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introduction
The image formation in CT imaging systems is based on the 
interaction of X-ray photons with different materials.1 On 
the other hand, the contrast mechanism of the CT images is 
based on material attenuation coefficients.2 Although each 
material has a unique attenuation coefficient, sometimes in 
common single-energy CT scans, the constituent materials 
of the object – despite different atomic number and different 
chemical structure – are viewed as the same material.3,4 For 
example, in the angiographic studies, calcium plaques of the 
coronary artery and the iodine contrast agents are viewed 
as the same material.5,6 Because of the problems that arise 
when two or more materials are viewed the same, DECT 
imaging system comes into play.7 In this imaging modality, 

the objects are scanned at two different energy levels.8 Using 
two scans, it is possible to separate different materials from 
each other.9.10.9 In 1976, Macovski and Alvarez stated that 
in medical diagnosis energy range, the attenuation func-
tion of different materials can be written as the weighted 
sum of Compton Scattering effect and Photoelectric effect 
components of the total interactions in the object.11 Prog-
ress in recent years has led to simultaneous scans and 
therefore, the use of DECT imaging systems were possible 
in various medical and industrial applications.12 Luggage 
screening,13 detection of explosives,14 Kidney stone charac-
terization,15,16 oncologic applications17 and Liver fat quan-
tification18,19 are some of the most important applications. 
Different algorithms for material separation task have been 
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Objective: Dual-Energy CT (DECT) is an imaging 
modality in which the objects are scanned by two 
different energy spectra. Using these two measure-
ments, two type of materials can be separated and 
density image pairs can be generated as well. Decom-
posing more than two materials is necessary in both clin-
ical and industrial CT applications.
Methods: In our MMD, barycentric coordinates were 
chosen using an innovative local clustering method. 
Local clustering increases precision in the barycentric 
coordinates assignment by decreasing search domain. 
Therefore the algorithm can be run in parallel. For 
optimizing coordinates selection, a fast bi-directional 
Hausdorff distance measurement is used. To deal with 
the significant obstacle of noise, we used Doubly Local 
Wiener Filter Directional Window (DLWFDW) algorithm.
Results: Briefly, the proposed algorithm separates blood 
and fat ROIs with errors of less than 2 and 9 % respec-
tively on the clinical images. Also, the ability to decom-
pose different materials with different concentrations 
is evaluated employing the phantom data. The highest 
accuracy obtained in separating different materials with 

different concentrations was 93 % (for calcium plaque) 
and 97.1 % (for iodine contrast agent) respectively. The 
obtained results discussed in detail in the following 
results section.
Conclusion: In this study, we propose a new material 
decomposition algorithm. It improves the MMD work 
flow by employing tools which are easy to implement. 
Furthermore, in this study, an effort has been made to 
turn the MMD algorithm into a semi-automatic algorithm 
by employing clustering concept in material coordinate’s 
assignment. The performance of the proposed method 
is comparable to existing methods from qualitative and 
quantitative aspects.
Advances in knowledge: All decomposition methods 
have their own specific problems. Image- domain 
decomposition also has barriers and problems, including 
the need for a predetermined table for the separation 
of different materials with specified coordinates. In the 
present study, it attempts to solve this problem by using 
clustering methods and relying on the intervals between 
different materials in the attenuation domain.
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proposed in the literatures.3,12,20 Each of these methods does the 
task in different way.2,21–23 The important factor that should be 
noticed is that most of the algorithms proposed so far are capable 
of separating two materials, while the applications like Liver fat 
quantification require separating more than two materials.24,25 
Because of this, different methods have been proposed in both 
image and raw-data domains for extending the DECT’s decom-
position capability to more than two materials. Mendonca et 
al proposed one of the most important methods in this field, 
named MMD – Multi Material Decomposition.26 MMD algo-
rithm extends the decomposition process to three materials by 
incorporating mass conservation and volume-preservation at the 
same time. Here, a new version of this algorithm is proposed.

In our presentation, the barycentric coordinates are chosen 
automatically using a local clustering algorithm. This clustering 
method, makes the search space smaller and which leads to a 
faster decomposition. Moreover, the bi-directional Hausdorff 
distance has been utilized for the optimization of the barycentric 
coordinates selection. In addition, since noise is a very important 
factor affecting the performance of all decomposition methods,20 
in this study, the noise reduction step is done using the Doubly 
Local Wiener Filter Directional Window (DLWFDW).27

methods and materials
Mathematically, DECT imaging systems can be thought as a 
system of linear equations. The number of equations are equal 
to the number of materials which we want to decompose.28 As 
stated previously, the attenuation function can be written as 
the weighted sum of the Compton Scattering and Photoelectric 
component of the total interactions in the medical diagnosis 
energy range. We call this method the “Macovski Method”. The 
other way to form the attenuation function is the “Basis Mate-
rial Method”.23,29 In this method, the attenuation function of 
different materials is rewritten as the weighted sum of the atten-
uation coefficient of two arbitrary materials as can be seen in 
equation 1.

	﻿‍ µ
(
E
)
= m1µ1

(
E
)
+m2µ2

(
E
)
‍� (eq.1)

The two arbitrary materials (m1 and m2) are represented in 
the above equation. It can be verified that the accuracy of the 
basis material method is comparable to Macovski method.30,31 
Therefore, the attenuation coefficient for different materials can 
be rewritten using the attenuation coefficients of two arbitrary 
materials with high clinical significance. For instance, the brain 
tissue attenuation coefficient can be rewritten using blood and fat 
attenuation coefficients with proper weights (Here, blood and fat 
are the basis materials).30 Therefore, the decomposition process 
can be done by solving the equations and selecting two arbitrary 
materials as basis materials (these equations are obtained by 
scanning the object at two different energies). The selection of 
basis materials are totally task specific; for example, in,22 atomic 
number and material density were used as basis materials.

But in most of applications, decomposition of more than two 
materials is needed. A good example is liver fat quantification. 
In this task, fat, blood, liver tissue and the contrast agent are four 

materials that should be decomposed.25 For extending decompo-
sition capability of DECT to three materials, one further equation 
should be added to our linear equation system.20,24 Accordingly, 
a lot of methods are devised for this aim, each trying to improve 
the decomposition performance to more than two materials. 
From this point of view, the MMD algorithm proposed by 
Mendonca et al is one of the most important algorithms. In this 
algorithm, the problem of adding one further equation to the 
linear equation system is solved by an assumption that organs 
of the human body can be considered as an ideal-solution. 
With this assumption, a third constraint is added to the DECT 
system of equations by incorporating the mass conservation and 
volume-preservation principles simultaneously. We will discuss 
the MMD algorithm below.26

MMD algorithm
The mass attenuation coefficient of an organ or tissue can be 
written as weighted sum of attenuation coefficients of its constit-
uent materials. It must be noted that the concept of material 
decomposition is equal to calculation of the constituent mate-
rial’s concentration in a given solution. In order to consider the 
mass density, instead of mass attenuation coefficient, the linear 
attenuation coefficient has been used.
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‍� (eq.2)

Where ‍Vi‍ is the volume and ‍αi‍ is the volume fraction of the ith 
component

	﻿‍
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j=1 Vj ‍�
(eq.3)

The matrix form of the above equations is as follows (Ax = B):
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The first term of the above equation, A,is the attenuation coeffi-
cients for materials which needs to be decomposed, the second 
term, x, is the volume fractions of materials, and the term shown 
by B is the pixel data for high and low energy scans. The third 
row of this matrix equation demonstrates the non-negativity 
constraint (‍

∑N
i=1 αi = 1‍) for volume fractions. Therefore, just the 

volume fractions that satisfy this constraint would be accepted as 
true response for the material decomposition process.

The matrix equation is solved for each pixel of the two input 
images (high and low energy scans) simultaneously, then the 
volume fraction of each material in each pixel, is calculated. From 
geometrical point of view, solving the matrix formula in order to 
find the volume fractions can be interpreted as finding the bary-
centric coordinates for a point in the space of linear attenuation 
coefficients. In this interpretation, the volume fraction of each 
component is defined as the triangle’s area fraction formed by 
material attenuation coefficients and inner point (Figure 1). The 
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barycentric coordinates for a point ‘O’ inside the triangle (related 
to an arbitrary pixel in high and low energy images) and the 
area fractions formed inside the triangle area and the respective 
volume fractions can be seen in the Figure 1.

Obviously, it is important for the material decomposition task 
that the matrix of attenuation coefficients (related to the mate-
rials) in (Eq.4) be defined properly.

Proposed MMD algorithm
Local clustering in attenuation domain
As previously mentioned, selection of basis materials plays an 
important role in the material separation process. On the other 
hand, choosing material coordinates manually or via look up 
tables, leads to some biasing errors. Therefore, in this study to 
obtain higher precision and making semi-automatic (or fully- 
automatic) decomposition platform, a local clustering algo-
rithm is utilized.32 By means of this clustering algorithm, search 
domain is decreased and separation process done more accu-
rately. For this purpose, a two-dimensional histogram has been 
created in the linear attenuation domain (Figure 2).

The groups and sub groups in the two-dimensional histogram 
are chosen according to how different human body constituent 

materials behave to X-ray photons in certain energies. Several 
clusters of materials are created in each of these groups, each 
of which consisting of materials with approximately similar 
response to X-ray photons. The Euclidean distance between 
the material point and cluster agent determines whether to put 
the material in a cluster or not.33 So, by calculating the distance 
between each material point in the 2D histogram and each 
cluster agent and checking the satisfaction of the pre-determined 
constraint, all of the data points are clustered. As shown in the 
Figure 2, decomposition is started by selection of a group of the 
pre-determined materials. It should be noted that the proposed 
clustering method is able to update automatically in the situa-
tions where the sub groups do not suffice to find the right cluster 
for each data point; therefore, the sub groups are changed and 
new coordinates are created. The other important option of the 
proposed algorithm is its ability to run in parallel; so in this way, 
several materials can be decomposed at the same time.

Now, the question is: if point O (Figure  1) is not inside the 
triangle, how will the decomposition process continue? In other 
words, so far, the linear equation system for points which lie 
inside the triangle is solved. How can the material decomposi-
tion process continue in such situation that point O is not inside? 
The answer is discussed below.

Optimization of barycentric coordinates
If the point O was not inside the triangle, the selected coordinates 
should be modified in such a way that the given point is placed 
within the new triangle. So the decomposition process continues. 
Obviously, how to change these coordinates and forming new 
triangle is the important question in the decomposition proce-
dure. So, this question needs to be answered properly. In the first 
time of the algorithm running, the cluster agents are chosen as 
the vertices of the triangle. Then if the point O is located outside 
the triangle, the vertices are changed and create a new triangle 
such that the new triangle contains point O. Clearly, the number 
of triangles that can be selected for doing this (containing point 
O) is out of count. The criteria which we consider for selecting 
this new triangle, is the similarity between new triangle and the 
first one. To do this task, the barycentric coordinates should be 
optimized. In this section the bi-directional Hausdorff distance 
measurement method is used to optimize theses coordinates and 
form the most similar triangle. This method enables the algo-
rithm to choose the most proper triplet group of materials (e.g. 
triangles) among all of the groups.

Hausdorff distance measurement
Hausdorff distance measurement is a method for measuring the 
similarity between any two data sets and has found vast applica-
tions in object matching.34 This measure can be calculated either 
one or two-sided. Measuring the similarity between two datasets 
is usually done by calculating the one-sided Hausdorff distance. 
This model leads to feasible solutions where the data points are 
fixed.35

Mathematically:

	﻿‍ dH
(
A,B

)
= mina∈AminbϵB ∥ a− b ∥‍� (eq.5)

Figure 1. Mathematical interpretation of barycentric coordi-
nate concept for point O inside the triangle. The only volume 
fraction coefficients are accepted which satisfy non-nega-
tivity constraint.

Figure 2. Local clustering in attenuation space. The Euclidean 
distance between the material point and cluster agent deter-
mines whether to put the material in a cluster or not.
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In the Hausdorff distance formula, “a” and “b” are two arbi-
trary data points belonging to two arbitrary data sets “A” and 
“B” respectively. The Hausdorff distance is then defined as the 
minimum Euclidean distance between “a” and “b”. However, in 
the decomposition task, these points can be changed from one 
study to another. Roughly speaking, the coordinates (materials) 
which are selected automatically or through look up table, can 
be changed depending on applications and study goals.36 So, in 
this study, the bi-directional (two-sided) Hausdorff distance is 
used instead of one-side. The bi-directional Hausdorff distance is 
characterized by the following formula:

	﻿‍ dH
(
A,B

)
= min

(
dH

(
A,B

)
, dH

(
B,A

))
‍� (eq.6)

This equation is rewritten to deal with our application in equa-
tion 7.

	﻿‍ d = dHausdorff
(
µL,

)
= minm∈ ∨

��m− µL
��∨‍� (eq.7)

In eq.7, ‍µL‍ and ‍m‍ are represent vertices of the new and the first 
triangles. The outline of the Hausdorff distance calculation 
between two arbitrary sets of “A” and “B” is shown in the Table 1.

Image denoising in wavelet domain
Noise in the images comes from different sources, and different 
algorithms have been introduced to eliminate (or reduce) its 

effect. Since in DECT, X-ray sources have broad energy spectra 
which overlap each other, noise becomes a significant factor.37 
In both projection based and image-based approaches, noise is 
a significant obstacle in the material decomposition process.38 
Accordingly, the reconstructed images have low SNR and 
for obtaining good image quality, the patient dose must be 
increased.20 To cope with this problem, in the proposed method 
“Doubly Local Wiener Filter Directional Window” algorithm 
was used. This algorithm is first introduced by Peng-Lang Shui 
in 2005.27 The DLWFDW is the generalized version of the “Local 
Wiener filter” which uses a “Directional Window” for better esti-
mation of the noise.

Proposed algorithm
The following diagram illustrates the proposed 
algorithm(Figure 3).

results
For evaluation of the proposed method, the results are presented 
in phantom and clinical sections. An angiography study is also 
designed and different concentration of contrast agent and 
calcium are decomposed and an image is reconstructed for each 
of the decomposed materials.

the clinical results
The Figure 4 illustrates the 80 and 140 KVP scanned images of 
the abdominal cross-section. The decomposition process is then 
applied on these images. Air, Bone, Fat and Blood – as materials 
of high clinical importance – are chosen as the basis materials. 
The Figure 5 shows the decomposed material. In this figure the 
volume fraction images of air, blood, fat and bone are shown 
respectively. Obviously, the images are of good quality and there 
is good agreement between the reconstructed images and human 
body anatomy.

For performance assessment, several regions of interest (ROIs) 
are selected in each image and in each of them, the ratio of the 
decomposed to the true area is calculated. The following plots 
show the results for blood and fat (Figure 6).

The phantom results: Part 1
In this section, CT quality control phantom is used for studying 
our proposed method’s performance. This phantom which is 
used for quality assurance in CT systems, consists of two sections 
and several materials inserts- e.g. Water, Lexan, Acrylic, Teflon 
and also several air holes in different diameters. This phantom 
was scanned at 80 and 140 KVP. Then we tried to decompose 
different materials. Figure 7- (A, B and C) - shows phantom body 
section with obtained material component images.

As said before, the phantom head section has several pinholes, 
with different diameters that vary from 1 to 3 mm. The head 
section of the phantom is used for evaluation of CT images 
spatial resolution. To evaluate the decomposed image resolution 
as a criterion for the accuracy of the proposed algorithm, it is 
attempted to decompose the air-filled pins in the head section. 
The Figure 7 (E,F) shows the results.

Table 1. The pseudo code of the Hausdorff distance calcula-
tion between two arbitrary sets of “A” and “B”.

Input: Two arbitrary set points A, B
dmax ← 0

E ← A\(A∩B)

Er ← random (E)

Br ← random (B)

for x ϵ Erdo:

dmin ←∞

for y ϵ Br do:

d ← ||x, y||

if d < dmax

break

end

if d < dmin

dmin ← d

end

end

if dmin >dmax

dmax ← dmin

end

end

return dmax

Output: Hausdorff Distance
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The phantom results: Part 2
Application of angiography
In the previous sections, the performance of the proposed 
method in decomposing different materials was evaluated. In 
this section, the performance of the algorithm in decomposing 
different concentration of materials is going to be evaluated. For 
this purpose, we used a phantom which is designed for angio-
graphic studies. The phantom is designed according to the stan-
dards for angiographic and perfusion studies in CT imaging 
systems and is made of Plexiglas with circular cross-section. It 
consists of 12 circular vials (each with 12 mm diameter) and 
each of them contains different material concentration. The 
rest of the phantom is filled with water. In a typical angiography 
study, the contrast agent is injected through the veins in certain 

Figure 3. The diagram of proposed algorithm.

Figure 4. These images show clinical data were taken by GE 
four slice bright speed scanner. (A) 140, (B) 80 KVP.

Figure 5. (A) is air fraction, (B) is blood fraction, (C) is fat frac-
tion, and (D) is bone fraction.
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concentrations. The similar behavior of Calcium plaques in the 
coronary artery and injected iodine contrast agents has made 
them hardly distinguishable. To simulate this experiment, vials 
are filled with certain concentrations of Omnipaque350 contrast 
agent and KOH – according to Gammaex472 standard – and the 
phantom is scanned at 80 and 140 KVP (Figure 8).

Then, the algorithm is applied to the images and different 
concentrations are decomposed. The decomposition results are 
shown in the following figures (Figure 9).

For better evaluation of the proposed algorithm, volume frac-
tions convert into mass fractions and the following graphs will 
obtain (Figure 10)

discussion
In this study, a new version of MMD algorithm based on local 
clustering of Barycentric coordinates was proposed. By means 
of local clustering, the search domain is decreased which enables 
us to select Barycentric coordinates (corresponding to material 
library) automatically. Furthermore, an optimization process 
based on Hausdorff distance measurement was utilized. Haus-
dorff distance methods are a general tool for calculating simi-
larity between any two data sets, especially two images. One-sided 
Hausdorff distance method leads to accurate results when data 
sets are fixed. For choosing the optimum triangle in the Bary-
centric domain, bi-directional Hausdorff measurement was used 
instead of one-sided measurement. The bi-directional Hausdorff 
method is more practical than the one-sided distance measure-
ment, since, based on study goals, the selected coordinates 
can change. Moreover, although available algorithms suppress 
the noise before and after decomposition process, they do not 
fully consider statistical properties. This problem is addressed 
by means of DLWFDW. Then, for performance evaluating, the 
proposed algorithm was applied on clinical images and phantom 
data. The proposed algorithm separates blood and fat ROIs with 
errors of less than 2 and 9% respectively. Also, using phantom, 
the ability to decompose different materials is evaluated and the 
reconstructed images have a resolution of 1 mm. In order to eval-
uate the performance of noise reduction step, by adding certain 
noise values to the images and applying the proposed algorithm 
to them, noise was reduced by 93 and 89% in the phantom body 
and phantom head images respectively.

In addition, we designed an experiment to evaluate the perfor-
mance of the proposed algorithm in separating various concen-
trations of materials. So, various concentrations of the KOH and 
the contrast agent were used based on standards. The lowest 
concentration of KOH and the contrast agent is 5 and 0.5% 
respectively, which is similar to the actual angiographic concen-
trations. Also, the lowest reported accuracy in obtaining mass 
fractions for KOH and contrast agent is 93 and 86%, respectively.

As we stated before, the decomposition process can be done in 
various manners. Some of this methods perform the decomposi-
tion process in projection domain, others in the image domain and 
the third group perform the task using the combined solutions.

Figure 6. True and calculated area corresponding to Blood 
ROIs (A) and Fat ROIs (B).

Figure 7. CT quality control phantom’s body section. This 
section consist of water and Teflon inserts. (A) Original scan, 
(B) Water component and (C) Teflon component. Head 
section of CT QA phantom (E) and decomposed Air fractions 
(F).
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Each of these techniques focuses on separating different mate-
rials based on the study goals and also they use various mate-
rial concentrations, different energy spectra, different detection 
systems and different phantom materials. These factors together, 
make the comparison more challenging. In the following, for 
the general comparison, we listed the recent year’s works and 
pointed out their features(Table 2).

Considering the Table  2, we see high performance of our 
proposed method. The reason for the undesirable performance of 
the proposed algorithm in separating Iodine contrast agent is the 
low concentration of this material which was about 1 mg ml−1. If 

we increase the concentration of the contrast material, the accu-
racy of the proposed algorithm will increase. For example, if the 
concentration of the contrast agent were 5 mg ml−1, the precision 
of the decomposition process will reach 97.1%.

As the special case, we compared our method with the MMD 
algorithm.(Table 3) Maia ​et.​al in39 stated that MMD algorithm 
suffers from a limitation in choosing triangle coordinates. In 
fact, different energy levels lead to numerical errors and thus 
triangle coordinates choose incorrectly. In the other words, 
choosing coordinates manually or via look up tables, leads to 
bias errors. On this basis, in presented work, we proposed a clus-
tering framework for selecting triangle coordinates. Using that, 
choosing coordinates is done automatically. In fact, clustering 
method minimize the search domain and coordinates choose 
in an optimized way. Also we used bi-directional Hausdorff 
distance as optimization step. This concept helps the proposed 

concentrations. The similar behavior of Calcium plaques in the 
coronary artery and injected iodine contrast agents has made 
them hardly distinguishable. To simulate this experiment, vials 
are filled with certain concentrations of Omnipaque350 contrast 
agent and KOH – according to Gammaex472 standard – and the 
phantom is scanned at 80 and 140 KVP (Figure 8).

Then, the algorithm is applied to the images and different 
concentrations are decomposed. The decomposition results are 
shown in the following figures (Figure 9).

For better evaluation of the proposed algorithm, volume frac-
tions convert into mass fractions and the following graphs will 
obtain (Figure 10)

discussion
In this study, a new version of MMD algorithm based on local 
clustering of Barycentric coordinates was proposed. By means 
of local clustering, the search domain is decreased which enables 
us to select Barycentric coordinates (corresponding to material 
library) automatically. Furthermore, an optimization process 
based on Hausdorff distance measurement was utilized. Haus-
dorff distance methods are a general tool for calculating simi-
larity between any two data sets, especially two images. One-sided 
Hausdorff distance method leads to accurate results when data 
sets are fixed. For choosing the optimum triangle in the Bary-
centric domain, bi-directional Hausdorff measurement was used 
instead of one-sided measurement. The bi-directional Hausdorff 
method is more practical than the one-sided distance measure-
ment, since, based on study goals, the selected coordinates 
can change. Moreover, although available algorithms suppress 
the noise before and after decomposition process, they do not 
fully consider statistical properties. This problem is addressed 
by means of DLWFDW. Then, for performance evaluating, the 
proposed algorithm was applied on clinical images and phantom 
data. The proposed algorithm separates blood and fat ROIs with 
errors of less than 2 and 9% respectively. Also, using phantom, 
the ability to decompose different materials is evaluated and the 
reconstructed images have a resolution of 1 mm. In order to eval-
uate the performance of noise reduction step, by adding certain 
noise values to the images and applying the proposed algorithm 
to them, noise was reduced by 93 and 89% in the phantom body 
and phantom head images respectively.

In addition, we designed an experiment to evaluate the perfor-
mance of the proposed algorithm in separating various concen-
trations of materials. So, various concentrations of the KOH and 
the contrast agent were used based on standards. The lowest 
concentration of KOH and the contrast agent is 5 and 0.5% 
respectively, which is similar to the actual angiographic concen-
trations. Also, the lowest reported accuracy in obtaining mass 
fractions for KOH and contrast agent is 93 and 86%, respectively.

As we stated before, the decomposition process can be done in 
various manners. Some of this methods perform the decomposi-
tion process in projection domain, others in the image domain and 
the third group perform the task using the combined solutions.

Figure 8. Concentrations and location of vials in the phantom used for the contrast agent and KOH.

Figure 9. Different concentrations of KOH and the respective 
image for each concentration (A). Different concentrations of 
omnipaque 350 and respective images for each concentra-
tions (B).

Figure 10. The mass fractions calculated by the proposed 
algorithm for different concentrations of Omnipaque 350 (A) 
and KOH (B).
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algorithm to avoid bias errors. As stated, Barycentric coordi-
nates in attenuation domain vary from one task to another. So 
triangles matching is done by means of the Hausdorff concept to 
avoid numerical errors.

Although Mendonca ​et.​al have suggested that the MMD algo-
rithm has a low sensitivity to noise, Niu ​et.​al20 have proven that 
noise has a significant influence on the performance of decompo-
sition methods in both projection and image domain techniques 
and also They noted that to eliminate noise effect and also for 
performing good decomposition and reconstructing high quality 
images, once have to increase patient dose. Therefore, in order to 
enhance the performance of the algorithm, as well as eliminating 
the effects of computational and systematic noise that can disturb 
the separation process, and also to prevent increasing the patient 
dose, the proposed method used a de-noising step by means of 
DLWFDW algorithm.

Considering the fact that the concentration of materials and 
study goals have a significant impact on the accuracy of the algo-
rithms and each technique focuses on the different situations, the 
following table compared the MMD with the proposed method.

Considering all the mentioned methods and their characteris-
tics, the proposed algorithm has a satisfactory performance and 
also it can be improved in future works. On the other hand, it 
improves the MMD workflow and can be more evaluated by 
applying it under different conditions.

Conclusions
We proposed a new version of MMD algorithm which extends 
the capability of material decomposition process. The results 
were discussed both qualitatively and quantitatively.

Table 3. MMD and proposed method comparison

method
Material 
selection

Clustering 
step

Coordinates 
optimization

de-nosing 
step

Decomposition accuracy

Contrast 
free Fat

Contrast 
enhanced Blood

Mendonca 
et al

Manually None Look up tables None 95 % 97% 95% Not 
reported

Proposed Automatically Yes Bi-directional 
Hausdorff 
distance

DLWFDW 
algorithm

93% 91% 97.1% 98%
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