
fgene-11-00989 August 20, 2020 Time: 20:8 # 1

ORIGINAL RESEARCH
published: 21 August 2020

doi: 10.3389/fgene.2020.00989

Edited by:
Yuanwei Zhang,

University of Science and Technology
of China, China

Reviewed by:
Yan Wang,

Jilin University, China
Daniel Guariz Pinheiro,

São Paulo State University, Brazil

*Correspondence:
Ziwei Wang

ziweiwang1@sina.com;
wangziwei571@sina.com

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Computational Genomics,
a section of the journal

Frontiers in Genetics

Received: 28 March 2020
Accepted: 05 August 2020
Published: 21 August 2020

Citation:
Guo X, Wang Y, Zhang H, Qin C,

Cheng A, Liu J, Dai X and Wang Z
(2020) Identification of the Prognostic

Value of Immune-Related Genes
in Esophageal Cancer.
Front. Genet. 11:989.

doi: 10.3389/fgene.2020.00989

Identification of the Prognostic Value
of Immune-Related Genes in
Esophageal Cancer
Xiong Guo1†, Yujun Wang2†, Han Zhang3, Chuan Qin4, Anqi Cheng1, Jianjun Liu1,
Xinglong Dai1 and Ziwei Wang1*

1 Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China,
2 Department of Pathology, Daping Hospital, Army Military Medical University, Chongqing, China, 3 Department of Digestive
Oncology, Three Gorges Hospital, Chongqing University, Chongqing, China, 4 Department of Gastrointestinal Surgery, Three
Gorges Hospital, Chongqing University, Chongqing, China

Esophageal cancer (EC) is a serious malignant tumor, both in terms of mortality and
prognosis, and immune-related genes (IRGs) are key contributors to its development.
In recent years, immunotherapy for tumors has been widely studied, but a practical
prognostic model based on immune-related genes (IRGs) in EC has not been
established and reported. This study aimed to develop an immunogenomic risk score
for predicting survival outcomes among EC patients. In this study, we downloaded the
transcriptome profiling data and matched clinical data of EC patients from The Cancer
Genome Atlas (TCGA) database and found 4,094 differentially expressed genes (DEGs)
between EC and normal esophageal tissue (p < 0.05 and fold change >2). Then, the
intersection of DEGs and the immune genes in the “ImmPort” database resulted in 303
differentially expressed immune-related genes (DEIRGs). Next, through univariate Cox
regression analysis of DEIRGs, we obtained 17 immune genes related to prognosis.
We detected nine optimal survival-associated IRGs (HSPA6, CACYBP, DKK1, EGF,
FGF19, GAST, OSM, ANGPTL3, NR2F2) by using Lasso regression and multivariate
Cox regression analyses. Finally, we used those survival-associated IRGs to construct a
risk model to predict the prognosis of EC patients. This model could accurately predict
overall survival in EC and could be used as a classifier for the evaluation of low-risk
and high-risk groups. In conclusion, we identified a practical and robust nine-gene
prognostic model based on immune gene dataset. These genes may provide valuable
biomarkers and prognostic predictors for EC patients and could be further studied to
help understand the mechanism of EC occurrence and development.

Keywords: esophageal cancer, immune-related gene, TCGA, prognostic model, bioinformatics analysis

INTRODUCTION

Esophageal cancer (EC) is ranked 7th and 6th in incidence and mortality, respectively (Bray et al.,
2018). It is one of the most aggressive types of cancer. Although the addition of neoadjuvant
or perioperative therapy provides a modest improvement in overall survival in resectable cases,
the prognosis of patients with advanced EC is still very poor (Cunningham et al., 2006; Allum
et al., 2009; van Hagen et al., 2012; Noble et al., 2017). Due to recurrence, extensive invasion
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and metastasis, the overall 5-year survival rate of EC is lower than
13% after initial diagnosis (Khalil et al., 2016; Vo et al., 2019).
Hence, identifying biomarkers for the treatment and prognostic
prediction of EC could lead to better interventions for patients
with an otherwise poor prognosis.

Immune disorders in tumor is regarded as a promoting
factor during tumorigenesis and development. In recent years,
immunotherapy has become a promising potential therapy for
various cancers in addition to surgery and radiotherapy (Khalil
et al., 2016; Zhao et al., 2019). EC cells harbor abundant tumor
antigens, including tumor-associated antigens and neoantigens,
which have the ability to initiate dendritic cell-mediated tumor-
killing cytotoxic T lymphocytes in the early stage of cancer
development. As EC cells battle the immune system, they obtain
an ability to suppress antitumor immunity through immune
checkpoints, secreted factors, and negative regulatory immune
cells (Huang and Fu, 2019). Immune checkpoint inhibitors (ICIs)
have been investigated in various types of cancers and provide a
new treatment landscape (Tanaka et al., 2017). ICIs have been
reported to attenuate tumor growth mainly by reducing the
immune escape of cancer cells, and programed death 1 (PDL1) is
one of the immune checkpoints that is the most commonly used
target for immunotherapy in EC (Shaib et al., 2016). However,
at present, EC immunotherapies always lead to mixed results,
which are partially caused by the absence of reliable markers
that are predictive of treatment response (Ohashi et al., 2015).
Molecular profiles of tumor cells and cancer-related cells within
their microenvironments represent promising candidates for
predictive and prognostic biomarkers. Despite vigorous efforts
have been made with major breakthroughs in high-throughput
genomic technologies (Li et al., 2017). Increasing evidence
suggests that the expression of IRGs may be related to the
prognosis of tumors. Qiu et al. (2020) identified and verified of
an individualized prognostic signature of bladder cancer based
on seven immune related genes. Zhang et al. (2020) discovered a
novel immune-related gene signature for risk stratification and
prognosis of survival in lower-grade glioma. And Zhao et al.
(2020) used immune score to predict survival in early-stage lung
adenocarcinoma patients.

Similarly, the prognostic characteristics based on these IRGs
may help in the diagnosis and individualized treatments for EC
(Gentles et al., 2015). However, several studies have reported
the relationship of IRGs with the prognosis of patients with
EC (Turato et al., 2019; Yan et al., 2019). In addition, there is
currently no systematic description or study of IRGs and the
tumor immune microenvironment in large samples of patients
with EC. Therefore, a systematic description and analysis of
the tumor immune microenvironment and IRGs impact on
prognosis is necessary for EC immunotherapy and patient
prognosis. In this study, we analyzed 182 samples of EC in
the TCGA database, and 303 differentially expressed IRGs were
found. Through multivariate Cox regression analysis, we found
9 immune-related prognosis genes. An accurate model for
evaluating the prognosis of patients was established, and we
investigated the clinical utility of this model in patients with EC.
In addition, we calculated the correlation between immune cell
infiltration and risk score in the tumor microenvironment. Our

study identified new biomarkers and prognostic factors for EC,
thus provides some new therapeutic targets in EC.

MATERIALS AND METHODS

Data Acquisition and Processing
The RNA-Seq gene expression profiles of patients with EC,
including the Fragments Per Kilobase of transcript per Million
Mapped reads (FPKM) based on the Illumina (San Diego, CA,
United States) HiSeq 2000 RNA sequencing platform, were
downloaded from the TCGA database using the GDC-client
download tool1 (Cao et al., 2019). The workflow type is HTSeq-
FPKM. Then, the “limma” package of R software was utilized
for the normalization of RNA expression profiles and averaged
the duplicate data to remove the batch effects. Clinical data
for the corresponding EC patients were also retrieved from
the TCGA database, which included gender, age, tumor stage,
and survival information. The patient’s TCGA ID was used
to distinguish between a tumor sample and a normal sample.
The detailed characteristics and histopathological features of
the EC patients and their TCGA IDs are summarized in
Supplementary Table S1.

Immunologically relevant list of genes curated with functions
and Gene Ontology terms (immune-related gene list) were
download from the resources section of the “ImmPort” database2

(Bhattacharya et al., 2018). It contains a total of 2,496 genes
defined as immune-related. Data regarding 318 cancer-associated
transcription factors (TFs) were obtained from the “Cistrome”
project3 (Mei et al., 2017).

Criteria of Enrolled Patients for the
Construction of Risk Signature
The inclusive criteria of patients with EC for model construction
were as follows: (1) patients primarily diagnosed with EC, (2) with
only adenocarcinoma or squamous cell carcinoma as pathological
type, (3) only samples with RNA-sequencing data, (4) patients
with complete clinicopathological parameters, (5) overall survival
time is more than 30 days.

Identification of Differentially Expressed
Genes, Differentially Expressed IRGs
Differentially expressed genes (DEGs) between EC and normal
tissues were identified using Wilcoxon test after within-array
replicate probes were replaced with their average via “limma”
package in the R software (version 3.6.2). | Log2 fold change (FC)|
>2.0 and false discovery rate (FDR) adjusted to less than 0.05
were set as the cutoff criteria. Then, the DEGs were intersected
with the immune-related gene list to obtain the DEIRGs. Those
significant DEGs are visualized using heatmaps and volcano plots
via “pheatmap” package in the R software. In addition, an online
database, GEPIA 2.0 (Tang et al., 2019), was used to analyze

1https://portal.gdc.cancer.gov/
2https://www.immport.org/home
3http://www.cistrome.org/
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differential expression of prognostic genes between 286 GTEx
normal samples and 182 TCGA tumor samples.

Functional Annotations and Signaling
Pathway Enrichment Analysis
“Clusterprofiler” R package (Yu et al., 2012) was used for Gene
Ontology (GO) annotation and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analysis of DEGs and
IRGs. The results of GO annotation and KEGG pathway analyses
were visualized using the “GOplot” package in R platform. Gene
Set Enrichment Analysis (GSEA) software (version 4.0.1) was
used to analyze pathway activation and inhibition in high-risk
and low-risk patients.

Risk Score Calculation and Survival
Analysis
To explore candidate prognostic biomarkers of EC, a joint
cox regression analysis was performed. Firstly, we merged the
expression levels of IRGs with the corresponding survival time
and survival status data of EC patients. Then, a univariate Cox
proportional hazard regression analysis was used to identify the
candidate survival-associated IRGs when p-value < 0.05. Next,
the least absolute shrinkage and selection operator (LASSO) Cox
regression analysis was used to identify the genetic model with the
best prognostic value by using “glmnet” package in R software.
Finally, multivariate Cox regression analysis was employed to
construct the prognosis signature for predicting the prognosis
in EC patients. We calculated the risk score of each patient
using the expression of DEIRGs and the regression coefficients
obtained in the regression model. The coefficient of the gene is
multiplied by the expression of the gene and then summed to
obtain each patient’s risk score. The calculation formula is below
(Wan et al., 2019):

Risk score(patients) =
n∑

i=1

coefficien t (genei) expression

value of (genei) (1)

Here, “genei” is the ith selected gene, and “coefficient
(genei)” is the estimated regression coefficient of genei from the
Cox proportional hazards regression analysis. Time-dependent
receiver operating characteristic (ROC) curves were used to
assess the accuracy of prognostic prediction models. The area
under the ROC curve (AUC) >0.60 was considered an acceptable
prediction, and an AUC >0.75 was recognized as an excellent
predictive value. For survival analysis, patients were divided into
low- and high-risk groups according to the median risk score
calculated by this prognostic model, and then log-rank tests were
used to analyze the survival data.

Construction of Cancer-Associated TFs
and IRG Regulatory Networks
Differentially expressed transcription factors (DETFs) were
derived from the intersection of tumor-associated TFs and DEGs.
DETFs and survival-associated IRGs samples with the same

TCGA patient ID were then used for correlation testing. p < 0.05
and cor ≥ 0.3 were considered significant correlations. Then,
cytoscape software (Shannon et al., 2003) was used to draw the
regulatory network.

Construction of a Predictive Nomogram
Based on the IRGs
A nomogram encompassing the risk score based on expression
of prognostic IRGs and clinicopathological factors was
constructed using the “rms” R package. Based on the different
clinicopathological characteristics and the risk score of each
patient, we calculated the total score to predict 1, 2, and 3-year
prognosis of EC patients.

Clinical Correlation Analysis
Univariate regression analysis and multivariate regression
analysis were used to identify factors (including gender, age,
TNM stage and risk score) affecting survival and independent
prognostic factors in patients with EC. The correlation between
survival-associated IRGs and clinicopathological characteristics
was analyzed in R platform. p < 0.05 was considered to have a
significant correlation.

Relationship Between Risk Score and
Immune Cell Infiltration
The immune cell infiltrate data were collected from Tumor
Immune Estimation Resource (TIMER)4 (Liu et al., 2011)
database. The database includes 10,897 samples across 32 cancer
types from TCGA to estimate the abundance of six subtypes
of tumor-infiltrating immune cells, including B cells, CD8 T
cells, CD4 T cells, dendritic cells (DCs), macrophages, and
neutrophils. Based on the same patient’s ID as TCGA, the
correlation between patient immune infiltrated cells and risk
score was calculated in R software.

Statistical Analyses
All data were processed with R (version 3.6.2) and Perl (5.30.1)
software. DEGs were identified using the Wilcox test. Survival
analyses were performed using the Kaplan-Meier method and
the log-rank test.

RESULTS

Differentially Expressed IRGs in EC
The analysis process for this study is shown in Figure 1. A total of
182 patients were involved in the development and validation of
the prognostic signature, including 95 squamous cell neoplasms,
87 adenomas and adenocarcinomas. Of these, 111 were white
people, 46 were Asian, five were African American, and 20
were unreported. The TCGA IDs for the 182 patients were
presented in Supplementary Table S1. Initially, we downloaded
and normalized the mRNA expression data of 182 patients with
EC from the TCGA database and eliminated partial incomplete

4http://timer.cistrome.org/
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FIGURE 1 | Flowchart of the study. RNA-Seq data and corresponding clinical information of EC cohort were downloaded from the TCGA data portal. After excluding
patients with incomplete clinical data and duplications, the complete data was used for subsequent analysis.

data. Then, we performed a differential expression analysis using
Wilcoxon test with a log2(FC) > 1 and p < 0.05. We found
4,094 DEGs between 10 normal samples and 162 tumor samples
(Figures 2A,B). The DEGs list, including log2FC and the FDR
adjusted p-values of each gene was provided in Supplementary
Table S2. Then, we performed GO and KEGG pathway analysis
for the DEGs and the top 10 GO and KEGG pathway enrichment
terms shown in Figures 2C,D. The KEGG analysis indicated that
the genes were mainly involved in cytokine-cytokine receptor
interaction and cell cycle signaling pathway, which are pivotal
in the regulation of immune responses (Murphy and Murphy,
2010; Zhang J. et al., 2018). Next, we downloaded the list of
IRGs from the “ImmPort” database. These IRGs intersect with
the DEGs, and 303 differentially expressed IRGs were obtained
(Figure 3A), including 56 down-regulated and 247 up-regulated
genes (Figures 3B,C).

Prognostic Immune Signatures in EC
Clinical EC data corresponding to RNA sequencing data were
downloaded from the TCGA database, and data with a survival
time of less than 1 month were excluded. Then, we merged
the survival time and survival status of each patient with gene
expression data. Then, we set filter criteria of p < 0.05 and

used univariate Cox regression analysis. Seventeen (HSPA1A,
HSPA1B, HSPA6, IL1B, FABP3, CST4, CACYBP, CCL3, CCL3L1,
DKK1, EGF, FGF19, GAST, OSM, ANGPTL3, NR2F2, and OXTR)
prognostic immune signatures were obtained (Figure 4).

Establishment and Verification of
Prognostic Model
Through further analysis via Lasso and multivariate Cox
proportional hazards regression analysis, we ultimately obtained
9 optimal prognostic immune genes and incorporated them
into the prognostic risk model: HSPA6, CACYBP, DKK1,
EGF, FGF19, GAST, OSM, ANGPTL3, and NR2F2. All the 9
genes are high-risk genes, as shown in Table 1. We used
gene mRNA levels and risk estimate regression coefficients to
calculate risk score for each patient to explore the significance
of prognostic genes. The calculation formula is described
in the methods. Risk score = (-0.008235 × expression of
HSPA6) + (0.492 × expression of CACYBP)+ (0.014939
× expression ofDKK1)+ (0.29151× expression of EGF)+(0.004
× expression of FGF19) + (0.03515 × expression of GAST)
+ (0.327446 × expression of OSM) + (0.732285 × expression
of ANGPTL3) + (0.018484 × expression of NR2F2). Then,
those prognostic genes were verified between 182 tumor samples
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FIGURE 2 | Expression of genes and function enrichment. Heatmap (A) and volcano plot (B) showing the DEGs between EC and normal esophageal specimen.
Red dots represent up-regulated and green dots represent down-regulated DEGs, black dots represent no difference, respectively (fold change >2, p < 0.05). GO
(C) and KEGG (D) showing the differentially expressed immune-related genes. (C) GO analysis results showing that DEGs were particularly enriched in BP, CC, and
MF. (D) The significantly enriched pathways of the DEGs determined by KEGG analysis. GO, gene ontology; BP, biological process; CC, cell component; MF,
molecular function; KEGG, Kyoto Encyclopedia of Genes and Genomes.

of TCGA database and matched 286 normal samples from
GETx database (Figure 5). Thus, we found HSPA6, CACYBP,
DKK1, GAST, OSM were up-regulated in EC tissues (p < 0.05
and logFC > 1).

Then, patients were divided into a low-risk group and a high-
risk group according to the median risk score. We used the
log-rank test to plot survival curves to evaluate the difference
in OS between the two groups. As shown in Figure 6A, the
prognosis of the low-risk group was significantly better than
that of the high-risk group (p = 1.281e-04). The 1-year survival
rates for the high-risk and low-risk groups were 67% (95% CI:
56.8–79.5%) and 95% (95% CI: 90.14–100%), respectively. The
2-year survival rates for the high-risk and low-risk groups were
38% (95% CI: 25.1–59.9%) and 69% (95% CI: 56.79–84.7%),
respectively. Here, because of the poor prognosis in the high-
risk group, we could not obtain a complete 5-year survival
rate. In order to test the predictive accuracy of the model, we

constructed a ROC curve. The AUC value for the prognostic
model was 0.886, which illustrates the accuracy of the model
(Figure 6B). Then, we ranked patients according to their risk
score and analyzed their distribution using the median risk score
as the cut-off (Figure 6C). It can be seen that after patients were
sorted according to risk score, as the risk score increases, more
and more patients die, i.e., the higher the risk score, the greater
was the number of deaths. Similarly, the higher the risk score,
the shorter the survival time of the patient. The distribution
of survival status, survival time and risk score were shown in
Figure 6D. As the risk score increases, the expression of high-
risk genes also increases, and vice versa. Expression patterns
of risk genes in the low-risk group and high-risk group are
shown in a heat map (Figure 6E). The risk score in the high-risk
group was significantly higher than that in the low risk group
(Figure 6F), and the survival time of patients in the high-risk
group was significantly lower than that in the low risk group
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FIGURE 3 | Differential expression of immune-related genes. (A) The intersection of DEGs and IRGs. Heatmap (B) and volcano plot (C) showing the DEGs between
EC and normal esophageal specimen. Red dots represent up-regulated and green dots represent down-regulated DEGs, black dots represent no difference,
respectively (fold change >2, p < 0.05).

FIGURE 4 | The prognostic value of prognostic associated IRGs in EC. Univariate regression analysis of IRGs related to survival. p < 0.05 indicates a significant
correlation between genes and prognosis, hazard ratio (HR) value >1 means that the gene is a high-risk gene, and HR <1 means a low-risk gene.

(Figure 6G), and the risk score was negatively correlated with the
survival time of patients (Figure 6H). Those results show that the
risk score in the model has an accurate predictive effect on the
prognosis of patients.

Independent Prognostic Value of the
Risk Model
First, we used univariate regression analysis to determine the
correlation between clinical characteristics (age, gender, stage,
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TABLE 1 | Coefficients and multivariable Cox model results for immune related
genes in esophageal cancer.

Gene symbol Coef HR (95%CI) p-value

HSPA6 0.008235 1.008269 (1.001731–014852) 0.013119

CACYBP 0.043103 1.044046 (0.99238–1.098401) 0.095996

DKK1 0.014939 1.015051 (1.004806–1.025401) 0.003942

EGF 0.291513 1.338447 (0.993541–1.803087) 0.055194

FGF19 0.004144 1.004148 (1.000211–1.008102) 0.038915

GAST 0.034152 1.03474 (1.013293–1.05664) 0.001395

OSM 0.327446 1.387419 (1.178695–1.633105) 8.27E-05

ANGPTL3 0.732285 2.079828 (1.319571–3.278099) 0.001607

NR2F2 0.018484 1.018656 (1.00547–1.032014) 0.005427

coef, coefficient; HR, hazard ratio; CI, confidence interval.

and TNM staging) and prognosis. We found that age (p = 0.007),
stage (p < 0.001), M staging (p < 0.001), N staging (p = 0.005)
and risk score (p < 0.001) were significantly correlated with
prognosis (Figure 7A). Then, we used multivariate analysis
to determine the independent prognostic value of the risk
model, and the results showed that age (p = 0.001), stage
(p = 0.021), and risk score (p = 0.005) were independently
associated with prognosis (Figure 7B). These results indicate
that the prognostic risk model can be used to predict the
prognosis of patients with EC accurately and independently.

Subsequently, we used ROC curves to verify the accuracy of
risk score in evaluating prognosis. The fact that the AUC is
0.850 also indicates the exactitude of our model (Figure 7C).
Meanwhile, for better prediction of the prognosis of patients with
EC at 1, 2, and 3 years after diagnosis, we constructed a new
nomogram based on OS-related variables (age, sex, stage, and
risk score). The higher the patient’s total score, the worse is their
prognosis (Figure 7D).

Correlation Between the Prognostic
Factors and Clinicopathologic
Parameters
To confirm our model’s ability to predict EC progression,
we also analyzed the potential relationship between the risk
genes (HSPA6, CACYBP, DKK1, EGF, FGF19, GAST, OSM,
ANGPTL3, and NR2F2), risk score and clinicopathologic
parameters, including patient sex, tumor grade, and TNM
staging. As shown in Figures 8A,B, ANGPTL1 and CACYBP
were significantly overexpressed in female patients. As
the expression of DKK1 increases, the risk of T staging
increases in patients with EC (Figure 8C). However, as FGF19
expression decreased, the risk of distant metastasis decreased
(Figure 8D). High expression of OSM was significantly
correlated with high stage (Figure 8E). These results suggest

FIGURE 5 | Relative expression of prognostic-related IRGs between EC sample in TCGA database (n = 182) and normal esophageal sample form GTEx database
(n = 286). (A) HSPA6, (B) CACYBP, (C) DKK1, (D) EGF, (E) FGF19, (F) GAST, (G) OSM, (H) ANGPTL3, and (I) NR2F2 *p < 0.05.
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FIGURE 6 | The prognostic value of the immune-related risk score. (A) Patients in high-risk group suffered shorter OS. The blue represents the overall survival of
patients in the low-risk group; the red represents the overall survival of patients in the low-risk group. (B) Survival-dependent receiver operating characteristic (ROC)
curve validation of prognostic value of the prognostic index. (C) The risk score distribution. Green dots represent risk score for low-risk patients; red dots represent
risk score for high-risk patients. (D) The relationship between survival status and risk score. The abscissa represents the number of patients, and the ordinate is the
risk score. Red dots represent dead patients, green dots are living patients. (E) Risk gene expression and risk score (abscissa) in EC patients. (F) Risk score in high
and low-risk group. (G) Patient survival time in high and low-risk group. (H) The correlation between survival time and risk score. *p < 0.05, **p < 0.001.

that the development of EC may be related to dysregulated
expression of IRGs.

Immune Cell Infiltration Analysis
To determine whether there is a correlation between risk score
and tumor infiltration with immune cells (CD8+ T cells, CD4+
T cells, B cells, macrophages, neutrophils and dendritic cells),
we conducted a correlation test between immune cell infiltration

and risk score, as shown in Figure 9. The risk score had no
significant correlation with B cells (p = 0.434), CD4+ T cell
(p = 0.666) or CD8+ T cells (p = 0.385) (Figures 9A–C).
However, the risk score positively correlated with the levels
of dendritic cell infiltration (cor = 0.180, p-value = 0.030)
(Figure 9D), macrophage cells (cor = 0.191, p-value = 0.021)
(Figure 9E) and neutrophil cells (cor = 0.394, p-value = 9.348e-
07) (Figure 9F).
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FIGURE 7 | Independent prognostic value of the risk model. (A) Univariate and (B) multivariate regression analysis of clinical characteristics and risk score as
independent prognostic factors. (C) The ROC curve evaluated the accuracy of independent prognostic factors for EC. (D) A nomogram predict the outcome of EC
patients based on their clinical characteristics.

FIGURE 8 | Relationships of the variables in the model with the clinical characteristics of patients. (A) ANGPTL3 expression and gender. (B) CACYBP expression
and gender. (C) DKK1 expression and T staging. (D) FGF19 expression and M stage. (E) OSM expression and pathological stage. The three horizontal lines in each
picture means mean ± SD.
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FIGURE 9 | Analysis of the correlation between the risk score and immune cell infiltration. (A) B cells. (B) CD4+ T cells. (C) CD8+ T cells. (D) Dendritic cells.
(E) Macrophages. (F) Neutrophils. Cor >0.4 and p < 0.05 was used for correlation test.

FIGURE 10 | Prognostic associated IRGs and TFs regulatory network. Heatmap (A) and volcano plot (B) show the differentially expressed transcription factors
between EC and esophageal normal specimen. Red dots represent up-regulated and green dots represent down-regulated DEGs, black dots represent no
difference, respectively. (C) Regulatory network of TFs and prognostic related IRGs; the green nodes represent TFs and the red nodes represent prognostic related
IRGs. Correlation coefficient >0.3 and p < 0.05.

Construction of a Survival-Associated
IRG and TF Regulatory Network
Transcription factors play an important role in the regulation
of genes. To explore possible mechanisms of survival-associated
IRG dysregulation in EC, we analyzed the correlation between
tumor-related transcription factors (TFs) and survival-associated

IRG expression. We screened 60 (FDR < 0.05, log2FC > 2)
TFs that were differentially expressed between EC and normal
tissues from 318 transcription factors in the “Cistrome” database
(Figures 10A,B). Next, we used a p-value < 0.05 and correlation
coefficient >0.3 as the cut-off values to analyze the correlations
between the 60 TFs and survival-associated IRGs. Among the
60 TFs, 27 were significantly associated with survival-associated
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FIGURE 11 | The function enrichment analysis of the IRGs. Differentially expressed IRGs (A) Gene Ontology (GO) analysis, (B) Kyoto Encyclopedia of Genes and
Genomes (KEGG) analysis. (C) The networks between IRGs and top 5 enrichment pathway. (D) GO analysis of Gene Set Enrichment Analysis (GSEA) in high-risk
and low-risk groups, (E) KEGG analysis of GSEA in high-risk and low-risk groups.

IRGs. To better explain the regulatory relationship, Cytoscape
software was used to draw the regulatory network, as shown
in Figure 10C.

Enrichment Analysis of IRGs
To further study the potential function and mechanism
of IRGs, we performed Kyoto Encyclopedia of Genes and
Genomes (KEGG) and Gene Ontology (GO) analysis by using
“clusterprofiler” R packages. The top 10 GO enrichment terms
included biological process (BP), molecular function (MF) and
cell component (CC), as shown in Figure 11A. The KEGG
enrichment analysis results show that it is mainly enriched in
some key immune-related pathways, such as chemokine signaling
pathway, cytokine-cytokine receptor interaction and JAK-STAT
signaling pathways (Figure 11B). Based on the relationship
between IRGs and KEGG pathways, we constructed a network
using Cytoscape to show the genes enriched in the top 5 pathways
(Figure 11C). In addition, we also observed which pathways
were enriched in patients in the high-risk and low-risk groups
by using Gene Set Enrichment Analysis (GSEA) software. The
top five GO terms enriched in the high-risk and low-risk groups
are shown in Figure 11D, and the top 5 pathways enriched in
the high-risk and low-risk groups are shown in Figure 11E. The
results showed that key important pathways, such as the cell cycle,
pyrimidine metabolism and RNA degradation, were significantly
activated in the high-risk group. The GNRH signaling pathway,
viral myocarditis, spliceosome pathway and other pathways were
active in the low-risk group.

DISCUSSION

Esophageal cancer (EC) is a clinically challenging disease that
requires a multidisciplinary approach (Lagergren et al., 2017).
The high fatality rate of EC is a cause of concern around
the world. Despite incremental advances in diagnostics and
therapeutics, EC still carries a poor prognosis, and thus,
there remains a need to elucidate the molecular mechanisms
underlying this disease. Increasing evidence shows that a
comprehensive understanding of EC requires attention not only
to tumor cells but also to the tumor microenvironment (Lin et al.,
2016). Further study on the relationship between immune signals
and EC occurrence and development will help to develop new
and specific targeted therapy strategies, especially in combination
therapy, with great potential (Li et al., 2017).

In this study, we performed a comprehensive analysis of
IRGs and immune infiltrating cells in EC and linked the data
to clinical outcomes and prognosis of patients with EC. First,
we systematically studied the IRGs in EC. We identified 303
differentially expressed IRGs. They are mainly enriched in
the chemokine signaling pathway, cytokine-cytokine receptor
interaction, NF-κB signaling pathway and JAK-STAT signaling
pathway. Recent research reported that tumor cell-secreted IL-6
and IL-8 impair the activity and function of NK cells via STAT3
signaling, and contribute to esophageal squamous cell carcinoma
malignancy (Wu et al., 2019). NF-κB is overexpressed in many
solid and liquids tumors, including both ESCC and EAC (Karin
et al., 2002). Our results are the same as before, and some
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of these pathways play an important role in EC (Izzo
et al., 2006). Zhang B. et al. (2018) reported on IRGs,
specifically that TSPAN15 interacts with BTRC to promote
esophageal squamous cell carcinoma metastasis by activating
NF-κB signaling and indicated that TSPAN15 may serve as a
new biomarker and/or provide a novel therapeutic target for
patients with OSCC. This suggests that IRGs can be used as
prognostic biomarkers. To study the underlying mechanisms
of EC development, we constructed an IRG-TF regulatory
network and found 27 TFs related to prognostic genes; among
them, NR2F2 is both an IRG and TF and is involved in
transcriptional regulation.

It makes sense to stratify patients and find predictive
prognostic markers. Yuting He et al. found that a new model
based on IRGs was effective in predicting prognosis, evaluating
disease state, and identifying treatment options for patients
with hepatocellular carcinoma (He et al., 2020). Therefore, we
used univariate regression analysis to identify IRGs associated
with prognosis and tested the value of these survival-associated
IRGs for the prognostic stratification of patients. We finally
identified the nine best candidate genes (HSPA6, CACYBP,
DKK1, EGF, FGF19, GAST, OSM, ANGPTL3, and NR2F2)
through a combination of Cox regression analyses and Lasso
regression. These genes were used to construct a Cox regression
risk model. This model can predict the outcome of high-
and low-risk groups. The accuracy of the model was tested
by ROC curve analysis. Then, we found that the risk score
could be used as an independent prognostic factor by using
univariate and multivariate regression analysis to determine
the correlation between clinical characteristics, risk score and
prognosis. A nomogram analysis suggested that by combining
the clinical characteristics with the risk score, the 1, 2, and
3-year survival rates for EC can be predicted based on the
patient’s score.

An increasing number of studies about the tumor
microenvironment (TME) have been published in the field
of cancer immunotherapy (Fidler, 2003). For example, it has
been reported in lung cancer (Shi et al., 2020), endometrial
cancer (Chen et al., 2020), cervical squamous cell carcinoma
(Pan et al., 2019) and so on. Tumor escape from antitumor
immunity is essential for tumor survival and progression.
Tumor cells can suppress the antitumor immune response via
recruitment of various immune cell populations or expression
of inhibitory molecular factors. Therefore, we explored the
correlation between risk score and immune infiltrating cells and
found that risk score in the model were not correlated with CD8+
T cells, B cells, or CD4+ T cells but were significantly correlated
with dendritic cells, macrophage cells and neutrophil cells. The
positive correlation between high risk score and immune cells
also confirmed the accuracy of the model.

In conclusion, we constructed a prognostic model of EC
based on IRGs that can accurately predict the prognosis
of patients with EC. Furthermore, this model may help to
identify new therapeutic targets for advanced EC and provide
individualized immunotherapy for patients with EC. Further
study of these survival-associated IRGs may shed light on the
pathogenesis of EC.
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