triiodothyronine (T3) and TSH. The Access hypersensitive

human thyroid-stimulating hormone (h TSH) assay, a 3rd generation, two-site immunoenzy-

matic (“sandwich”) assay performed by the Collaborative Laboratory Services Ottumwa, Iowa

has been used in the NHANES study population. Total T3 is a competitive immunobinding

assay while the free T4 is a two–step enzyme immunoassay [10]. Demographic variables with

respect to age (years at the time of screening), gender, ethnicity (White, African-American,

Hispanic, Mexican and Other) as well as anthropometric measures (weight (in kilograms),

BMI (kg/m2)) were tabulated.

Data pre-processing

The first step in the data pre-processing involved techniques to represent the raw patient rec-

ords in a structured data frame that could be easily fed into the machine learning models. Dur-

ing this step, the raw data was converted into a pandas data frame, where the column names

represented the features and each row represent a patient record. Any errors in the datatype of

the raw dataset was corrected in this step. The next step during the data pre-processing was to

check for any missing values and outliers in the features.

There were patient records with missing values. The entire patient record was excluded

from the analysis in case, there were any missing values found in the features. Based on the

answered questionnaire as well as medication review, persons with history of thyroid disorders

were removed from the study. Levothyroxine treatment might lead to lowering of TSH levels

(causing exogenous thyrotoxicosis) especially if the dose is not appropriate [2].

Participants with TSH greater than 10 and less than 0.1 were also removed from the study

cohort since they represented overt hypothyroidism and hyperthyroidism respectively.

There were initially 11638 individuals out of which 9818 cases were selected for the machine

learning analysis (Excluded due to thyroid condition or missing values: n = 1674, outliers TSH

> = 10.0: n = 65, TSH < 0.1: n = 81).

Data analysis

Prior studies have shown that TSH variations are associated with age, sex, race and gender[11].

The study considered the following predictors: Free T4, Anti-TPO antibodies, T3, Gender,

BMI, Age and Ethnicity. For the Classification analysis, the TSH (μIU/ml) was classified into:

1) mildly suppressed or low TSH (<0.4), 2) Normal TSH (0.4–4.5) and 3) mildly elevated or

high TSH (>4.5). The TSH was analysed both as a continuous as well as categorical variable

with the following cofactors- gender (male, female) and ethnicity (Mexican American, His-

panic, White, African American, Other) and the dependent covariates- Free T4(ng/dl), Total

T3(ng/dl), TPO(IU/ml), age (years at screening), and BMI (Body Mass Index) (kg/m2).

For the supervised machine learning models to learn these different categories, these class

labels were represented in the data frame as 0,1, and 2 for mild supressed, normal and elevated

levels of TSH respectively. All the categorical variables in the data frame like gender and eth-

nicity are converted into dummy or indicator variables. All the features are normalized using

the following standardization model: X0 ¼ X� m
s

where X is the original feature vector, μ is the

mean of the feature vector and σ is its standard deviation.

In this study, we used the supervised machine learning models; Linear regression, Random

forest, Gradient boosting, Support vector machine, Multi-layer perceptron and Stacked regres-

sion for predicting TSH (regression models). As part of the classification analysis, the patients

were classified into one of the three classes i.e. normal, mildly suppressed and elevated levels of
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TSH (classification models). For either models, the entire dataset is split into 70% training and

30% testing dataset.

We found that in the different classification models, the training dataset was highly imbal-

anced where 94.82% of the training dataset had normal level of TSH, 1.95% of the training

dataset had mildly suppressed level of TSH while 3.23% of the training dataset had an elevated

level of TSH. Training a machine learning model on such disproportionate ratio of observa-

tions in different classes yields biased results towards majority class and poor classification in

the minority classes. Therefore, we used Synthetic Minority Oversampling Technique for

Nominal and Continuous (SMOTE-NC), a widely used technique for balancing the observa-

tions only in training dataset and not in the testing dataset[12].

We tuned the hyperparameters for each of the machine learning models, except for Linear

regression and Stacked regression, using 5-fold cross validation grid search, a widely used

technique that exhaustively searches for the best parameters. In order to avoid overfitting, we

evaluated each of the models using 5-fold cross-validation strategy, where the training dataset

is split into k smaller sets, in this case, the k = 5. Thereafter, the model was trained on k-1 folds

and validated on the remaining part of the dataset. We computed the performance of k fold

cross-validation for regression and classification models. Thereafter, we tested the tuned

model on the testing dataset and used the coefficient of determination (r2) for assessing the

accuracy of the predictive models and confusion matrix, ROC curves and F1-scores to deter-

mine the accuracy of the different classification models. We also determined the important

features, that are helpful in regression and classification models and validated our results by

using the 5-fold cross validation strategy. Tables 1 and 2 shows the key parameters used for

each of the model for regression and classification models respectively. For Multi-layer Percep-

tron, the weight initialization was done through normalized initialization (also termed Xavier

Initialization)[13].

Our open source analysis was conducted in python version 3.6 (https://www.python.org)

using the library Scikit Learn, pandas, numpy, seaborn, matplotlib[12, 14–18]. The open

source codes for the analysis are attached in the supplementary material.

Results

The results are outlined below in tables as well as figures.

The baseline characteristics are shown in Table 3.

49.04% of the participants were women. The frequency distribution for the ethnicity was as

follows; Whites—42.92% African-American-20.90%, Hispanic 11.31%, presence of Mexican

origin 17.63%, and others 7.24%. We used 5-fold cross-validation on the training dataset.

Table 1. Key parameters of various machine learning models used for regression task.

Model Parameters

Random forest number of trees = 800, max depth of the tree = 10, minimum number of samples to be a leaf

node = 4

Gradient boosting number of boosting stages = 1000, max depth = 2, minimum number of samples required to

be at leaf node = 3, learning rate = 0.01

Linear regression calculate intercept = True

Support vector

regression

regularization parameter = 10, gamma = 0.01, kernel = radial basis function

Multi-layer

perceptron

hidden layers = 1, number of neurons = 50, activation function = rectified linear unit, solver

for weight optimization = Adam, maximum iterations = 1000, weight initialization

strategy = normalized initialization (Xavier initialization)

Stacking regression final estimator = Ridge regression

https://doi.org/10.1371/journal.pone.0233336.t001
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Table 4 shows the performance of 5-fold cross validation (to access the performance of the

model and mitigate overfitting) of predictive models. We used coefficient of determination

(r2) and mean absolute error to compare the predictive models. Table 5 shows the performance

of 5-fold cross-validation of classification models. We used precision, recall and F1 measure

for each class i.e. low, normal and elevated level of TSH to assess the performance of classifica-

tion models.

Results of the regression analysis

We tested the tuned predictive and classification models on the testing dataset. “Fig 1” shows

the parity plot for each of the predictive models. The parity plot compares the measured TSH

Table 2. Key parameters of various machine learning models used for classification task.

Model Parameters

Random forest number of trees = 200, max depth of the tree = 80, minimum number of samples to be a

leaf node = 3

Gradient boosting number of boosting stages = 1250, max depth = 4, minimum number of samples required

to be at leaf node = 5, learning rate = 0.1

Logistic regression regularization = 1, penalty = L2

Support vector

classification

regularization parameter = 100, gamma = 0.9, kernel = radial basis function

Multi-layer perceptron hidden layers = 1, number of neurons = 50, activation function = rectified linear unit,

solver for weight optimization = Adam, maximum iterations = 5000, weight initialization

strategy = normalized initialization (Xavier initialization)

Stacking classifier final estimator = Logistic regression

https://doi.org/10.1371/journal.pone.0233336.t002

Table 3. Characteristics of the study population.

N Mean Standard deviation Median Skewness Range

Free T4(ng/dl) 9818 0.80 0.14 0.80 1.44 3.22

TSH(μIU/ml) 9818 1.81 1.17 1.52 1.99 9.67

Anti-TPO(IU/ml) 9818 16.20 79.86 0.60 7.31 1014.6

T3(ng/dl) 9818 116.70 25.34 114.00 2.23 670

Weight(kg) 9818 78.60 21.27 75.80 1.00 194.2

BMI (kg/m2) 9818 28.01 6.69 27.10 1.07 60.25

https://doi.org/10.1371/journal.pone.0233336.t003

Table 4. Performance of 5-fold cross-validation of predictive models (training data).

Model R2 (Coefficient of determination) MAE (Mean Absolute Error)

Random Forest 0.09 (0.01) 0.68

Gradient Boosting 0.10 (0.01) 0.68

Linear Regression 0.08 (0.01) 0.68

Support Vector Regression 0.06 (0.01) 0.65

Multi-layer Perceptron 0.08 (0.02) 0.68

Stacking Regression 0.10 (0.01) 0.67

Results in Mean ± SD. The Mean Absolute errors had the same standard deviation of 0.02.

Cross validation results show that none of the machine learning models overfit on the data.

https://doi.org/10.1371/journal.pone.0233336.t004
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value with the predicted TSH value. The results show that the Random Forest, Gradient Boost-

ing and Stacking Regression perform equally well in predicting TSH. When Random Forest

was used to compute the feature importance to predict TSH, Anti-TPO was the key determi-

nant. “Fig 2” shows that Anti-TPO is the most important feature in predicting TSH followed

by Age, BMI, T3 and Free-T4.

Table 5. Performance of 5-fold cross-validation of classification models -training data (mean ± SD).

Model Low Normal Elevated

Precision Recall F1 Precision Recall F1 Precision Recall F1

Random forest 0.95±0.02 0.95±0.02 0.95±0.02 0.93±0.04 0.87±0.01 0.9±0.02 0.92±0.05 0.93±0.01 0.92±0.03

Gradient boosting 0.95±0.01 0.96±0.02 0.96±0.01 0.95±0.07 0.96±0.01 0.95±0.04 0.92±0.01 0.94±0.04 0.93±0.02

Logistic regression 0.62±0.03 0.44±0.06 0.52±0.05 0.57±0.08 0.4±0.06 0.45±0.03 0.61±0.06 0.49±0.01 0.54±0.02

Support vector Classifier 0.93±0.03 0.97±0.01 0.95±0.02 0.93±0.03 0.84±0.01 0.88±0.01 0.9±0.06 0.95±0.01 0.93±0.04

Multi-layer perceptron 0.87±0.04 0.91±0.02 0.89±0.02 0.85±0.08 0.73±0.03 0.77±0.01 0.82±0.08 0.83±0.03 0.83±0.03

Stacking Classifier 0.97±0.01 0.97±0.02 0.97±0.01 0.96±0.07 0.96±0.01 0.96±0.03 0.96±0.03 0.95±0.03 0.95±0.02

(values in decimals mean %, for e.g. 0.95 implies 95%).

Cross validation results show that none of the machine learning models overfit on the data.

https://doi.org/10.1371/journal.pone.0233336.t005

Fig 1. Parity plots- figure shows the comparison of measured against predicted TSH value for different machine

learning models. The models are compared using the coefficient of determination (r2) and Mean absolute error

(MAE). Each point in a parity plot represents a data point from testing dataset. A red line is added as a reference which

indicates if the measured value is equal to predicted value.

https://doi.org/10.1371/journal.pone.0233336.g001
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Results of the classification analysis

Altogether, Random Forest achieves better performance compared to other models and

achieves an Area Under Curve (AUC) = 0.61 for low, 0.61 for normal and 0.69 for elevated

level of TSH. Random Forest also achieves the highest F1-measure for classifying the elevated

level of TSH.

Figs “3” and “4” show the confusion matrices and Receiver Operating Characteristics

(ROC) curve for each of the machine learning model on the testing dataset and outlines the

relative superiority of Random Forest Method. We used Random Forest to compute the fea-

tures that are important to classify TSH.

“Fig 5” shows that Anti-TPO is the most important feature in classifying TSH followed by

Free-T4, Age, BMI and T3.

We also computed the precision, recall and F1-measure to compare the performance of dif-

ferent machine learning models. Table 6 below shows the performance of the different

machine learning classification models.

Discussion

Our study shows that, of the different machine learning methods used to analyse TSH (both as

a continuous variable in regression analysis as well as a categorical variable for the classifica-

tion studies) from commonly measured laboratory data and demographic variables, random

forest performs well compared to other methods. Gradient Boosting and Stacking Regression

also perform well in predicting TSH as a continuous variable. There was a reasonably high

congruity between predicted and actual TSH.

To our knowledge, this is a first of a nature machine learning study on the epidemiological

data that included laboratory and commonly obtained demographic information, for

Fig 2. Feature importance for regression task—This shows the top 5 important features for predicting TSH using

random forest in a testing dataset. We compute a score for all the features which indicates how useful it is in the

construction of decision tree using Random forest. The top 5 variables in the x-axis are shown against their scores in y-

axis.

https://doi.org/10.1371/journal.pone.0233336.g002
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assessment of TSH values. Traditional statistical methods have been mostly challenging, in

determining the complex relationship between thyroid hormones (triiodothyronine, free thy-

roxine), age, BMI and ethnicity [19, 20]. Prior studies have shown that BMI and weight appear

to influence changes in free T4 levels but smoking at the time of free T4 measurements appears

to negate that influence [21]. Some other variables, like diurnal variations in TSH due to sleep

patterns, that have been shown previously to affect TSH levels, cannot be assessed in cross-sec-

tional data[22]. Machine learning methods, when applied to prospective longitudinal data sub-

stantially improve our understanding of the factors behind measured actual TSH level(s).

TSH has a wide range of measurement between 0.4–4.5(depending on the specific lab) but

individual TSH set point maybe genetically predetermined [23, 24]. A substantial proportion

of persons with hypothyroidism have persistent symptoms despite achieving “target” TSH lev-

els[25]. Different approaches have been tried in the past including treatment with liothyronine

(T3) for persons with persistent symptoms[1]. Normal TSH level might not be the same as

Fig 3. Confusion matrices—It shows the comparison of different machine learning models in classifying low,

normal and elevated levels of TSH in a testing dataset using a confusion matrix.

https://doi.org/10.1371/journal.pone.0233336.g003
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‘optimum’ TSH level for alleviation of signs and symptoms of hypothyroidism and there is

lack of data with respect to targeting the right TSH for the individual patient based on different

variables. Once hypothyroidism develops, the baseline TSH of the patient prior to the disease

may never be known.

Artificial intelligence (AI) (including different machine learning methods) offers us an

insight into the individualized target TSH while treating hyper and hypothyroidism. The infor-

mation generated by AI might help in identifying near-optimal TSH levels. Identifying the

‘optimal’ TSH levels might help in personalizing the target TSH, especially when the baseline

TSH of a person who has developed hypothyroidism later in life, might be unknown due to

lack of a previous measurement (i.e. when he/she had been euthyroid with normal TSH levels).

The findings could then be used to target the appropriate TSH by adjusting the levothyroxine

dose.

There are limitations to our study and the machine learning methods in general. The study

is cross-sectional and thyroid tests might not represent changing or dynamic values. The study

Fig 4. ROC curves—This shows the Receiver Operating Characteristic (ROC) curves which are used to evaluate

the performance of various classification algorithms in a testing dataset. The ROC curve is plotted for every class

i.e. low, normal and elevated. This figure also shows the Area Under ROC Curve (AUROC) for each class.

https://doi.org/10.1371/journal.pone.0233336.g004

PLOS ONE Artificial intelligence in predicting TSH

PLOS ONE | https://doi.org/10.1371/journal.pone.0233336 May 20, 2020 9 / 13

https://doi.org/10.1371/journal.pone.0233336.g004
https://doi.org/10.1371/journal.pone.0233336


might not incorporate all the available participant data (especially the TSH values), since the

NHANES began collecting population-based data in the 90s. Also, there might be a larger set

of population with thyroid problems that might not have been captured through question-

naires that are themselves subject to recall and bias. However, the overall sample is large

enough to make meaningful predictions from Machine Learning methods. Machine learning

does not often offer a quantified relationship like a generalized or general linear/multinomial

regression. We have not included smoking in analysis, though it has been shown to affect TSH

level in certain studies. Smoking has been shown to be associated with a low normal TSH and

is negatively associated with serological evidence of thyroid autoimmunity [26]. However,

even without smoking as a variable, a prediction value of the TSH may help us determine the

approximate TSH in an individual who shares certain age, gender, anthropometric and demo-

graphic features.

Fig 5. Feature importance for classification models—This shows the top 5 important features for classifying low,

normal and elevated level of TSH using random forest in a testing dataset.

https://doi.org/10.1371/journal.pone.0233336.g005

Table 6. Performance of classification models (testing data).

Model Low TSH Normal TSH Elevated TSH

Precision Recall F1 Precision Recall F1 Precision Recall F1

Random forest 0.04 0.05 0.04 0.95 0.91 0.93 0.10 0.18 0.13

Gradient boosting 0.11 0.07 0.09 0.94 0.97 0.96 0.12 0.07 0.09

Logistic regression 0.03 0.28 0.05 0.95 0.51 0.66 0.07 0.54 0.12

Support vector Classifier 0.03 0.09 0.04 0.95 0.87 0.91 0.06 0.12 0.08

Multi-layer perceptron 0.03 0.18 0.05 0.95 0.71 0.81 0.07 0.37 0.12

Stacking Classifier 0.12 0.05 0.07 0.94 0.98 0.96 0.11 0.05 0.07

(values in decimals mean %, for e.g. 0.95 implies 95%).

The classification metrices indicate that Random forest classifier performed the best in classifying elevated level of TSH.

https://doi.org/10.1371/journal.pone.0233336.t006
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Conclusion

In summary, the study is a demonstration of the capabilities of AI in the field of population

based thyroid research when compared to the traditional methods. Though the study has some

limitations (lack of cross validation with another large-scale dataset), it offers a good insight

into the factors determining TSH levels. AI and machine learning methods offer an insight

into the complex hypothalamic-pituitary -thyroid axis and may help us in making appropriate

therapeutic decisions (thyroid hormone dosing) for the individual patient. Further studies are

needed in this direction.
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16. van der Walt Stéfan, Colbert SC, Varoquaux G. The NumPy Array: A Structure for Efficient Numerical

Computation. Computing in Science & Engineering. 2011; 13(22):https://aip.scitation.org/doi/abs/10.

1109/MCSE.2011.37.

17. https://zenodo.org/record/883859#.XnJPcDNKjIU [Internet]. Zenodo. 2017.

18. Hunter JD. Matplotlib: A 2D Graphics Environment. Computing in Science & Engineering. 2007; 9

(3):90–5. Epub 18 June 2007 https://doi.org/10.1109/MCSE.2007.55

19. Hoermann R, Eckl W, Hoermann C, Larisch R. Complex relationship between free thyroxine and TSH

in the regulation of thyroid function. European journal of endocrinology. 2010; 162(6):1123–9. Epub

2010/03/20. https://doi.org/10.1530/EJE-10-0106 PMID: 20299491.

20. Hoermann R, Midgley JE. TSH Measurement and Its Implications for Personalised Clinical Decision-

Making. Journal of thyroid research. 2012; 2012:438037. Epub 2013/01/11. https://doi.org/10.1155/

2012/438037 PMID: 23304636.

21. Makepeace AE, Bremner AP, O’Leary P, Leedman PJ, Feddema P, Michelangeli V, et al. Significant

inverse relationship between serum free T4 concentration and body mass index in euthyroid subjects:

differences between smokers and nonsmokers. Clinical endocrinology. 2008; 69(4):648–52. Epub

2008/03/19. https://doi.org/10.1111/j.1365-2265.2008.03239.x PMID: 18346211.

22. Ehrenkranz J, Bach PR, Snow GL, Schneider A, Lee JL, Ilstrup S, et al. Circadian and Circannual

Rhythms in Thyroid Hormones: Determining the TSH and Free T4 Reference Intervals Based Upon

Time of Day, Age, and Sex. Thyroid: official journal of the American Thyroid Association. 2015; 25

(8):954–61. Epub 2015/06/11. https://doi.org/10.1089/thy.2014.0589 PMID: 26061389.

23. Hansen PS, Brix TH, Iachine I, Sorensen TI, Kyvik KO, Hegedus L. Genetic and environmental interre-

lations between measurements of thyroid function in a healthy Danish twin population. American journal

of physiology Endocrinology and metabolism. 2007; 292(3):E765–70. Epub 2006/11/09. https://doi.org/

10.1152/ajpendo.00321.2006 PMID: 17090750.

PLOS ONE Artificial intelligence in predicting TSH

PLOS ONE | https://doi.org/10.1371/journal.pone.0233336 May 20, 2020 12 / 13

https://doi.org/10.1136/jclinpath-2011-200433
http://www.ncbi.nlm.nih.gov/pubmed/22287691
https://doi.org/10.1210/jcem.87.2.8182
http://www.ncbi.nlm.nih.gov/pubmed/11836274
https://doi.org/10.1111/jch.13700
http://www.ncbi.nlm.nih.gov/pubmed/31536164
http://www.ncbi.nlm.nih.gov/pubmed/8222217
https://doi.org/10.1089/thy.2004.14.1065
http://www.ncbi.nlm.nih.gov/pubmed/15650360
https://doi.org/10.1089/thy.2006.0235
http://www.ncbi.nlm.nih.gov/pubmed/18177256
https://doi.org/10.1613/jair.953
https://aip.scitation.org/doi/abs/10.1109/MCSE.2011.37
https://aip.scitation.org/doi/abs/10.1109/MCSE.2011.37
https://zenodo.org/record/883859#.XnJPcDNKjIU
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1530/EJE-10-0106
http://www.ncbi.nlm.nih.gov/pubmed/20299491
https://doi.org/10.1155/2012/438037
https://doi.org/10.1155/2012/438037
http://www.ncbi.nlm.nih.gov/pubmed/23304636
https://doi.org/10.1111/j.1365-2265.2008.03239.x
http://www.ncbi.nlm.nih.gov/pubmed/18346211
https://doi.org/10.1089/thy.2014.0589
http://www.ncbi.nlm.nih.gov/pubmed/26061389
https://doi.org/10.1152/ajpendo.00321.2006
https://doi.org/10.1152/ajpendo.00321.2006
http://www.ncbi.nlm.nih.gov/pubmed/17090750
https://doi.org/10.1371/journal.pone.0233336


24. Panicker V. Genetics of thyroid function and disease. The Clinical biochemist Reviews. 2011; 32

(4):165–75. Epub 2011/12/08. PMID: 22147956.

25. Chaker L, Bianco AC, Jonklaas J, Peeters RP. Hypothyroidism. Lancet (London, England). 2017; 390

(10101):1550–62. Epub 2017/03/25. https://doi.org/10.1016/s0140-6736(17)30703-1 PMID: 28336049.

26. Belin RM, Astor BC, Powe NR, Ladenson PW. Smoke exposure is associated with a lower prevalence

of serum thyroid autoantibodies and thyrotropin concentration elevation and a higher prevalence of mild

thyrotropin concentration suppression in the third National Health and Nutrition Examination Survey

(NHANES III). The Journal of clinical endocrinology and metabolism. 2004; 89(12):6077–86. Epub

2004/12/08. https://doi.org/10.1210/jc.2004-0431 PMID: 15579761.

PLOS ONE Artificial intelligence in predicting TSH

PLOS ONE | https://doi.org/10.1371/journal.pone.0233336 May 20, 2020 13 / 13

http://www.ncbi.nlm.nih.gov/pubmed/22147956
https://doi.org/10.1016/s0140-6736(17)30703-1
http://www.ncbi.nlm.nih.gov/pubmed/28336049
https://doi.org/10.1210/jc.2004-0431
http://www.ncbi.nlm.nih.gov/pubmed/15579761
https://doi.org/10.1371/journal.pone.0233336

