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Abstract 

Background:  Lung cancer is among the major diseases threatening human health. Although the immune response 
plays an important role in tumor development, its exact mechanisms are unclear.

Materials and methods:  Here, we used CIBERSORT and ESTIMATE algorithms to determine the proportion of tumor-
infiltrating immune cells (TICs) as well as the number of immune and mesenchymal components from the data of 474 
lung cancer patients from the Gene Expression Omnibus database. And we used data from The Cancer Genome Atlas 
database (TCGA) for validation.

Results:  We observed that immune, stromal, and assessment scores were only somewhat related to survival with no 
statistically significant differences. Further investigations revealed these scores to be associated with different pathol-
ogy types. GO and KEGG analyses of differentially expressed genes revealed that they were strongly associated with 
immunity in lung cancer. In order to determine whether the signaling pathways identified by GO and KEGG signal-
ing pathway enrichment analyses were up- or down-regulated, we performed a gene set enrichment analysis using 
the entire matrix of differentially expressed genes. We found that signaling pathways involved in hallmark allograft 
rejection, hallmark apical junction, hallmark interferon gamma response, the hallmark P53 pathway, and the hallmark 
TNF-α signaling via NF-ĸB were up-regulated in the high-ESTIMATE-score group. CIBERSORT analysis for the propor-
tion of TICs revealed that different immune cells were positively correlated with the ESTIMATE score. Cox regression 
analysis of the differentially expressed genes revealed that CPA3, C15orf48, FCGR1B, and GNG4 were associated with 
patient prognosis. A prognostic model was constructed wherein patients with high-risk scores had a worse prognosis 
(p < 0.001 using the log-rank test). The Area Under Curve (AUC)value for the risk model in predicting the survival was 
0.666. The validation set C index was 0.631 (95% CI: 0.580–0.652). The AUC for the risk formula in the validation set was 
0.560 that confirmed predictivity of the signature.

Conclusion:  We found that immune-related gene expression models could predict patient prognosis. Moreover, 
high- and low-ESTIMATE-score groups had different types of immune cell infiltration.
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Introduction
Cancer is a leading cause of death and a major hur-
dle in increasing life expectancy in every country of the 
world [1]. According to estimates from the World Health 
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Organization (WHO) in 2019, cancer is the either the 
first or the second leading cause of death before the 
age of 70 years in 112 of 183 countries; it ranks third or 
fourth in another 23 countries [2]. Global cancer sta-
tistics 2020 [3] showed that lung cancer (11.4% of total 
cancer cases in 2020) was second to only female breast 
cancer, which is the most commonly diagnosed cancer 
(11.7% of total cancer cases in 2020). In addition to being 
the leading cause of cancer death in men in 93 countries, 
lung cancer was also the leading cause of cancer death in 
2020, representing approximately one in 10 (11.4%) can-
cers diagnosed and one in five (18.0%) deaths recorded. 
The primary treatments for lung cancer currently include 
surgery, targeted therapy, radiotherapy, chemotherapy, 
and immunotherapy. The advent of immune checkpoint 
inhibitors (ICIs)that target programmed death-1(PD-1)/
programmed death-ligand 1 (PD-L1) has broadened the 
treatment options for lung cancer patients [4]. They are 
characterized by low toxicity, great efficacy, and long-
term benefits when effective [5]. However, ICIs present 
many therapeutic problems that seem to be related to 
individual differences and the complex microenviron-
ment of tumors [6].

Tumor microenvironment has been reported to have 
a significant impact on the immune response [7]. After 
receiving immunotherapy for lung cancer, a proportion 
of patients in the clinic did not respond to immuno-
therapy and others developed resistance, called ‘acquired 
resistance’ [8], after they had an initial immune response 
[9–11]. There are various mechanisms of resistance to 
immunotherapy that are currently being studied. These 
include the following: (i) activation of oncogenic path-
ways; (ii) the IFN-γ signaling pathway; (iii) defects in 
tumor neoantigen expression/presentation or neoanti-
gen depletion; (iv) additional inhibitory checkpoints; and 
(v) phenotype transformation [12–16]. Although differ-
ent treatments lead to different clinical outcomes, the 
immune cell infiltration status of the tumor microenvi-
ronment has an impact on not only the prognosis of lung 
cancer patients, but also the efficacy of immunotherapy.

Therefore, we propose an assessment of the tumor 
microenvironment immune infiltration status at the 
gene expression level to analyze the impact of immune 
and stromal scores on the patients, thereby identifying 
immune-related genes that can predict and assess the 
prognosis and the immune infiltration status in different 
pathological types of lung cancer patients.

Methods
Data of lung cancer cohorts
Whole-transcriptome RNA-seq data for 474 lung can-
cer cases and their corresponding clinical data were 
downloaded from the Gene Expression Omnibus 

(GEO). Datasets GSE30219 and GSE50081 (based on 
the GPL570 platform) were downloaded from the GEO 
website (https://​www.​ncbi.​nlm.​nih.​gov/​geo) and ana-
lyzed. We downloaded 1008 data of lung squamous 
carcinoma and lung adenocarcinoma from the TCGA 
database (https://​portal.​gdc.​cancer.​gov/), and 1/5 of 
the total number was selected by random sampling, 
and the information of 182 NSCLC patients was finally 
obtained after removing the paracancerous tissues. 
These cases were used as validation set data for model 
building.

Computation of immune score, stromal score, 
and ESTIMATE score
An algorithm called ESTIMATE [17] was used to esti-
mate stromal and immune cells in malignant tumor tis-
sues based on the gene expression data [18]. The stromal 
scores, immune scores, and ESTIMATE scores were cal-
culated for each sample. Lung cancer gene expression 
data and clinical information comprising 39 basaloid 
(BAS) samples, 23 carcinoids tumors (CARCI) samples, 
63 large cell tumor (LCC) samples, 213 lung adenocar-
cinoma (LUAD) samples, 106 lung squamous cell carci-
noma (LUSC) samples, and 17 small cell carcinoma tissue 
(SCC) samples were also downloaded. Clinical informa-
tion including age, sex, tumor grade, pathological stage, 
AJCC TNM stage, and survival outcome was all obtained 
from the GEO database. For comparisons between two 
groups, statistical significance for normally distributed 
variables was estimated using the unpaired Student’s 
t-test, and non-normally distributed variables were ana-
lyzed using the Mann–Whitney U test. Correlation coef-
ficients were computed using Spearman analyses.

Identification of differentially expressed genes, gene set 
enrichment analysis, and PPI network construction
All the 474 tumor samples were classified as high- or 
low-score based on their comparison with the median 
Immune score, Stromal score, and ESTIMATE score. The 
‘limma’ R package was used to identify immune-related 
differentially expressed genes (DEGs) [19], and all DEGs 
with an FDR lower than 0.05 and a |log FC| of more than 
0.5 were shortlisted. The gene ontology (GO) pathway 
enrichment analysis and KOBAS-Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathway enrichment 
analysis of DEGs were performed using the ‘clusterPro-
filer, org.Hs.eg.db, plot, ggplot2’ packages in R [20]. The 
Protein–protein interaction (PPI) network of the DEGs 
was constructed using the Bioinformatics & Evolutionary 
Genomics online database by determining interactions 
among DEGs.

https://www.ncbi.nlm.nih.gov/geo
https://portal.gdc.cancer.gov/
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Survival analysis and cox regression analysis
Detailed records on the survival time for the 474 cases 
were used along with the R packages ‘survival’ and ‘sur-
vminer’ to perform the survival analysis. We used mean 
values for grouping. The survival curve was plotted 
using the Kaplan–Meier method and the log rank test 
was used to determine statistical significance; p < 0.05 
was considered statistically significant. Next, we con-
structed a multivariate Cox proportional risk regres-
sion model based on immune-related DEGs. The risk 
scores were calculated using the following formula: risk 
score = expression of gene1 × β1gene1 + expression of 
gene2 × β2gene2 + ... + expression of genen × βngenen. 
The best risk score was used as a cut-off to divide the 
patients into high- or low-risk groups. The predictive 
ability of the risk model was evaluated through a time-
dependent receiver operating characteristic (ROC) analy-
sis. Then, we used 182 NSCLC patients from TCGA as 
validation set, calculated risk scores based on the coeffi-
cients after modeling, and assessed the predictive power 
of the validation set using C-index and ROC curves.

Profile of tumor‑infiltrating immune cells (TICs)
CIBERSORT is a deconvolution algorithm to estimate 
cell composition of tissues based on their gene expres-
sion profiles [21]. We used CIBERSORT (http://​ciber​sort.​
stanf​ord.​edu/) to examine the relative proportions of 22 
types of infiltrating immune cells in the matrix. The algo-
rithm used a default signature matrix with 100 permuta-
tions. Only data with p-values lower than 0.05 from the 
CIBERSORT analysis were selected for subsequent anal-
yses. The distributions of immune cell subsets in each 
sample are presented as box plots.

Results
The flowchart of this study
The analysis process used in this study is shown in Sup-
plement Fig.  1. In order to identify differential gene 
expression in the tumor microenvironment and detect 
the relationship between DEGs and prognosis, we down-
loaded two RNA-seq datasets for lung cancer patients 
with prognostic data. In total, 474 cases with complete 
prognostic information and clinicopathological data 
were collected. After categorizing the patients’ microen-
vironment immune infiltration status based on Immune 
score, Stromal score, and ESTIMATE score, we explored 
the relationship between these different scores and basic 
clinical features, prognosis, pathogenesis, as well as cel-
lular composition of the microenvironment. The basic 
characteristics of the patients were shown in Supplement 
Table 1.

Immune score, stromal score, and ESTIMATE score were 
associated with clinical features and prognostics of lung 
cancer patients
We assessed the relationship between the patients’ 
immune, stromal, and ESTIMATE scores and patient 
survival (both overall survival (OS) and disease-free 
survival (DFS)), using median pairs to classify these 
patients into high- and low-score groups. We found no 
difference (For OS, Immune score p = 0.72, Stromal score 
p = 0.52, ESTIMATE score p = 0.82; for DFS, Immune 
score p = 0.60, Stromal score p = 0.43, ESTIMATE score 
p = 0.92) in OS and DFS for lung cancer patients among 
all three scoring methods. However, we observed a trend 
towards better survival in patients with higher immune 
and ESTIMATE scores than in those with lower scores 
(Fig. 1). We then analyzed the clinicopathological charac-
teristics and found no significant differences between the 
scores and the age, gender, as well as the AJCC-M stage 
of lung cancer patients. However, there were significant 
differences in the AJCC-T and -N stages of the patients as 
well as their pathological type, regardless of the scoring 
method (Figs. 2 and 3).

Screening DEGs based on immune, stromal, and ESTIMATE 
scores
Differential expression analysis identified 114 DEGs 
based on their Immune, Stromal, and ESTIMATE 
scores (with |log FC|≥ 1.5 and FDR < 0.05 (Supplement 
Table 2)). Venn diagrams were constructed to show com-
mon up- and down-regulated DEGs that shared similar 
Immune, Stromal, and ESTIMATE scores (Supplement 
Fig. 2A). In the volcano plots of the DEGs, red dots rep-
resent significantly upregulated genes, green dots repre-
sent significantly downregulated genes, and black dots 
represent genes with no significant differences (Supple-
ment Fig. 2B).

Roles of DEGs during lung cancer pathogenesis
We analyzed the roles of DEGs during lung cancer patho-
genesis by conducting GO enrichment analysis. The 
top 10 biological processes that involve these DEGs are 
shown in Supplement Fig. 2C–E. Among others, external 
side of plasma membrane, cytoplasmic vesicle lumen, and 
vesicle lumen were terms enriched in the cellular compo-
nent (CC) category. The biological process (BP) category 
included humoral immune response, leukocyte migra-
tion, and adaptive immune response. For the molecular 
function (MF) category, DEGs were related to antigen 
binding, chemokine receptor binding, and serine − type 
endopeptidase activity. Through KEGG analysis, we 
determined that phagosome and cytokine − cytokine 
receptor interactions were associated with DEGs in lung 

http://cibersort.stanford.edu/
http://cibersort.stanford.edu/
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cancer (Supplement Fig.  3A). A phagosome is a vesicle 
that forms around a particle engulfed by a phagocyte dur-
ing phagocytosis. Professional phagocytes include mac-
rophages, neutrophils, and dendritic cells (DCs). These 
cells are all involved in the body’s immune response. We 
first observed the cytokine − cytokine receptor inter-
action, which was based on immune cells, and then 
analyzed the protein–protein interaction network (Sup-
plement Fig. 3C). In order to explore whether the signal-
ing pathways identified by GO and KEGG analyses were 
up-regulated or down-regulated, we performed gene 
set enrichment analysis (GSEA) using the entire matrix 
of DEGs. Our results showed that signaling pathways 
involved in hallmark allograft rejection, hallmark apical 

junction, hallmark interferon gamma response, the hall-
mark P53 pathway, and the hallmark TNF-α signaling via 
NF-ĸB were upregulated in high ESTIMATE score group 
(Supplement Fig. 3B).

A prognostic model constructed based on immune‑related 
genes
In the training set, we selected 12 genes that were in 
common between 20,174 prognostic immune genes 
and DEGs with |Log FC|≥ 1.5. First, we used uni-
variate Cox proportional regression to select sur-
vival-related immune genes that included ABI3BP, 
ADH1B, C15orf48, CPA3, CXCL9, FCGR1B, GNG4, 

Fig. 1  Correlation of the different scores with the survival of lung cancer patients. A Kaplan–Meier survival analysis for lung cancer patients 
classified into high- or low-Stromal-score groups based on comparison with the median (p = 0.52 by log-rank test). B Kaplan–Meier survival 
analysis for lung cancer patients classified into high- or low-Immune-score groups based on comparison with the median (p = 0.72 by log-rank 
test). C Kaplan–Meier survival analysis for lung cancer patients classified into high- or low-ESTIMATE-score groups based on comparison with 
the median (p = 0.82 by log-rank test). D Disease free survival analysis for lung cancer patients classified into high- or low-Stromal-score groups 
based on comparison with the median (p = 0.43 by log-rank test). E Disease free survival analysis for lung cancer patients classified into high- or 
low-Immune-score groups based on comparison with the median (p = 0.60 by log-rank test). F Disease free survival analysis for lung cancer patients 
classified into high- or low-ESTIMATE-score groups based on comparison with the median (p = 0.82 by log-rank test)
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NAPSA, PIGR, SFTA2, SFTPD, and SLC34A2 
(p < 0.05). Of these 12 genes, a signature includ-
ing the four genes CPA3, C15orf48, FCGR1B, 
and GNG4 was identified by multivariate analy-
sis (Fig.  4A–D). The risk score was calculated as 
(0.001) × (expression of CPA3) + (-0.016) × (expres-
sion of C15orf48) + (-0.014) × (expression of 
FCGR1B) + (-0.002) × (expression of GNG4). Then, 
the patient data were divided into two groups, patients 
with a high-risk score were found to have a poor sur-
vival (Fig.  4E). The area under the ROC curve (AUC) 
for the risk formula in the training set was 0.666 that 
confirmed predictivity of the signature (Fig.  4F). The 
C-index of the training set was 0.634 (95% CI: 0.616–
0.652). These four genes may be able to predict the 
prognosis of lung cancer. Data from the TCGA data-
base was used to validate the model. The data for lung 
cancer in the TCGA database do not include the full 

range of pathology types included in the model. Data 
for patients with NSCLC in the model represent 67.5% 
of the total. The remaining BAS, CARCI, LCC and SCC 
together, accounted for only 32.5%. Therefore, we only 
used the NSCLC data from TCGA for partial valida-
tion. The validation set C index was 0.631 (95% CI: 
0.580–0.652). The area under the ROC curve (AUC) 
for the risk formula in the validation set was 0.560 that 
confirmed predictivity of the signature (Supplement 
Fig. 4).

Profiles of TICs in tumor samples and correlation analyses
In order to confirm the relationship between tumor 
immunity and the tumor microenvironment in lung 
cancer patients, we used the CIBERSORT algorithm to 
assess the infiltration of 22 types of immune cells in each 
patient. We also analyzed the differences in immune cell 
infiltration between the two patient groups divided based 
on the ESTIMATE score. We found that memory B cells, 

Fig. 2  Correlation of Immune, Stromal, and ESTIMATE scores with base line characteristics. A-C Distribution of Immune score, Stromal score, 
and ESTIMATE score depending on age with p = 0.84, 0.56, and 0.63, respectively, using the Wilcoxon rank sum test. D-F Distribution of Immune 
score, Stromal score, and ESTIMATE score depending on gender with p = 0.90, 0.56, and 0.68, respectively, using the Wilcoxon rank sum test. G-I 
Distribution of Immune score, Stromal score, and ESTIMATE score depending on histology with p < 2.2e−16, 2.2e−16, and 2.2e−16, respectively, using 
the Kruskal–Wallis rank sum test
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plasma cells, CD8+ T cells, regulatory T cells, activated 
NK cells, resting DCs, activated mast cells, and eosino-
phil expression were elevated in the group with high 
ESTIMATE scores. Naïve B cells, memory B cells, CD4+ 
memory resting T cells, CD4+ memory activated T cells, 
monocytes, M1 macrophages, activated mast cells, and 
neutrophils were found to be elevated in the group with 
low ESTIMATE scores (Fig.  5). The ESTIMATE score 
corresponded to differences in the expression of immune 
cells in different tumor microenvironments.

Different prognoses for different types of pathologies
In this study, we observed a trend towards better sur-
vival in lung cancer patients with higher scores than in 
those with lower scores (Fig.  1). However, there were 
no statistically significant differences. Therefore, we 
analyzed associations between different pathological 

types of lung cancer and prognosis (Fig.  6). We discov-
ered that the Stromal score predicted the prognosis of 
patients with CARCI; according to Kaplan–Meier analy-
sis, patients in the high-Stromal-score group had better 
survival outcomes than those in the low-Stromal-score 
group (p = 0.036) (Fig. 6D). Moreover, the Immune score 
could predict the prognosis of LUAD patients; according 
to Kaplan–Meier analysis, patients in the low-Immune-
score group had better survival outcomes than those in 
the high-Immune-score group (p = 0.016) (Fig.  6K). We 
also found that all the scoring methods predicted the out-
come of SCC patients (Stromal score p = 0.045, Immune 
score p = 0.012, and ESTIMATE score p = 0.0019, 
Fig. 6P–R).

Fig. 3  Correlation of Stromal, Immune, and ESTIMATE scores with clinical characteristics. A-C Distribution of Stromal score, Immune score, 
and ESTIMATE score depending on the T classification with p = 2.2e−5, 0.0043, and 0.0025, respectively, using the Kruskal–Wallis rank sum test. 
D-F Distribution of Stromal score, Immune score, and ESTIMATE score depending on the N classification with p = 0.0055, 0.00026, and 6.9e−5, 
respectively, using the Kruskal–Wallis rank sum test. G-I Distribution of Stromal score, Immune score, and ESTIMATE score depending on M 
classification with p = 0.11, 0.17, and 0.11, respectively, using the Wilcoxon rank sum test
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Discussion
The high incidence and mortality rate of lung cancer 
have resulted in numerous studies on various aspects of 
lung cancer, including its pathogenesis, diagnosis, stag-
ing, treatment, and prognosis. Even after using a com-
bination of surgery, radio- and chemotherapy, targeted 
therapy, and immunotherapy, the prognosis of lung can-
cer patients has remained poor. This might be related 
to the large number of pathological types of lung can-
cer, the late stage at detection, and the complexity of the 
tumor microenvironment. Existing indicators are still 
inadequate in predicting the prognosis of patient sur-
vival. Therefore, we explored the way in which immune 
and stromal scores were related to patient prognosis. We 
developed a prognostic model based on four genes asso-
ciated with prognosis that could predict the prognosis of 
patients relatively well.

As shown in Fig.  1, we evaluated the relationship 
between the different scores and the survival prognosis of 
lung cancer patients. Although there were no statistically 

significant scores, the data we analyzed contained multi-
ple lung cancer pathology types with different biological 
manifestations and prognoses that need to be consid-
ered. Further analysis revealed that Stromal score could 
predict the prognosis of CARCI patients (Fig.  6D), and 
Immune score could predict the prognosis of LUAD 
patients (Fig. 6K). All three scoring methods could pre-
dict the prognosis of SCC patients (Fig.  6P–R). Inter-
estingly, in contrast to our findings, these three scoring 
modalities have been shown to be predictive of prog-
nosis in lung cancer patients [22–24]. These differences 
could be potentially caused by a low number of cases in 
each subgroup in our current study as well as our more 
specific classification of the different pathological types, 
which may reflect the state of the different tumor micro-
environments. Analysis of the relationship between clini-
cal characteristics and these scores revealed that Stromal, 
Immune, and ESTIMATE scores varied considerably 
across pathological types, which supported the results of 
our survival analysis of different lung cancer pathology 

Fig. 4  Overall survival curves obtained using the Kaplan–Meier method indicate that the risk score is significantly associated with OS prognosis. 
Kaplan–Meier survival analyses for lung cancer patients classified into groups with high or low expression of: A CPA3 (p < 0.001 by log-rank test). 
B C15orf48 (p = 0.016 by log-rank test). C FCGR1B (p = 0.014 by log-rank test). D GNG4 (p = 0.002 by log-rank test). E Kaplan–Meier survival analysis 
for lung cancer patients classified into high- or low-risk groups for these four genes (p < 0.001 by log-rank test). F The horizontal and vertical axes 
represent false positive and true positive rates, respectively. The AUC value for the risk model in predicting the survival was 0.666. ROC, receiver 
operating characteristic; AUC, area under the curve
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types. These scores did not seem to accurately predict the 
prognosis of lung cancer patients; therefore, we exam-
ined genes representing different scores and identified 
114 DEGs in total. Cox regression analysis allowed us to 
identify four genes that were associated with lung cancer 
prognosis. A model consisting of these four genes was 
able to predict the prognosis of lung cancer patients rela-
tively well with an AUC of 0.666. Results of the GSEA as 
well as the GO and KEGG analyses based on lung cancer 

RNA-seq data supported the relevance of these DEGs to 
lung cancer immunity.

Based on the classification of the Trading Card Data-
base (http://​www.​tcdb.​org/), monovalent cation proton 
antiporter (CPA) superfamily is now divided into three 
CPA families: CPA1, CPA2, and CPA3 [25]. Accord-
ing to this current classification, the CPA2 and CPA3 
families include primarily bacterial, fungal, and plant 
transporter proteins [26]. Visser et  al. concluded that 

Fig. 5  TIC profile in tumor samples and correlation analysis. A Bar plot showing the proportion of the 22 TIC types in lung cancer tumor samples. 
Column names in the plot represent the sample IDs. B Violin plot showing the ratio differentiation of the 22 immune cell types from lung tumor 
samples of patients with low or high ESTIMATE scores; the Wilcoxon rank sum was used to determine statistical significance

http://www.tcdb.org/
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Fig. 6  Correlation of the three scores with the survival of patients with different types of histology. BAS, basaloid; CARCI, carcinoid tumors; LCC, 
large cell cancer; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; SCC, small cell carcinoma
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in patients who had early or locally advanced NSCLC 
(96.3%). Gene expression profiling revealed five markers, 
which mRNA levels strongly correlated to pemetrexed 
target genes mRNA levels: TPX2, CPA3, EZH2, MCM2 
and TOP2A [27]. The expression of CPA3 in NSCLC 
patients differs from their response to chemotherapy, and 
the difference in treatment efficacy will directly result 
in a poorer prognosis than in patients who responded. 
Mirjana et  al. found that the combined action of mast 
cell chymase, tryptase and CPA3 protects against mela-
noma colonization of the lung. This indicated that CPA3 
played a key role in lung tumors, and the combination of 
CPA3 with other genes could accurately predict the prog-
nosis of patients with lung cancer [28]. Previous stud-
ies, all of which highlighted CPA3’s importance in lung 
cancer, supported our conclusion. The C15orf48 gene 
was first identified while studying human esophageal 
squamous cell carcinoma tissue. Both mRNA and pro-
tein levels of C15orf48 were reduced in the cancer cell 
samples [29, 30]. Lee et al. uncovered a dual-component 
pleiotropic regulation of host inflammation and immu-
nity by C15orf48 to safeguard the host during infection 
and inflammation [31]. The C15orf48 gene may be sig-
nificantly involved in lung cancer immunotherapy, which 
may influence the outcome in lung cancer patients. 
FCGR1B (Fc Fragment of IgG Receptor Ib) is a pseudo-
gene that binds the Fc region of IgGs with a low affinity 
than FCGR1A, and may have a function in the humoral 
immune response [32, 33]. GNG4 encodes receptors on 
cell membranes that sense various signals from neuro-
transmitters, hormones, and light. Most of these recep-
tors are coupled to G proteins that transduce the signal to 
effectors [34]. GNG4 expression was elevated in LUAD, 
and GNG4 overexpression was associated with poor 
prognosis in LUAD patients. The hypoxic microenviron-
ment of lung adenocarcinoma could promote the expres-
sion of GNG4, and GNG4 promoted the migration and 
proliferation of LUAD cells [35]. In our article, we found 
that these genes are associated with the prognosis of lung 
cancer patients, which to some extent enriches the study 
of these genes and gives us a more comprehensive under-
standing of their functions.

We analyzed the infiltrating immune-cell profiles in 
patients and ultimately found that differences in the 
ESTIMATE score represented different levels of infil-
tration of various immune cells. In this study, various 
immune cells had differential expression profiles, thereby 
elucidating that different tumor microenvironments had 
different cell types of varying proportions. These differ-
ences are likely to play a crucial role in eventual remis-
sion in patients. There is still a lot to explore about the 
immune microenvironment of tumors. We believe that 
in the future we will continue to research not only the 

composition and function of immune cells, but also their 
interactions with tumor cells.

Our study investigated the immune infiltration sta-
tus, cell composition, and prognosis of lung cancer 
patients with different scores by analyzing differential 
gene expression and related pathways using RNA-seq 
data. Using the background from previous studies, 
we screened DEGs and developed a model based on 
4 genes to predict patient prognosis. We have vali-
dated the model using data from the TCGA database 
and demonstrated that our model had some predic-
tive power. Patients with various pathological types 
were evaluated based on the three scoring methods. 
Although our study used data from an online database 
and reduced the socio-economic burden of sequencing, 
it still has some shortcomings. First, our study was lim-
ited by the type of data entered into the database, and 
even though best efforts were made to eliminate batch 
effects, there was no way for us to completely remove 
batch effects inherent in each dataset. Second, although 
we included the data of 474 patients in our analyses, the 
low number of cases in each subgroup may have skewed 
some results. Thirdly, in addition to lacking an external 
validation set, we neither validated the basal levels of 
screened genes nor performed further flow cytometry 
analyses on the immune cells that were screened for 
differential expression. Due to the lack of data on lung 
cancer including all pathological types in the TCGA 
database, we only partially validated the model for 
67.5% of NSCLC that occupied the model. Those were 
the problems we discussed in our article, and we hoped 
to use them to inspire future research. Finally, although 
we partially validated the validity of the model, the 
absence of patient treatment data in our included data 
was a limiting factor of our study.

A dataset obtained from a public database was used 
to evaluate the ESTIMATE score. And we conducted 
differential expression analysis and made a risk formula 
with four DEGs, which could distinguish patients with 
better or worse prognosis.

In conclusion, we found that Immune, Stromal, and 
ESTIMATE scores could predict the prognosis in a 
proportion of lung cancer patients. We constructed a 
model to assess the prognosis of lung cancer patients 
based on DEGs and assessed the degree of immune cell 
infiltration in lung cancer patients with different scores.
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