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Abstract

As a new transportation tool, unmanned aerial vehicle (UAV), has a broad application pros-

pect in logistics distribution, especially for mountainous cities with complex terrain. Due to

the limited delivery conditions of UAV, considering the advantages of traditional vehicle

delivery, this paper proposes a joint delivery mode of UAV and vehicle, and designs three

steps for the joint delivery problem of single UAV and single vehicle: first, mark all special

nodes; Secondly, the route of UAV and vehicle is planned; Finally, the total delivery route is

optimized to minimize the total delivery distance. Genetic algorithm and single distribution

terminal optimization are used to solve the problem, and the joint delivery in this paper is

compared with the traditional vehicle delivery and the independent delivery of UAV and vehi-

cle. The results show that UAV and vehicle can cooperate with each other to complete the

delivery of all customer demand nodes, and the joint delivery of UAV and vehicle can effec-

tively reduce the total delivery distance. Finally, the sensitivity analysis of UAV’s maximum

load, maximum flight distance, relative speed between UAV and vehicle, and road imped-

ance coefficient is carried out. By relaxing the restrictions of UAV, the UAV can deliver more

customers at a single time, and it complete the delivery task with vehicles efficiently.

1 Introduction

With the continuous development of e-commerce, enterprises and customers have been seek-

ing faster and more efficient logistics. However, in mountainous cities with complex terrain

and poor traffic conditions, logistics distribution is often hindered by mountains and rivers.

How to effectively complete the "last mile" delivery is an urgent problem to be solved. The civil

UAV provides a new solution to this problem.

At first, UAV (Unmanned Aerial Vehicle, or Drone) was mainly used for coordinated oper-

ations in the military field [1]. In recent years, civilian UAVs have developed rapidly. With

their advantages of convenient operation, flexible use, high operating efficiency, and low rela-

tive cost [2], the application scope has been expanded to logistics distribution, surveillance

cruise, emergency rescue, and medical transportation [3–7]. However, due to the small load

capacity and the inability to support long-distance flights, there are many restrictions in the
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delivery of goods. Traditional delivery vehicles have the advantages of large load capacity and

long-distance transportation. The combined delivery potential of the two is huge. It has

become one of the research hotspots in recent years.

Wohlsen et al. [8] first proposed the use of trucks and UAVs for collaborative cargo deliv-

ery. In this problem, the truck and the UAV can deliver to customers independently, but the

UAV needs to return to the truck to take a package after each delivery. From this idea, Agatz

et al. [9, 10] called this path problem as the traveling salesman problem with drone (TSP-D),

with the goal of minimizing delivery costs, and constructed a mixed integer model of TSP-D.

Ha et al. [11] aimed at the TSP-D problem of single truck and single UAV, aimed at minimiz-

ing the total delivery cost and the penalty cost of truck waiting for UAV.

In addition, Murray et al. [12] proposed the flying sidekick traveling salesman problem

(FSTSP) and the parallel drone scheduling traveling salesman problem (PDSTSP) two models

for the coordinated delivery of UAVs and trucks, with the goal of minimizing service time.

Yurek et al. [13] designed a two-stage iterative algorithm for solving FSTSP and compared it

with the solution time of CPLEX, the results showed that the algorithm can reduce the solution

time for medium-scale examples. Ham [14] extended PDSTSP, taking into account that UAVs

can pick up or deliver goods at warehouses or customer locations at the same time, and use

multi-truck, multi-UAV and multi-warehouse joint delivery problems to verify.

The above studies all proceed from the TSP problem, assuming that a single UAV launch

can only serve one customer, and the vehicle launches and receives the UAV at a fixed point.

However, these assumptions impose a lot of restrictions on joint delivery. The research of Bou-

man et al. [15] also shows that the number of nodes that the UAV can visit when leaving the

truck can significantly shorten the total delivery time. UAVs should be allowed to deliver mul-

tiple packages within a reasonable tolerance range. In addition, the sending and receiving of

UAVs by vehicles can be a dynamic process, which can give greater play to the mobility of

joint delivery. This paper has also made improvements in these aspects.

In terms of improving the efficiency of joint delivery, Savuran et al. [16] proposed a new

variant of MoDVRP (Mobile Depot VRP), he assumes that the vehicle is moving along a

straight line, with a large number of customer points delivery on both sides of the route, and

that as many customer points are delivered as possible after the UAV takes off. Regarding the

limitation of UAVs, Wang et al. [17] considered the UAV vehicle path problem VRP-D under

the limitation of endurance, for the coordinated delivery of multiple trucks and UAV, it is pro-

posed that UAVs can be launched and received from trucks in warehouses or any customer

location. Dorling [18] considered the relationship between the flight distance and load of the

UAV, and concluded that energy consumption and delivery time cannot be optimized at the

same time. In order to effectively solve the VRP-D problem, Scherme et al. [19] found the opti-

mal allocation and scheduling of UAVs based on a mixed integer linear programming model.

Considering the complexity of the joint delivery problem of vehicles and UAVs, researchers

can simplify the solution process, and the solution ideas can be divided into the following two

categories. One is based on routing first [8, 9], that is, to solve the truck route according to the

traditional TSP problem, and then to allocate the UAV route according to the priority crite-

rion, and to optimize the final route allocation by the objective function; the other is based on

clustering first [12], that is, to calculate the cluster centers from the customer distribution char-

acteristics, the truck is responsible for the delivery of each center point, and then allocate the

driving route of trucks, deliver to the surrounding customer points.

All these studies have the same steps: determine the route of the truck first, and then allo-

cate the flight route of the UAV, and use the idea of gradual approximation [20] and classifica-

tion [21] to design heuristic algorithm to solve the joint delivery problem. Generally, the

designed heuristic algorithm can get better results, but it can only solve small-scale cases, and
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the calculation time is very long [14] (Solving 10 customer cases takes more than one hour). In

order to make the solution more efficient, researchers began to use meta heuristic algorithm to

improve the operation efficiency, such as Simulated Annealing Algorithm [19], Greedy Algo-

rithm [12], Neighborhood Search Algorithm [22], etc., which makes the joint delivery problem

can be extended to large-scale cases, while greatly reducing the operation time and gaining bet-

ter results. But in general, this kind of research is still not taken widely. This paper attempts to

determine the delivery route of UAV first, so that it can serve more customers at a time, and

then allocate the driving route of trucks, and designs a genetic algorithm with terminal optimi-

zation to solve the proposed joint delivery model.

Compared with vehicle, UAV is faster and more convenient, and the cost is lower. In the

future, UAVs will be more widely used in distribution. Researchers have also conducted a

large number of studies to confirm the advantages of joint delivery in time [23] and cost [13],

but the researchers rarely pays attention to the path distance, especially for complex terrain

such as mountains and hills. Due to road bending, large slope and ups and downs, traditional

vehicle delivery is very inconvenient, and the utility of time and cost is relatively low. In some

areas surrounded by hills and lakes, vehicles cannot be delivered at all, and UAV delivery is

not affected by terrain, which greatly shortens the delivery distance, and UAV delivery has

great advantages in areas where mountains and rivers are blocked and vehicles cannot enter.

Considering that most nodes in mountainous cities are clustered and distributed in blocks,

and there are many special customer points. In order to complete the "last mile" delivery, the

main contributions of this paper are as follows:

1. Based on the scenario of single UAV and single vehicle, this paper constructs the UAV-

vehicle joint delivery model, reasonably plans the delivery of special points, and arranges as

many customer points as possible to UAVs;

2. Under the limitation of load and flight distance, the UAV can deliver multiple packages at a

time. The vehicle can carry the UAV for delivery, and can also deliver with the UAV at the

same time. The two cooperate to complete the delivery task together.

3. Aiming at the shortest delivery route, a heuristic algorithm is designed to solve the model,

and the results are compared with other scenarios to verify the feasibility of the model.

The rest of this paper is arranged as follows: in Section 2, the problem is described in detail,

and the definition and hypothesis of the problem are also given. In sections 3 and 4, the model

and algorithm designed in this paper are given respectively, which is applied to solve problem

in Section 5. We also make sensitivity analysis on several parameters to obtain a more compre-

hensive understanding. The conclusion is in Section 6.

2 Problem description

Due to the distribution advantages of UAVs, large logistics enterprises such as Amazon, DHL

and JD have increased the experiment of UAV delivery. As a new transportation tool in logis-

tics distribution, UAV has the advantages of low cost, convenient operation, low environmen-

tal requirements and strong survivability. It has great potential in logistics transportation

application and can undertake more delivery tasks. However, because of its small volume,

small load capacity, short flight distance and great influence by the weather, the traditional

delivery vehicle has the advantages of large capacity, long-distance delivery, high safety and

stability and mature related distribution technology. The joint delivery of UAV and vehicle

can give full play to their respective advantages.

This paper gives the following definitions:
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1. Vehicles: including trucks, tricycles and other means of transport that can distribute goods

and support UAV launch and return.

2. Impedance: it is not limited to the non-linear coefficient, slope, flatness of the road, and

other factors that can affect the smooth and uniform driving of vehicles.

3. Joint delivery: the UAV needs to pick up the goods from the vehicle and return to the vehi-

cle after the delivery. The vehicle can carry the UAV for delivery, and can also simulta-

neously carry out the delivery of other customer points after the UAV picks up the goods.

The two cooperate to complete the delivery of all customer points according to the specific

characteristics of the customer points.

4. Independent delivery: that is, non-joint delivery, vehicles and UAVs independently to com-

plete their own delivery tasks.

5. Docking point: it can be used for vehicles to park and wait for UAV, where UAV can com-

plete battery replacement, goods removal, or launch recovery. The docking point can be

any customer point or delivery center.

A simple mode of UAV vehicle joint delivery studied in this paper is shown in Fig 1. In the

figure, UAVs and vehicles can respectively carry goods out of the delivery center, or vehicles

can carry UAVs back to the delivery center; When the UAV is delivering, the vehicle doesn’t

have to stay in the place and wait, but can deliver at the same time. A single distribution of

UAV can serve multiple customer points at the same time. In addition, the super far nodes

exceeding the maximum flight distance of the UAV are marked in red in the figure. Because

the UAV cannot go back and forth for a long distance, the super far customer nodes can only

be delivered by vehicles. The overweight nodes can only be delivered by vehicles because the

UAV can’t load heavy goods, but the UAV can fly to the overweight nodes for parking.

The three service forms of overweight node are shown in Fig 2: in figure (a), overweight

node can be used as the parking point of UAV and vehicle; In figure (b), the vehicle can carry

UAV to distribute the overweight nodes; In figure (c), both UAVs and vehicles distribute to

customer points, and the vehicle is responsible for the overweight nodes.

Based on the above problems, this paper makes the following assumptions

1. The location and demand of delivery center and customer point are known, and the

demand of delivery center is 0;

Fig 1. Joint delivery of single UAV and single vehicle.

https://doi.org/10.1371/journal.pone.0265518.g001
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2. All customer points must be served, regardless of the time window of customer points;

3. The maximum load and range of UAV are known;

4. The UAV can serve more than one customer point at a time under the limited conditions;

5. Regardless of the load limit and endurance limit of the vehicle;

6. The vehicle must arrive at the stop before the UAV, and the UAV cannot hover at the stop;

7. After each delivery, the UAV needs to return to the vehicle to pick up the goods and replace

the battery;

8. The service time of the customer point and the time of UAV picking up and battery replace-

ment are not considered;

9. Enough UAV power supply is carried on the vehicle.

3 Mathematical model of joint delivery

3.1 Parameter description

The parameters used in the modeling process are as follows:

S: The set of all nodes, S = {1, 2, � � �, n, n + 1}, Where n + 1 is the delivery center;

C: The set of all customer demand nodes, C = {1, 2, � � �, n};

N: The set of customer demand nodes not served, N = {1, 2, � � �, n};

Rm: The set of customer demand nodes exceeding the maximum load limit of UAV;

Rd: Customer demand nodes set whose distance from other customer nodes exceeds the maxi-

mum flight distance limit of UAV;

U: The set of customer demand nodes for UAV delivery, U = {U1, U2, � � �, Uk};

Uk: Customer demand point set of UAV delivery for the kth distribution;

T: The set of customer demand nodes for Vehicle delivery, T = {T1, T2, � � �, Tk};

Tk: Customer demand point set of Vehicle delivery for the kth distribution;

P: The set of all parking spots;

K: Total number of distribution, K = {,1 2, � � �, k};

n: Total number of customer demand nodes;

Fig 2. The overweight node service form.

https://doi.org/10.1371/journal.pone.0265518.g002
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|Uk|: Customer demand points of UAV delivery for the kth distribution;

|Tk|: Customer demand points of Vehicle delivery for the kth distribution;

mi: Cargo demand of node i;

dij: Euclidean distance from node i to node j;

M: Maximum payload of UAV;

D: The maximum flight distance of UAV;

v1: Average flight speed of UAV;

v2: Average speed of vehicle;

ε: Road impedance coefficient;

Ek: The sum of the distances of the UAV delivery routes for the kth distribution;

Fk: The sum of the distances of the vehicle delivery routes for the kth distribution;

Z: Total mileage of delivery routes;

xij;k ¼
1;At the kth distribution; the UAV moves from node i to node j

0;At the kth distribution; the UAV did not moves from node i to node j

(

yij;k ¼
1;At the kth distribution; the vehicle moves from node i to node j

0;At the kth distribution; the vehicle did not moves from node i to node j

(

3.2 Model building

In order to minimize the total delivery distance, this paper is divided into the following three

steps.

(1) Step1: Marking special points. For all demand nodes can be delivered, and the UAV

has the maximum load limit and the maximum flight distance limit in a single flight, the

demand nodes exceeding the maximum load limit of the UAV are marked as Rm, and the

demand nodes exceeding the maximum flight distance limit of the UAV are marked as Rd. All

marked nodes can only be delivered by vehicles. However, the customer demand nodes

marked with Rm can be regarded as the single destination of UAV under the condition of

meeting the flight distance limit of UAV.
X

k2K

X
i 2 S
i 6¼ j

yij;k ¼ 1 8j 2 Rm [ Rd ð1Þ

X

k2K

X
j 2 S
i 6¼ j

yij;k ¼ 1 8i 2 Rm [ Rd ð2Þ

X

k2K

X
i 2 S
i 6¼ j

xij;k ¼ 0 8j 2 Rd ð3Þ

X

k2K

X
j 2 S
i 6¼ j

xij;k ¼ 0 8i 2 Rd ð4Þ

0 <
X

k2K

X
j 2 C
j 6¼ i
ðxij;k þ yij;kÞ � 2 i ¼ nþ 1 ð5Þ

PLOS ONE "UAV-vehicle" distribution routing optimization model

PLOS ONE | https://doi.org/10.1371/journal.pone.0265518 March 21, 2022 6 / 21

https://doi.org/10.1371/journal.pone.0265518


0 <
X

k2K

X
i 2 C
i 6¼ j
ðxij;k þ yij;kÞ � 2 j ¼ nþ 1 ð6Þ

jTkj � 18k 2 K ð7Þ

Formula (1) and formula (2) indicate that the marked nodes must be delivered by vehicles;

Formulas (3) and (4) denote those nodes marked Rd will not be delivered by UAV; Formula

(5) and formula (6) indicate that UAVs and vehicles can enter and exit from the delivery center

alone or together with vehicles; Formula (7) shows that each delivery serves at least one cus-

tomer node.

(2) Step 2: Planning single path. ① UAV route. Due to the limitation of UAV’s power,

under the condition that UAV can reach the farthest flight distance radius and meet the maxi-

mum load limit of UAV, it is necessary to allocate as many customer demand nodes as possible

to UAV. For a given flight radius, the maximum number of customer nodes that UAV can

serve in a single distribution is limited. After each assignment, the destination of the single

arrival is recorded.

max
X

i 2 N
i 6¼ j

X

j2N
xij;k k 2 K ð8Þ

X
i 2 N
i 6¼ j

X

j2N
xij;kmi � M 8k 2 K ð9Þ

X
i 2 N
i 6¼ j

X

j2N
xij;kdij � D 8k 2 K ð10Þ

X
i 2 N
i 6¼ j

xij;k � 1 8j 2 N; k 2 K ð11Þ

X
j 2 N
i 6¼ j

xij;k � 1 8i 2 N; k 2 K ð12Þ

N ¼ N � Uk 8k 2 K ð13Þ

Formula (8) is to maximize the number of customer nodes in a single UAV service; For-

mula (9) ensures that the cargo weight carried by the UAV in a single time does not exceed the

maximum capacity of the UAV; Formula (10) defines that the total delivery distance of a single

UAV does not exceed the maximum flight distance of the UAV; Formula (11) indicates that in

all unserved customer nodes, the UAV enters the node no more than once; Similarly, formula

(12) indicates that the UAV does leaves the node no more than once; Formula (13) that if the

customer node of UAV service is allocated, it will be removed from the previous customer

node set.

② Vehicle route. UAV can not fly for a long time, and carry a limited amount of goods. The

vehicle is a mobile station to provide power and goods. Considering the safety, in order to

ensure the normal launch and reception of UAV, the vehicle must arrive at the stop before

receiving UAV. Taking the end point of the UAV single path planning record as the end point

of the vehicle delivery, on the premise of meeting the early arrival, as much as possible to

assign customer demand nodes to the vehicle. Due to the limitation of delivery time, the
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number of customers that can be served by a single vehicle delivery is limited.

max
X

i 2 N
i 6¼ j

X

j2N
yij;k 8k 2 K ð14Þ

ε
v2

X
i 2 N
i 6¼ j

X

j2N
yij;kdij �

1

v1

X
i 2 N
i 6¼ j

X

j2N
xij;kdij 8k 2 K ð15Þ

X
i 2 N
i 6¼ j

yij;k � 1 8j 2 N; k 2 K ð16Þ

X
j 2 N
i 6¼ j

yij;k � 1 8i 2 N; k 2 K ð17Þ

N ¼ N � Tk 8k 2 K ð18Þ

Formula (14) is to maximize the number of customer nodes in a single vehicle service; For-

mula (15) ensures that the vehicle must arrive before the UAV arrives; Formula (16) means

that the vehicle does not enter the node more than once among all the customer nodes which

are not served; Similarly, formula (17) indicates that the vehicle leaves the node more than

once; Formula (18) ensures that every time the customer node of vehicle delivery is allocated,

it is removed from the previous customer node set.

(3) Step 3: Optimizing the overall route. Take the end point of single distribution route

record as the starting point of next distribution route, and repeating the step 2 until all cus-

tomer demand nodes are delivered. The delivery distance of vehicle and UAV is added, and

the shortest total delivery distance is taken as the objective function to optimize the route selec-

tion of each delivery.

min Z ¼
X

k2K

X
i 2 S
i 6¼ j

X

j2S
ðxij;kdij þ εyij;kdijÞ ð19Þ

X

k2K

X
i 2 ðS � PÞ

i 6¼ j
ðxij;k þ yij;kÞ ¼ 1 8j 2 ðS � PÞ ð20Þ

X

k2K

X
j 2 ðS � PÞ

i 6¼ j
ðxij;k þ yij;kÞ ¼ 1 8i 2 ðS � PÞ ð21Þ

X

k2K

X
i 2 ðS � PÞ

i 6¼ l
xil;k ¼

X

k2K

X
j 2 ðS � PÞ

l 6¼ j
xlj;k 8l 2 ðS � PÞ ð22Þ

X

k2K

X
i 2 S
i 6¼ j

yij;k ¼ 1 8j 2 P ð23Þ

X

k2K

X
j 2 S
i 6¼ j

yij;k ¼ 1 8i 2 P ð24Þ

X

k2K

X
i 2 S
i 6¼ l

yil;k ¼
X

k2K

X
j 2 S
l 6¼ j

ylj;k 8l 2 S ð25Þ

xij;k 2 0; 1f g 8i 2 S; j 2 S; k 2 K ð26Þ

yij;k 2 f0; 1g 8i 2 S; j 2 S; k 2 K ð27Þ
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The objective function (19) is to minimize the total delivery distance between UAV and

vehicle; Formulas (20) and (21) indicate that all non parked customer nodes are only delivery

once by UAVs or vehicles; Eq (22) ensures the conservation of UAV access flow for non dock-

ing points; Formula (23) and formula (24) indicate that vehicles at all stops only enter and exit

once; Formula (25) ensures the conservation of vehicle flow in and out for all nodes; Formula

(26) and formula (27) give the value range of parameters. Formulas (5), (6) and (20)–(25)

jointly give the access rules when the delivery center is used as a stop and non stop, so as to

ensure that UAVs and vehicles drive out of the delivery center and finally return to the delivery

center without visiting the delivery center again. The pseudo code of formula (8)–(18) is

shown in algorithm 1.

Algorithm 1: Single path planning()
1 Input: mi, dij, M, D, Rd, N = {1, 2, � � �, n}
2 Output: Uk, Tk
3 U�k  ;, T�k  ;, m  0, Ek  0, Fk  0;
4 for i, j 2 N do
5 P  P [ {i};
6 if i, j 2 Rd then
7 continue;
8 else
9 Find Ek + dij � D in set N;
10 m  m + mi;
11 Ek  Ek + dij;
12 U�k  U�k [ fig;
13 jU�k j  jU

�
k j þ 1;

14 if m � M or constraint (Ek + dij � D) then
15 P  P [ {j};
16 break;
17 else i  j;
18 j  j + 1;
19 Repeatedly traverse all nodes n;
20 if jUkj � jU�k j then
21 Uk  U�k;
22 N  N − Uk;
23 for l 2 N do
24 Tk  Tk [ P;
25 Optimization of the TSP route, the start and end points are
determined by the set P
26 Fk  Fk + dt_star,l) + dl,t_end)
27 T�k  T�k [ flg;
28 jT�k j  jT

�
k j þ 1;

29 if 1

v1
Ek �

ε
v2

Fk then

30 break;
31 Repeatedly traverse all nodes n;
32 if jTkj � jT�k j then
33 Tk  T�k;
34 N  N–Tk;
35 return Uk, Tk;

4 Designing algorithm

TSP is a classic NP hard problem. The joint delivery model of single UAV and single vehicle

designed in this paper is modified on the basis of Vehicle Routing Problem (VRP), which is

different from the capacitated vehicle routing problem (CVRP) and multi types vehicle routing

problem (MTVRP), it is the joint delivery problem with both characteristics. Because the
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complexity of the problem increases exponentially with the number of nodes, this paper uses

genetic algorithm to solve the joint delivery routing problem. Genetic algorithm is a heuristic

search algorithm based on biological evolution, which can quickly converge to the optimal

solution. By setting different genetic operators, it can effectively solve the problem proposed in

this paper. The genetic algorithm (GA�) pseudo code designed in this paper is shown in Algo-

rithm 2.

4.1 Design of genetic algorithm

(1) Chromosome coding. Using integer permutation coding method, the chromosome

composed of 1 ~ n integer is randomly generated, each integer gene means n customer

demand nodes, and the delivery center is represented by n+1. Each chromosome can be

divided into several different parts, and each part is a set of UAVs and vehicle routes with dif-

ferent distribution times. The sequence of each gene determines the delivery order of the cor-

responding nodes. Starting from the delivery center, each node is added to the delivery route

of UAV and vehicle in sequence. Each node is added to calculate whether it meets the con-

straints. If the constraints are not exceeded, the next node will continue to be added. Until the

constraints are exceeded, the next distribution (another vehicle) will be entered. See Algorithm

1 for the single path allocation process, the total delivery route is obtained by repeatedly allo-

cating k times.

(2) Population initialization and fitness function. After the chromosome coding is com-

pleted, an initial population containing several chromosomes is generated according to the

characteristics of the problems studied. Fitness function is an important index to evaluate the

quality of a chromosome. The larger the fitness value, the more likely it will be inherited to off-

spring. In this paper, the objective is to minimize the total routes distance, and the fitness

value takes the inverse of the objective function, and the calculation is shown in formula (28).

fitness ¼
1

Z
ð28Þ

(3) Selection. According to the fitness value, some individuals were selected from the

original population to the new population with a certain probability. The greater the fitness

value, the greater the probability being selected. In this paper, stochastic universal sampling

(SUS) is used to avoid monopolizing offspring due to the influence of individuals with large fit-

ness value.

(4) Crossover. The crossover operator adopts Partial-Mapped Crossover (PMX). Two

integers in the interval [1, n] are randomly generated to determine the positions of the two

intersecting endpoints. The genes between the two endpoints of the two chromosomes are

exchanged in order. Then the genes that are partially duplicated in the original chromosome

are eliminated. The corresponding relationship between the exchanged parts of the two parent

chromosomes is used to map and complete the chromosomes in turn.

(5) Variation. Exchange-mutation (EM) is used to determine mutation operator. Two

integers in [1, n] interval are generated randomly, and the genes corresponding to two integers

in a chromosome are exchanged.

(6) Reversal of evolution. In order to improve the local search ability of genetic algo-

rithm, several successive reversal operations are used to evolve. Two integers in the interval

[1, n] are randomly generated to reverse the gene at the corresponding position between two

integers in a chromosome. The reversal operator is unidirectional, and only the chromosome

with improved fitness after reversal can be retained, otherwise the reversal is invalid.
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Algorithm 2: GA�()
1 Input: K, U = {U1, U2,� � �,Uk}, T = {T1, T2,� � �,Tk}, population, Maximal

genetic algebra gen_max
2 Output: best_dis
3 Z  0, gen  1, k  1;
4 while gen < gen_max do
5 Traverse sequentially population;
6 for k 2 K do
7 Single path planning();
8 for i, j 2 Uk do
9 Ek  Ek + dij;
10 for i, j 2 Tk do
11 Fk  Fk + dij;
12 Z  Z + Ek + Fk;
13 k  k + 1;
14 fitness  1/Z;
14 best_dis  Z
16 Select: sus();
17 Recombine: pmx();
18 Mutate: em();
19 Reverse();
20 Update population;
21 Terminal optimization();
22 if new_min fitness < min fitness then
23 best_dis  new_Z;
24 gen  gen + 1;
25 return best_dis;

4.2 Route optimization of single distribution

For the problem of single UAV and single vehicle, the objective function is to minimize the

total delivery distance in this paper, the vehicle does not need to wait for the UAV to return in

place, and can optimize the end of part of the joint delivery routes. When the UAV deliver for

one or more nodes, the vehicle only deliver one node (this node is a stop, or include a delivery

center), the two path schemes are shown in Fig 3. In order to minimize the path distance, the

single distribution distance of the UAV is calculated as shown in formula (29), and the single

distribution distance of the vehicle is calculated as shown in formula (30). (Ek Fk)� εEk, the

scheme shown in Fig 3(a) is adopted; (Ek Fk)� εEk, the scheme shown in Fig 3(b) is adopted,

Fig 3. Terminal distribution route scheme.

https://doi.org/10.1371/journal.pone.0265518.g003
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and the pseudo code is shown in algorithm 3.

Ek ¼
X

i 2 ðUk [ PÞ
i 6¼ j

X

j2ðUk[PÞ
xij;kdij 8k 2 K ð29Þ

Fk ¼
X

i 2 ðTk [ PÞ
i 6¼ j

X

j2ðTk[PÞ
εyij;kdij 8k 2 K ð30Þ

Algorithm 3: Terminal optimization();
1 Input: Uk, Tk, Ek, Fk, K
2 Output: Z
3 Z  0, k  1;
4 for k 2 K do
5 if |Uk| � 1 and |Tk| == 1 then
6 if (Ek Fk) > εEk then
7 Ek 0
8 Fk  εEk;
9 Tk  Tk

S
Uk;

10 Uk  ;;
11 Z  Z + Ek + Fk;
12 k  k + 1;
13 return Z;

5 Example analysis

The heuristic algorithm designed in this paper is programmed by MATLAB r2019a and runs

on a computer with Intel(R) core(TM) i7-8550u processor, 8G memory and win10 64 bit oper-

ating system. The genetic algorithm population size is 200, the selection probability is 0.9, the

crossover probability is 0.9, the mutation probability is 0.05, and the maximum genetic algebra

is 300. The parameter settings of the model are shown in Table 1.

5.1 Simulation

Considering the characteristics of mountain cities, according to the data of rc201 in Solomon

case data set, we modified the cargo demand of some customer demand nodes, and added two

nodes beyond the weight limit and two nodes beyond the distance limit, and generated a case

in which there are 30 customer demand nodes. The information of each node is shown in

Table 2. Input the data and run the program.

As shown in Fig 4, the UAV can deliver multiple customer demand nodes at a single time,

and at the same time, the vehicle can also deliver without waiting in place. In addition, those

nodes whose demand exceeds the limit can be used as the parking spots of UAVs, while those

nodes whose distance exceeds the limit can only be delivered by vehicles. The UAV and the

vehicle leave the delivery center respectively, and finally the vehicle carries the UAV and

returns to the delivery center at the same time. Single UAV and single vehicle carry out joint

Table 1. Parameters of the model.

Parameter Value

Maximum payload of UAV 5

Maximum flying distance of UAV 30

Average flying speed of UAV 50

Average speed of the vehicle 50

Road impedance coefficient 1.3

https://doi.org/10.1371/journal.pone.0265518.t001
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delivery, and cooperate to complete the task of all customer demand nodes. As shown in

Table 3, because the customer nodes in mountain cities are scattered and relatively far away,

and the UAV is limited by the maximum flight distance, and a single flight cannot go back and

forth for a long distance, the customer demand nodes of vehicle delivery are more than that of

UAV delivery.

In order to solve such problems, different accurate algorithms and heuristic algorithms

have been designed, but the calculation time of more than 20 nodes is more than 10 minutes

[13, 14]. In order to test the solution efficiency of the algorithm designed in this paper, the

design algorithm (GA�) is compared with the traditional genetic algorithm (GA) and

Table 2. Data of each node.

No. X axis Y axis Demand Tag No. X axis Y axis Demand Tag

1 28 85 2 - 16 24 80 4 -

2 58 85 2 - 17 85 35 3 -

3 40 5 1 - 18 49 42 1.3 -

4 8 45 2 - 19 8 40 4 -

5 55 77 1 - 20 92 68 2 Super far node

6 55 20 1.9 - 21 85 25 1 -

7 5 5 1 Super far node 22 5 35 1 -

8 40 15 20 Overweight node 23 22 75 3 -

9 45 65 0.9 - 24 65 52 1.4 -

10 2 40 2 - 25 20 81 1 -

11 52 81 1 - 26 3 45 1 -

12 20 85 2 - 27 35 5 2 -

13 58 75 20 Overweight node 28 67 85 2 -

14 41 10 3 - 29 49 58 1 -

15 28 80 1 - 30 87 30 1 -

31 40 50 0 Delivery center

https://doi.org/10.1371/journal.pone.0265518.t002

Fig 4. Results of UAV-vehicle joint delivery.

https://doi.org/10.1371/journal.pone.0265518.g004
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simulated annealing algorithm (SA). The programs run 30 times each. The statistical calcula-

tion results are shown in Fig 5.

The three meta-heuristic algorithms can calculate the results within 1 minute, and the result

box is shown in Fig 5. Because the process of decoding and updating the designed solution is

complex, the variation range of the result of GA� solution is greater than GA, but less than SA.

It can be seen that the convergence result of genetic algorithm is obviously better than simu-

lated annealing algorithm in solving this problem. However, with the increase of the number

of nodes, it is easy to fall into local optimization and cannot converge to the optimal value

when solving this kind of problem with simple heuristic algorithm. In the figure, the minimum

Table 3. Case simulation results.

Delivery times UAV Vehicle

Route Distance Route Distance

1 31 = > 18 = > 29 28.04 31 = > 29 12.04

2 - - 29 = > 24 22.21

3 - - 24 = > 20 40.80

4 - - 20 = > 17 43.85

5 17 = > 30 = > 21 10.77 17 = > 21 10.00

6 - - 21 = > 6 39.54

7 - - 6 = > 8 20.55

8 8 = > 14 = > 23 = > 27 15.20 8 = > 27 11.18

9 - - 27 = > 7 39.00

10 - - 7 = > 22 39.00

11 22 = > 10 = > 26 = > 4 15.93 22 = > 19 = > 4 10.83

12 - - 4 = > 23 43.04

13 23 = > 25 = > 12 = > 1 = > 15 23.32 23 = > 16 = > 15 9.39

14 - - 15 = > 11 31.23

15 11 = > 2 = > 28 = > 13 29.66 11 = > 5 = > 13 8.61

16 - - 13 = > 9 21.32

17 - - 9 = > 31 20.55

Number of customer nodes 11 19

https://doi.org/10.1371/journal.pone.0265518.t003

Fig 5. Different algorithm solution results.

https://doi.org/10.1371/journal.pone.0265518.g005
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value and mean value of GA� solution are lower than the other two algorithms. The algorithm

designed in this paper can solve good results in a short time.

5.2 Scene design

In order to verify the effectiveness of the model, three scenarios are designed:

1. Vehicle independent delivery: the classic TSP problem, there is no load and endurance

limit for the vehicle, and considering the impact of impedance, the vehicle starts from the

delivery center, and returns to the delivery center after the delivery has been done to all cus-

tomer demand nodes.

2. UAV and vehicle independent delivery: multi vehicle routing problem with capacity con-

straints (the expansion of PDSTSP problem), vehicle and UAV are responsible for their

own customer nodes, there is no cooperation between vehicle and UAV, single distribution

of UAV needs to return to the delivery center to pick up and replace the power supply.

3. UAV and vehicle joint delivery: the route optimization problem proposed in this paper.

In order to minimize the delivery distance, heuristic algorithm is used to solve the three

models in three scenarios. The data of 30 customer nodes in 5.1 is used, and other parameters

are unchanged. Each model runs 30 times independently. Fig 6 shows the results of each run.

The statistical results are shown in Table 4. The comparison of results in different scenarios is

shown in Fig 6.

As can be seen from Fig 6, the fluctuation of scenario 1 is relatively stable, and the fluctua-

tion amplitude of scenario 2 is the largest. Some special customer demand nodes are allocated

to UAV delivery, which will result in long-distance round-trip of UAV. When the impedance

Fig 6. Running results of each scenario.

https://doi.org/10.1371/journal.pone.0265518.g006

Table 4. Statistical results of each scenario.

Scene Total distance

Max Gap Avg Gap Min Gap

1 572.73 - 539.21 - 530.21 -

2 633.34 10.58% 556.76 3.25% 523.62 -1.24%

3 585.60 2.25% 545.94 1.25% 522.89 -1.38%

https://doi.org/10.1371/journal.pone.0265518.t004
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is small, it will greatly increase the total delivery distance, and the fluctuation amplitude of sce-

nario 3 is relatively stable. In Table 4, the optimal results of scenario 2 and scenario 3 using

UAV delivery are less than those of scenario 1 using vehicle delivery only. The optimal solution

is the UAV vehicle joint delivery of scenario 3, with an optimal value of 522.89, followed by the

minimum result of scenario 2 of 523.62, compared with traditional vehicle delivery, the deliv-

ery distances of the two scenarios decrease by 1.38% and 1.24% respectively. It can be seen that

adding UAV for delivery can reduce the total route distance, but because of the particularity of

UAV, the route problem becomes more complex. In the heuristic algorithm, it is easy to fall

into the local optimum, and resulting in some results obviously inferior to the results using

only vehicle delivery, which can be seen in Fig 6.

When the delivery conditions of all customer nodes cannot not met by UAVs, the joint

delivery problem is the vehicle route problem of single delivery (VRP); When the UAV can

only stop at the delivery center, it becomes the UAV and the vehicle independent delivery

routing problem (PDSTSP). In general, the UAV and vehicle joint delivery designed in this

paper is better than the vehicle delivery and UAV vehicle independent delivery in the distribu-

tion route distance.

5.3 Sensitivity analysis

Due to the influence of the selected parameters on the delivery scheme, the sensitivity of the

five parameters in Table 1 is analyzed for the joint delivery problem of single UAV and single

vehicle in this paper. Similarly, using the node data in Table 2, except for the parameters of

sensitivity analysis, the values of other parameters remain unchanged. Taking the minimum

distance of the route as the goal, the design algorithm is used to solve the problem. Each group

of results runs independently for 20 times, and then the minimum value is taken.

(1) Maximum payload and maximum flight distance of UAV. For its small size and car-

rying power, the UAV can load a very limited amount of goods. In addition, due to the limited

battery power carried, the flight distance of UAV is small [19]. However, in a single distribu-

tion, the full load rate of UAV may be low. In order to improve the utilization efficiency of

UAV, the maximum load capacity and maximum flight distance of UAV are analyzed respec-

tively. The results under each scenario are shown in Figs 7 and 8 respectively.

Fig 7. Results of three scenarios under different loads.

https://doi.org/10.1371/journal.pone.0265518.g007
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As can be seen from Figs 7 and 8, the vehicle delivery in scenario 1 is not affected by the

maximum load and flight distance of UAV and the optimal result remains unchanged. In Fig

7, with the increase of the maximum load capacity of UAV, the number of customer nodes

that UAV can delivery increases, the total route length of scenarios 2 and 3 decreases for the

increase of UAV delivery nodes, however, when the maximum load of UAV increases to a cer-

tain value, affected by the delivery density of surrounding customer demand nodes, all nodes

in the maximum flight distance of UAV may be delivered. Increase the load, scenario 3 can no

longer reduce the total route distance. In scenario 2, due to the increase of surrounding deliv-

ery nodes, the route distance decreases, even less than scenario 3 when the load capacity is 6–8.

In Fig 8, keeping the maximum load of UAV unchanged, the results of scenario 2 change

little with the increase of the maximum flight distance of UAV. Although the number of deliv-

ery nodes of UAV increases, the route distance is unreasonable when point-to-point and long

distance delivery. In scenario 3, the total delivery distance increases sharply after the maximum

flight distance is higher than 40. Due to different degrees of dispersion of customer demand

nodes, when the flight distance of UAV is small and is not enough to delivery customer nodes,

customer nodes are preferentially allocated to UAV to delivery, and the route sum of UAV

and vehicle will be greater than that of vehicle separate delivery, When the maximum flight

distance is increased to serve multiple customer nodes in a single distribution, the joint deliv-

ery of UAV and vehicle can effectively reduce the total delivery route. However, limited by the

maximum load capacity of the UAV, continuing to increase the maximum flight distance will

make the UAV deliver to customer nodes at a long distance, and the round-trip stop will

greatly increase the total route length.

(2) Average flight speed of UAV and average driving speed of vehicle. The vehicle must

arrive at the stop before the UAV arrives. Under the condition of meeting the maximum flight

distance of the UAV, the average flight speed of the UAV and the average driving speed of the

vehicle determine the maximum distribution distance they can travel [24]. Under the different

combination of UAV and vehicle speed, the efficiency of delivery is different. The combination

of UAV and vehicle at different speed ratios is shown in Table 5, and the results are shown in

Fig 8.

As shown in Fig 9, when the speed of UAV is far less than the speed of vehicle, the vehicle

cannot arrive before the UAV arrives at the stop, most customer nodes will be allocated to

Fig 8. Results of the three scenarios under different flight distances.

https://doi.org/10.1371/journal.pone.0265518.g008
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vehicles for delivery, and the UAV can only deliver a very small number of customer demand

nodes. With the increase of UAV flight speed, UAV can deliver more customer demand

nodes. However, due to the limited customer demand nodes, the total route length of joint

delivery is not necessarily less than the total route length of vehicle single delivery. When the

UAV flight speed exceeds the vehicle speed and the UAV can complete the delivery task of

multiple customer demand nodes, the total delivery distance decreases significantly. However,

when the UAV’s flight speed exceeds twice the vehicle’s speed, the total route length will not

be reduced due to the maximum load and flight distance of UAV.

(3) Impedance coefficient. The roads in mountainous cities are circuitous and rugged,

and there are even no roads in some places, which is very inconvenient for vehicles to get in

and out. When vehicles are distributed in different environments, they are vulnerable to road

conditions. The more complex the terrain is, the higher the impedance coefficient is. There-

fore, the delivery route of vehicles needs to be adjusted appropriately, and the route of UAV

will also be affected by the driving route of vehicles.

The delivery route results under different impedance coefficients are shown in Fig 10. The

total delivery distance of the three scenarios increases almost linearly with the increase of

impedance coefficient. Compared with traditional delivery, the biggest advantage of UAV

delivery in delivery distance is that it cannot be limited by terrain. When the road impedance

coefficient exceeds 1.7, scene 2 and scene 3 with UAV delivery are significantly better than

Table 5. Combinations of UAV and vehicles at different speeds.

Average flying speed of the UAV Average speed of the vehicle Speed ratio

40 100 1:2.5

50 100 1:2

50 75 1:1.5

50 50 1:1

75 50 1.5:1

100 50 2:1

100 40 2.5:1

https://doi.org/10.1371/journal.pone.0265518.t005

Fig 9. Results of three scenarios at different speed ratios.

https://doi.org/10.1371/journal.pone.0265518.g009
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scene 1 without UAV delivery. With the increase of impedance coefficient, the advantage of

joint delivery is more obvious.

In general, the joint delivery efficiency of UAV and vehicle is limited by the above parame-

ters. When the number of customers that can be delivered by UAV is sufficient, increasing the

maximum carrying capacity and maximum flight distance of UAV, as well as increasing the

relative speed of UAV and vehicle can effectively reduce the length of the total delivery route.

The number of customer points that can be distributed by UAV in a single time will increase,

and the overall delivery efficiency will increase. However, when it is raised to a certain extent,

the distribution of surrounding customer points will have an impact on the delivery results

UAVs and vehicles may have long-distance round-trip, increasing the delivery distance.

6 Conclusion

Based on the logistics distribution in mountainous cities, this paper considers the delivery

characteristics of UAVs and the impact of terrain environment, and proposes a UAV-vehicle

joint delivery model. Aiming at the problem of single-UAV and single-vehicle joint delivery,

after the UAV is launched from the vehicle, it can deliver multiple customer demand points. A

three-step route distribution method is designed to mark special points, single path planning,

and overall route optimization. In the presence of impedance, with the minimum total delivery

distance as the objective function, the genetic algorithm with end optimization is used to solve

the proposed problem through case simulation. The results show that the proposed joint deliv-

ery model can improve the efficiency of delivery, reduce the length of the total delivery route

and can solve the logistics distribution problems in mountain cities.

In the future, UAV technology will be further improved, the load capacity and flight dis-

tance of UAV will be strengthened, its advantages of low cost and ignoring terrain will be

more prominent, and faster, more energy-saving and efficient logistics distribution will

become a trend. In the next step, we can consider increasing the number of vehicles, expand-

ing the joint delivery to multi UAV and multi vehicle scenarios, and increasing the time win-

dow limit of customer points; More uncertain factors (weather influence, signal interference,

etc.) can also be added to enrich the application scenarios of logistics distribution. After the

UAV related laws and regulations are perfected, it can be expanded to more urban areas for

logistics distribution.

Fig 10. Results under different impedance coefficients.

https://doi.org/10.1371/journal.pone.0265518.g010
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