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Abstract: Octacalcium phosphate (OCP) is a precursor of biological apatite crystals that has attracted
attention as a possible bone substitute. On the other hand, few studies have examined this material
at the experimental level due to the limitations on OCP mass production. Recently, mass production
technology of OCP was developed, and the launch of OCP bone substitutes is occurring. In this
study, the bone regeneration capacity of OCP products was compared with two of the most clinically
used materials: heat-treated bovine bone (BHA) and sintered biphasic calcium phosphate (BCP).
Twelve rabbits were used, and defects in each tibia were filled with OCP, BHA, BCP, and left unfilled
as control (CON). The tibias were harvested at 4 and 12 weeks, and 15 µm slides were prepared using
the diamond grinding method after being embedded in resin. Histological and histomorphometric
analyses were performed to evaluate the bone regeneration ability and mechanism. The OCP showed
significantly higher resorption and new bone formation in both periods analysed (p < 0.05). Overall,
OCP bone substitutes can enhance bone regeneration significantly by activating osteoblasts and
a rapid phase transition of OCP crystals to biological apatite crystals (mineralization), as well as
providing additional space for new bone formation by rapid resorption.

Keywords: octacalcium phosphate (OCP); hydroxyapatite (HA); biphasic calcium phosphate (BCP);
xenogenic bone; synthetic bone; bone regeneration; phase conversion; mineralization

1. Introduction

Autogenous bone is still the best option for regenerating bone defects because it meets
all the indicated requirements of an ideal bone graft material for osteoinduction and os-
teoconduction [1–3]. On the other hand, the use of autografts is limited by the insufficient
bone volume, specific surgical complications, postoperative morbidity, and operation cost.
Thus, synthetic bone or biomimetic bone materials as alternatives to autogenous bone have
been evaluated as artificial bone in orthopedics and dentistry. These alternative materials
should provide a variety of shapes and sizes with mechanical strength and biocompatibility
suitable for use in the regeneration of bone defect sites. Generally, bioresorbable materials
are preferred because they are expected to maintain the bone volume during bone recon-
struction and be gradually replaced by newly formed bone [4]. Numerous physicochemical
features of scaffolds, such as surface chemistry, surface roughness, topography, mechanical
properties, and interfacial free energy (hydrophobic/hydrophilic balance) are important
for cell attachment, proliferation, and differentiation. These factors are also critical to the
overall biocompatibility and bioactivity of a particular material [5–7].

The resorption of bone substitutes is related to several factors, such as particle size,
porosity, chemical and crystallographic properties (composition, Ca/P ratio, phases, and
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crystallinity), and pH (appropriate for body fluids) [8,9]. In general, smaller particle size,
higher porosity, lower crystallinity, and higher non-stoichiometric ratio result in faster
resorption from bone substitutes [10]. Hydroxyapatite (HA) and β-tricalcium phosphate
(β-TCP) materials are currently used as artificial bone graft materials [11,12]. HA produced
by sintering is used as a scaffold material because it does not dissolve in bone defects
for a long period of time and retains its shape [13–15]. In contrast, β-TCP is used as a
resorbable bone substitute due to its inherent solubility in a physiological environment [16].
Biphasic calcium phosphates (BCP), composed of various ratios of HA and β-TCP phases,
are mainly applied [17] to control the rate of resorption. Recent study has shown that the
resorption of β-TCP can occur not only by dissolution but also by the phagocytosis of
osteoclasts [18].

Octacalcium phosphate (OCP), which is attracting attention as an alternative calcium
phosphate bone graft material, is biodegradable at the bone defect site and has a neutral
pH [19,20]. The OCP crystal, Ca8H2(PO4)6 5H2O, has a water layer between two apatite
layers. In a physiological environment, the water layer is removed from the OCP, and the
two apatite layers are combined to form HA crystals [21]. Based on its crystallographic
similarity, OCP has been proposed as a precursor of biological apatite crystals in bones and
teeth. Histological studies by Suzuki and coworkers found that some calcium phosphate
ceramics, such as β-TCP and OCP, were reabsorbed by osteoclasts in addition to dissolution
by the physiological pH of OCP [22–24]. The superior osteoconductivity of OCP has also
been demonstrated in animal-based studies [4,25].

To date, a few in vivo and clinical studies using OCP have shown that bone repair is
superior to other bone substitutes [26–29]. OCP as a bone substitute has many advantages
for bone restoration, but the difficulties in mass production limited its practical clinical
application. The recent development of OCP mass production technology has opened
up the possibility of the clinical applications of OCP. So far, there has been a laboratory-
scale study of OCP substances, but this study is the first comparative animal study of
a commercialized OCP product. The bone regeneration ability of OCP products was
compared with two of the most clinically used materials: heat-treated bovine bone and
sintered BCP.

2. Materials and Methods
2.1. Bone Substitute Materials

Three commercially available granular products were used in this study. The bone-
forming ability of a newly released OCP bone product was compared with two other types
of products that are currently widely used. A xenograft product (Bio-Oss), comprised of
an inorganic mineralized trabecular bovine HA matrix, was used as a comparative test
group. Bio-Oss (Geistlich Pharma AG, Wolhusen Switzerland), which is produced by
deproteination at high temperatures, favors the proliferation of blood vessels and bone cell
migration through the interconnecting micropores. Another comparative testing sample
was a BCP product (MBCP+) that consists of 20:80% of HA and β-TCP. MBCP+ (Biomatlante
SAS, Édouard Belin, France) is a BCP synthetic bone graft substitute with a micro- and
macroporous structure closely resembling the architecture of natural human bone.

The OCP test product was a granular synthetic OCP material, Bontree (HudenBio,
Gwangju, Korea), consisting mainly of OCP. Bontree is a recently released biodegradable
synthetic bone graft substitute with a micro- and macro-pore structure. Unlike the above
two products, which are processed at high temperatures, Bontree products are produced at
room temperature. In general, bone graft materials prepared at low temperature are known
to exhibit high bioactivity, but have low mechanical strength and are easily resorbed. In
particular, when the OCP material is subjected to high-temperature treatment, it has a
characteristic of changing into a different phase.
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2.2. Characterization of Bone Substitute Materials

The morphology, size, and pore characteristics of the samples were examined by
scanning electron microscopy (SEM, Hitachi S-4300; Hitachi, Tokyo, Japan) at ×50 and
×20,000 magnifications. The phase of the bone graft material and the Ca/P ratio directly
affect the rate of bone formation and biodegradation. Therefore, the phases of all sam-
ples were investigated by X-ray diffraction (XRD, X’pert MPD-PRO; Panalytical, Almelo,
Netherlands). The XRD experiments were performed at 40 kV and 30 mA and using copper
Kα radiation. The Ca/P ratio of the samples was measured by energy-dispersive X-ray
spectroscopy (EDS. Ultim Max; Oxford Instruments, Abindon, UK).

2.3. Animals

Twelve eleven-week-old male New Zealand White rabbits were obtained from Ori-
entbio (Seongnam, Korea) and maintained under specific pathogen-free conditions. The
Institutional Animal Care and Use Committee (CRONEX-IACUC 201908004) of Cronex
Co., Ltd. (Seoul, Korea) approved all experimental protocols. The rabbits underwent initial
adaptation while being fed a normal diet under temperature, humidity, and light-controlled
conditions. After two weeks of acclimatization, healthy animals within the 80th percentile
of body weight (3.0–3.5 kg) were numbered with minimal weight variation and underwent
surgery.

2.4. Surgical Procedure

The subjects were anaesthetized with an intravenous injection of 5 mg/kg body weight
of tiletamine hydrochloride and zolazepam hydrochloride (Zoletil 50; Virbac, Carros,
France) and 15 mg/kg body weight of 2% xylazine hydrochloride (Rumpun; Bayer, Seoul,
Korea). After a skin incision, both tibias were exposed, and three 3 mm diameter defects
were made in each tibia using an implant drill. The defects were filled with Bontree (OCP),
Bio-Oss (BHA), or MBCP + (BCP). An additional sham surgery group (CON) was also
prepared. After 4 or 12 weeks, the animals were sacrificed, and the tibias were harvested.

2.5. Bone Sample Preparation

Each defect segment was cut using a diamond saw and fixed in 10% formalin for one
day. The bone samples were dehydrated in a graded series of ethanol and infiltrated for one
day each in a 1:3, 1:1, and 3:1 Technovit 7200 resin (Heraeus Kulzer, Wehrheim, Germany)
and ethanol mixture. The sample was polymerized in a UV embedding system (Kulzer
Exakt, Wehrheim, Germany) after shaking for one day under vacuum in pure Technovit
resin. The hard resin sample obtained was cut and ground to 15 µm thick slides using an
EXAKT cutting and grinding machine (Kulzer Exakt 300, 400CS; Wehrheim, Germany).
The tissue slides were observed by optical microscopy (6000D; Leica, Germany) after being
hematoxylin-eosin (H-E) stained and mounted.

2.6. Histological Observation and Morphometric Analysis

New bone formation and the implant material status were observed, and the bone
healing process for each implant material was analyzed (n = 9 each). The new bone
formation and the implant material remnant were measured quantitatively using the
Image-Pro Plus program (Media Cybernetics, Silver Spring, MD, USA). Two rectangles in a
3 × 1.5 mm size boundary were set on the cortical bone and marrow area in the defect area.
An accurate region of regeneration inside a rectangle was gated using the above computer
program. The total gated, new bone occupied, and implant material occupied areas were
measured based on the color and darkness differences using the Image-Pro program. The
percentages of new bone and implant material in the total gated area were calculated.
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2.7. Statistical Analysis

The data are presented as graphs representing the mean ± standard error. ANOVA
(Scheffe) was performed, and a p value of <0.05 was considered significant. Statistical
analysis was performed using IBM SPSS Statistics 23.0 (IBM, Armonk, NY, USA).

3. Results
3.1. Bone Substitute Materials

Microstructures evaluated at ×50 magnification of OCP, BHA and BCP revealed that
all samples exhibited similar granular sizes with diameters of 1.5–2.0 mm, 1.0–1.7 mm, and
1.0–1.7 mm, respectively. Although the granule shape of each sample was very different
due to the difference in the manufacturing process, since the size of the granules used in
this study was similar, the size of the macropores formed by gathering these granules was
expected to be similar. The shape of the granules in the BHA and BCP samples consisted of
irregularly angled granules, whereas the OCP sample consisted of round-shaped granules.

At high magnification (×20,000), the BHA microstructure was in the form of agglom-
erated nano-sized particles. No growth or crystallization of the grains occurred because
it was heat-treated at a lower temperature than the BCP sample. Compared to BHA, the
BCP microstructure was heat-treated at a higher temperature, and larger nano-sized rod
grains and micropores were well formed because of grain growth or crystallization. Unlike
BHA and BCP, the OCP product was prepared at room temperature. An examination at
×20,000 magnification showed that the originally synthesized ribbon-shaped OCP grains
had aggregated to form micropores, but no further crystal growth or recrystallization had
occurred (Figure 1). The BHA sample had low crystallinity because the heat treatment
temperature was not high enough. In contrast, the crystallinity of the BCP sample was very
high because of the high-heat treatment. On the other hand, the crystallinity of the OCP
sample maintained that of the starting raw material because OCP products were prepared
at room temperature. Figure 2 shows the XRD patterns of the samples. XRD phase analysis
confirmed that Bontree (OCP) samples consist of OCP phases, whereas Bio-Oss (BHA) and
MBCP + (BCP) samples mainly consisted of HA phases and a mixture of HA and β-TCP
phases, respectively. XRD phase analysis confirmed that Bontree (OCP) samples consisted
of 80% OCP phase, and Bio-Oss (BHA) consisted of 90% HA phase, whereas MBCP + (BCP)
samples consisted of 20% HA and 80% β-TCP phases.
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Figure 2. Results of XRD analysis (a–c) and EDS analysis (d–f). OCP samples (a,d) consisted of mainly OCP phase. BHA
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peaks are indicated by •, N, and �, respectively.

The Ca/P ratios of OCP, BHA, and BCP calculated from the EDS results were 1.24,
1.60, and 1.32, respectively (Figure 2). The Ca/P ratio of each of the samples was lower
than the stoichiometric ratio (1.33, 1.67, and 1.50) of each material. Hence, each sample
is considered to be Ca deficient because the measured Ca/P ratios were lower than the
stoichiometric ratios. Because the properties of bone graft materials directly affect the rate
of new bone formation and biodegradation, the resulting Ca/P ratio will be very useful
when describing the results of animal experiments in the Section 4.

3.2. Histomorphometric Analysis

Tibial defect healing progressed in all groups with time (Figure 3). The assessments
showed that the CON group had the least cortical bone in the defect area at 4 weeks, but the
level was similar to that of the other groups at 12 weeks (Figure 4a). The initial poor bone
formation was attributed to a large-sized defect because it is considered challenging to
cross 3 mm directly by osteoconduction only. The OCP group showed the most prominent
bone formation, and it was the only group to show a significant difference from that in
the CON group at four weeks (Figure 4c). Bone formation in the marrow area in the OCP
group was an unusual result. Although there was a return to a normal marrow structure at
12 weeks, the OCP group showed a prominent high level of bone in the marrow area at
4 weeks (Figure 4b). New bone formation in the total defected area was significantly high
in the OCP group at 4 weeks, maintaining almost the same level at 12 weeks. This was
attributed to the offsetting of new bone formation in the cortical area by bone resorption
in the medulla area. The BHA group showed a significantly lower level of new bone
formation than those of the OCP and BCP groups at 12 weeks (Figure 4c). This is because
of a lack of space for bone formation because BHA does not resolve and occupy the space.
An analysis of the total amount of bone formation showed that OCP produced the best
new bone formation at four weeks, and BHA produced the least amount of cortical bone at
12 weeks (Figure 4c).

Although the implanted material remained as large clumps in the bone marrow site
in all implant groups (Figure 3), OCP showed a significantly lower volume and size at 4
and 12 weeks (Figure 4d). In contrast, BHA showed the same level at both periods. BHA
and OCP showed the slowest and fastest resorption rate of the implant materials examined
(Figure 4c–e).
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3.3. Histological Findings

Bone healing progresses through the following steps: blood clotting, granulation tissue
(procallus), soft callus (fibrocartilage), hard callus (primary bone), and remodeling (mature
bone). The 4- and 12-week samples were assumed to be the hard callus and remodeling
stages, respectively (Figures 3 and 5).
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The BHA group showed a similar healing process to the OCP group, but new bone 
formation was not as active as that in the OCP group, particularly in the inner medullary 
area. The BHA granules maintained the original compact bone structure, including lacuna 
and lamella (Figures 3b and 5b). At 12 weeks, cortical bone was filled compactly with new 

Figure 5. Microphotographs of the tibias at four (a–d) and 12 (e–h) weeks after implanting of OCP (a,e), BHA (b,f), BCP
(c,g), and CON (d,h) materials. OB: old bone, NB: new bone, M: marrow, *: implant material. H-E stain was used; bars
indicate 100 µm.

Four weeks after the OCP implant, well-organized hard callus formation was observed
in the cortical and medullary areas (Figures 3a and 5a). At higher magnification, most OCP
granules were covered with new bone matrix and osteocytes in the lacuna. Moreover, the
new bone surface was covered by numerous osteoblasts, and osteoclasts were observed
(Figure 6a,b). The OCP granules that remained in the cortical bone and medulla areas
were usually of small size, and there was no evidence of cell infiltration. Bone healing
had advanced to a mature form at 12 weeks; the cortical area was filled with mature
compact bone with a lamellar structure and a Haversian system; a few small-size traces
of OCP granules were observed (Figures 5e and 6c). Several small cavities filled with
marrow tissue were observed in the cortical bone, but this was not an OCP-specific feature
(Figures 3e,h and 5h). At 12 weeks, the inner marrow area almost returned to the original
marrow structure, showing adipocytes and hematopoietic cells. Occasionally, various
sizes of OCP remnants covered with thin bone and a capsular structure were observed
(Figure 6d).

The BHA group showed a similar healing process to the OCP group, but new bone
formation was not as active as that in the OCP group, particularly in the inner medullary
area. The BHA granules maintained the original compact bone structure, including lacuna
and lamella (Figures 3b and 5b). At 12 weeks, cortical bone was filled compactly with new
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bone, but the new bone area was smaller than that in the OCP group because the BHA
granules still occupied a fair proportion of the space; much more of the area retained soft
tissue compared to that in the OCP group (Figure 5f). The marrow area displayed features
similar to OCP at 4 weeks, and there were no advances in new bone formation or substrate
resorption at that time.
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Figure 6. High magnification micrographs of OCP-implanted tibias. Cortical bone (a,c) and marrow area (b,d) at four (a,b)
and 12 (c,d) weeks. Arrow: osteoblast, arrowhead: lacuna, *: OCP, #: Haversian system, I: osteoclast. H-E stain; bars
indicate 100 µm.

The BCP group showed similar healing patterns to those in the OCP group in the
cortical areas, but the BCP granules occupied large portions of the cortical and medulla
areas. Moreover, there was no evidence of noticeable resorption (Figure 5c,g).

The CON group exhibited a typical bone healing process. Primary woven bone was
observed in the cortical area at 4 weeks, and large holes remained in the central defect
area due to incomplete bone healing. Trabecular bone was replaced with well-organized
lamellar bone, including evidence of the Haversian system, at 12 weeks (Figure 5d,h). Bone
formation was predominantly active on the periosteal side due to the active supply of
osteoblasts from the periosteum; the 3 mm defect size was not small enough to allow direct
osteoconduction. In some cases, a large marrow space, which included hematopoietic cells,
was observed in the cortical bone (Figure 5h).

4. Discussion

The solubility or biodegradation of calcium phosphate substances is related directly
to the Ca/P molar ratio. Various calcium phosphate materials form differently depending
on the Ca/P ratio. A calcium phosphate material with a low Ca/P ratio exhibits chemical
stability in a low pH environment, whereas a material formed at a high Ca/P ratio has
stability under neutral or basic pH conditions. For example, HA exhibits chemical stability
at a high pH (i.e., a neutral or basic environment) because its stoichiometric Ca/P ratio
is 1.67. In contrast, OCP has a relatively low Ca/P ratio of 1.33 and exhibits stability at a
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relatively low pH (i.e., acidic environment). Therefore, in animal experiments, the BHA
sample composed mainly of HA would exhibit high chemical stability under physiological
conditions. This stability would be followed by BCP (composed of HA and β-TCP) and
the OCP sample composed mainly of OCP, which show low chemical stability. Therefore,
in a neutral in vivo environment, the OCP sample with a relatively low Ca/P ratio had a
much faster biodegradation rate than those of the other samples (Figure 5). These results
are consistent with the findings reported elsewhere [24,30].

Acidic calcium phosphates, such as OCP and dicalcium phosphate dihydrate (DCPD),
are considered soluble ceramics at a neutral pH. In vivo biodegradation is generally as-
sociated with the solubility of calcium phosphate at a physiological pH level [24,30]. In
addition, β-TCP is less acidic than OCP but is the most widely used biodegradable ceramic
in vivo [19,21], whereas HA is the most chemically stable at physiological pH. In this
study, in vivo resorption of the OCP sample, composed mainly of OCP, was approximately
two-fold after four weeks and four-fold after 12 weeks, which was notably faster than that
of the BCP sample composed of HA and β-TCP and the BHA sample composed of HA.
The in vitro resorption rate of OCP was similar to that of β-TCP, but the in vivo resorption
of OCP samples was much faster than that of BCP composed of 80% β-TCP. These results
show that an additional degradation mechanism is involved in the OCP sample.

In general, the stability of calcium phosphate materials is related to several factors,
such as particle size, porosity, Ca/P ratio, phase, and crystallinity [9,10]. Even with the same
type of calcium phosphate material, the chemical stability in the physiological environment
varies with the degree of non-stoichiometry, particle size, porosity, and crystallinity. Non-
stoichiometric materials are thermodynamically and chemically unstable compared to
stoichiometric materials [19]. All calcium phosphate bone substitutes examined in this
study have non-stoichiometric chemistry: The Ca/P ratio of each tested sample was lower
than the stoichiometric ratio. Therefore, all samples used in this experiment are believed to
exhibit faster biodegradation than stoichiometric materials.

Micrometer-sized particles take longer to be eliminated than nanometer-sized particles
because osteoclasts require a longer time for chemical dissolution and biological absorption.
Although the main phase was HA, the BHA samples would have been absorbed quickly
because they were comprised of nano-sized particles. SEM (Figure 1) showed that the
particle distribution of the BHA samples was in the tens of nanometers range, with a
BCP distribution of several micrometers and OCP from submicron to several micrometer
sizes. The crystallinity of a biomaterial also changes its resorption rate. Highly crystalline
materials are more resistant to resorption than less crystalline materials because they are
thermodynamically more stable. The crystallinity of a material can be deduced from its
XRD peak. The XRD (Figure 2) patterns of the BHA and OCP samples showed broad peaks
compared to the BCP sample. This is because BHA and OCP were treated at relatively
lower temperatures than BCP, resulting in lower crystallinity.

Several studies have suggested possible in vivo degradation mechanisms of calcium
phosphate ceramics [26,31]. Many studies have shown that biodegradable calcium phos-
phate materials are degraded by simple dissolution, fragmentation/disintegration, osteo-
clastic resorption, or phase conversion [26]. The predominant degradation mechanism
will vary according to the material, and a single mechanism may not be involved. Instead,
several mechanisms may be active simultaneously or sequentially. The rapid degradation
of the OCP sample, which consists mainly of OCP, is believed to be due to the formation
of biological apatite via fast phase conversion of OCP. In addition, OCP exhibits simple
dissolution and osteoclastic resorption similar to that observed in other biodegradable
calcium phosphate samples. The in vivo resorption of a grafted OCP sample is presumed
to be caused by several mechanisms, including dissolution, fragmentation/disintegration,
osteoclastic resorption, and phase conversion. The low crystallinity and large porosity of
the OCP sample would have improved its resorption rate.

Histomorphometric analysis indicated that the OCP group produced the highest
quantity of new bone formation and was the only group to show a significant difference to



Materials 2021, 14, 5300 10 of 12

CON after four weeks (Figure 3). Interesting results were obtained in the OCP group related
to the bone marrow. A significant amount of new bone was generated in the bone marrow
after four weeks, but this almost disappeared after 12 weeks. These results suggest that
OCP could influence the differentiation of stem cells into osteoblasts in the early stage [24],
and it was presumed that they were resorbed over time. The cortical and medullar areas
are under quite different physiological conditions. Cortical bone endures mechanical stress
for bearing the body weight and movement forces, whereas the marrow area is a cavity
that does not provide support against mechanical stress. Thus, bone remodeling by bone
resorption and new bone formation occurs in the cortical bone and leads to the maintenance
of a bone structure. On the other hand, there is no active remodeling in the marrow, which
leads to the resorption of the bone structure.

The histological findings showed that the various calcium phosphate samples tested
had various dissolution and new bone formation rates (Figure 5). Most calcium phosphate
materials will dissolve with time after being implanted in the body, resulting in the forma-
tion of new bone in the dissolved space or on the surface of the implanted materials. The
dissolution and new bone formation rates depend on the characteristics of the implanted
materials, such as phase composition, porosity, Ca/P molar ratio, crystallinity, particle size,
and impurities. Among the samples tested, the fastest bone healing rate was observed at
four weeks in the OCP sample group. Well-organized hard callus formation was observed
in both the cortical and medullary regions (Figure 5a). Most of the OCP granules were
covered with new bone components, including the osteocytes of the lacuna. At 12 weeks,
the bone healing process had progressed to a more mature bone form. The rapid new
bone formation and bone remodeling observed in the OCP group were attributed to the
rapid mineralization of the OCP crystals caused by phase conversion to biologically active
apatite. On the other hand, the relatively slow new bone formation in the other test groups
(BHA and OCP) was attributed to the relatively slow resorption and slow mineralization
of those substances (Figures 3–5). Despite the many advantages of OCP, its acid chemistry
may not be a perfect combination for ideal bone substitutes, which will be addressed in a
future study.

5. Conclusions

The OCP sample, which consisted mainly of OCP, had the fastest resorption rate in
the in vivo test environment compared to the rates for BHA, which was composed mainly
of low crystalline HA and MCP, which was comprised of high crystalline HA and β-TCP.
The fast resorption in the OCP group was attributed to the fast phase conversion of OCP
to biological apatite and to the rapid dissolution and osteoclastic resorption compared
to that observed in the other biodegradable calcium phosphate test groups. The level of
new bone formation in the OCP group at four weeks was much greater than those in the
other test groups because of the rapid mineralization of OCP via phase conversion and the
provision of space for new bone formation caused by the rapid resorption rate of OCP. In
the OCP group, well-organized hard callus formation was observed after 4 weeks, and at
12 weeks, defect healing had progressed to a more mature bone form. The rapid new bone
formation and bone remodeling in the OCP sample group were attributed to the rapid
mineralization of OCP crystals caused by phase conversion to the rapid biologically active
apatite in addition to osteoblast activation.
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