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Abstract: Autism spectrum disorder (ASD) is a neurodevelopmental disease characterized by ab-
normalities in language and social communication with substantial clinical heterogeneity. Genetic
factors play an important role in ASD with heritability estimated between 70% to 80%. Genome-wide
association studies (GWAS) have identified multiple loci associated with ASD. However, most studies
were performed on European populations and little is known about the genetic architecture of ASD in
Middle Eastern populations. Here, we report the first GWAS of ASD in the Middle eastern population
of Qatar. We analyzed 171 families with ASD, using linear mixed models adjusting for relatedness
and other confounders. Results showed that common single nucleotide polymorphisms (SNP) in
seven loci are associated with ASD (p < 1 × 10−5). Although the identified loci did not reach genome-
wide significance, many of the top associated SNPs are located within or near genes that have been
implicated in ASD or related neurodevelopmental disorders. These include GORASP2, GABBR2,
ANKS6, THSD4, ERCC6L, ARHGEF6, and HDAC8. Additionally, three of the top associated SNPs
were significantly associated with gene expression. We also found evidence of association signals in
two previously reported ASD-susceptibility loci (rs10099100 and rs4299400). Our results warrant
further functional studies and replication to provide further insights into the genetic architecture
of ASD.

Keywords: autism spectrum disorder; neuropsychiatric disorders; genetic; genome-wide associa-
tion; family

1. Introduction

Autism spectrum disorder (ASD) is characterized by aberrations in social interaction
and communication that are associated with repetitive behaviors and interests, with sub-
stantial clinical heterogeneity [1]. The worldwide prevalence of ASD in children has been
estimated to be approximately 1% and is about four times more common in males than
females [2]. Recently, a cross-sectional survey of the Middle Eastern Qatari population
between 2015 and 2018 revealed an ASD prevalence of 1.14% (95% CI: 0.89–1.46) among
children aged between 6 and 11 years old [3]. There are neuropathological changes among
subjects with ASD that usually occur at the early stages of brain development and influence
the functional connectivity and synaptic plasticity, as well as neurotransmission [4–7].
Genetic factors play an important role in the etiology of ASD; twin studies have shown
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that the heritability of ASD ranges from 70% to 80% [8,9]. However, ASD is highly het-
erogenous in terms of clinical presentation, as well as the underlying genetic architecture.
Studies using massively parallel sequencing have identified many rare de novo pathogenic
variants in ASD patients [10–13]. Additionally, copy number variants (CNVs), including
large deletions and duplications, have been detected across the genome in patients with
ASD [14–17]. However, these variants are rare and explain a small proportion of ASD
heritability, suggesting that the majority of the genetic risk of ASD could be attributed to
common genetic variations [18]. Although earlier genome-wide association studies (GWAS)
identified common variants and susceptibility loci, none reached genome-wide signifi-
cance and a few showed consistent association [19–22]. Nonetheless, a recent large scale
GWAS of about 18,000 ASD cases and 28,000 controls identified five ASD-susceptibility
loci with genome-wide significance [23]. Another large-scale meta-analysis of GWAS in
ASD identified a susceptibility locus on chromosome 10q24.32 [24]. However, most GWAS
studies of ASD were performed on European populations [19–26], and a few on Chinese
and Korean [27–29], but none in Middle Eastern populations.

Here, we report the first ASD-related GWAS in the Middle Eastern population of
Qatar using a family-based approach. We identified multiple ASD susceptibility loci
with suggestive evidence of association with ASD, as some were located within or near
genes previously implicated in ASD or related neurodevelopmental disorders. We then
investigated the functional relevance of the identified loci and showed that three loci were
expression quantitative trait loci (eQTL). Additionally, we found evidence of replication
signals in our data for two previously reported loci.

2. Materials and Methods
2.1. Study Subjects

The study cohort is made of 171 nuclear families (trios), each identified through
a proband diagnosed with ASD by either an ADI-R (Autism Diagnostic Interview; re-
vised) [30] or an ADOS (Autism Diagnostic Observation Schedule) [31]. Four families had
additional affected siblings to the proband and forty-four families were missing one parent
(incomplete trio). A signed informed consent was obtained from the participants or their
legally authorized representatives. The probands had a clinical work-up that included an
IQ test and other tests to identify associated comorbid conditions. All affected children
were examined by a clinical geneticist (H E-S) to exclude any dysmorphic features or
congenital anomalies. Due to the nature of the ascertainment source (The Shafallah Center
for Children with Special Needs), all probands had associated intellectual impairment,
and about 25% had epilepsy. The research project was approved by the Qatar Biomedical
Research Institute’s Institutional Review Board (IRB).

2.2. Genotyping

DNA was extracted from whole peripheral blood using the Gentra Puregene kit
(Qiagen Sciences, Germantown, MD, USA) by following the manufacturer’s guidelines.
Genomic DNA quality and quantity were assessed using NanoDrop Spectrophotometer
(ThermoFisher Scientific, UK). SNP genotyping was performed using Illumina Infinium
Bead Chip Human1M-Duov3 (345 samples) or HumanOmniExpress-12v1-1 (150 samples)
(Illumina, San Diego, CA, USA) as per manufacturer’s protocol. The genotyping data and
allele calling were conducted using GenomeStudio 2011.1 from Illumina.

2.3. Genome-Wide Association Analysis

Standardized quality control measures were applied to filter out low quality data
from both SNP and sample levels [32] using PLINK-1.9 [33]. Genotypic data from the
two genotyping arrays were merged and the analysis was focused on SNPs that were
common to the two arrays (n = 545,130). We excluded SNPs with missing call rates > 1%
(n = 15,415), Hardy–Weinberg equilibrium test p-value < 1 × 10–6 (n = 61), and minor allele
frequency (MAF) < 1% (n = 13,334), leaving a total of 516,320 SNPs passing quality filters.
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Furthermore, we removed individuals with missing genotype rate > 5% (n = 1) and those
with excess heterozygosity (n = 1). We then conducted principal components analysis (PCA)
using PLINK-1.9 [33] on a pruned set of independent (r2 < 0.05) common (MAF > 1%) SNPs
(n = 58,052) to define the population background and exclude population outliers; and
excluded six samples because they were population outliers as defined by their PC1 or
PC2 being more than 4 standard deviations away from sample mean values. The final
set of 487 participants were included for downstream association analysis. A genomic
kinship matrix of all individuals was calculated using the GenABEL package (v1.8.0) [34]
implemented in R.3.4.3 [35] to correct for relatedness [34,36]. Association testing was
performed using the linear mixed-effect model (LMM) by including gender and the first
four population principal components as covariates using the GenABEL package [34], as
described previously [37–39]. For the X chromosome, loci were coded as (0, 2) for males
and (0, 1, 2) for females; the association analysis was performed separately in males and
females, and association results were combined using meta-analysis as implemented in the
GenABEL package. The pseudoautosomal regions of the X chromosome were not included
in the analysis. Furthermore, to assess the relevance of the identified loci to ASD and
related phenotypes, we used FUMA [40], PhenoScanner-v2 [41], GWAS catalog [42], and
PubMed literature searches. LocusZoom was used to generate regional association plots for
the identified loci [43]. The threshold for genome-wide significance was p < 5 × 10−8, and
the threshold for suggestive evidence of association was p < 1 × 10−5. We then assessed
loci reported in previous GWAS of ASD for replication in our dataset. First, we assessed
SNPs with robust genome-wide significant association with ASD from previous studies
(p < 5 × 10−8) [23], [24]. For SNPs that were not genotyped in our dataset, we searched
for close proxies (within 100 kb) in linkage disequilibrium (LD) with the lead SNP based
on LD data of European population form 1000 Genomes. Proxies were then assessed
for evidence of replication in our dataset. We also assessed SNPs associated with ASD
(p < 1 × 10−5) from the GWAS catalog [42] for replication in our dataset using “autism” or
“autism spectrum disorder” as phenotypes. The binomial sign test was performed using
GraphPad software (GraphPad, San Diego, CA, USA).

2.4. Polygenic Risk Score Analysis

Polygenic risk scores (PRS) were calculated using the “score” function in PLINK and
were weighted by the estimated effect size of risk alleles. We assessed the performance of
European-derived PRS in our cohort by calculating PRS based on loci reported by Grove
et al. [23] with p < 1 × 10−6.

2.5. Expression Quantitative Trait Locus (eQTL) Analysis

The effect of associated SNPs on gene expression (eQTL) was assessed using the
Genotype-Tissue Expression (GTEx) online database (https://gtexportal.org/home/, ac-
cessed on 14 April 2021). The SNP “rs” identifier was used as a search term and eQTL plots
were generated for the tissue with the highest statistical significance.

3. Results
3.1. Characterstics of Study Subjects

The majority of study subjects were ASD simplex families with one child with ASD and
the parents. Four families had more than one affected child. The average age (± standard
deviation) of ASD patients was 8.4 ± 4.3 years. The ratio of male to female children with
ASD was 4.6:1. The average age of the parents was 42.1 ± 8.2 years. Supplementary Table
S1 shows the family structure of the study subjects. The principal component analysis
showed that the majority of study subjects was located within one population cluster. We
identified six subjects as population outliers, which were removed before the association
analysis (Figure 1).

https://gtexportal.org/home/
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Figure 1. Population background. The first population principal component (PC1) is drawn against
the second component (PC2) for study subjects (blue) as well as the three HapMap reference samples
including European (CEU), East Asian (CHB) and African (YRI) populations. Population outliers
were defined as samples deviating more than 4 standard deviation units from the mean population
cluster and are shown in red color.

3.2. Genome-Wide Association Analysis of ASD

We used the linear mixed model to investigate the association between SNP genotypes
and ASD. We included gender and the first four population PCs in the model to account for
any subpopulation stratification, and the genomic kinship matrix to account for relatedness.
The association testing results are summarized in the Manhattan plot (Figure 2a), which
shows the top signals associated with ASD. The association testing results showed no
evidence of inflation (lambda = 0.9997), as shown in Figure 2b.
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Figure 2. Manhattan and quantile-quantile plots. (a) Manhattan plot of association test results showing the chromosomal
position of 516,320 analyzed SNPs plotted against −log (p). The blue horizontal line represents the threshold for suggestive
evidence of association (p < 1 × 10−5). (b) Quantile-quantile plot showing the expected versus observed −log (p) values.
The genomic inflation factor (λ) is shown at the top left corner.

Seven loci showed suggestive evidence of association (p < 1 × 10−5) with ASD
(Table 1). The first locus is on chromosome 2q31.1 (rs16823191, p = 3.8 × 10−6). The
associated region spans about 450 kb and contains two genes: TLK1 and GORASP2 (Supple-
mentary Figure S1a). Interestingly, variants within GORASP2 are associated with cognitive
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performance in the GWAS catalog and PhenoScanner [44]. The second locus is located on
chromosome 4q32.1 and tagged by rs13103662 (p = 4.98 × 10−6). The associated region
spans about 300 kb, and is bound by two strong recombination hotspots, but does not con-
tain mapped genes (Supplementary Figure S1b). The third locus is located on chromosome
9q22.33 and tagged by rs2295926; this locus shows suggestive evidence of association with
ASD (p = 2.57 × 10−6; Supplementary Figure S2a). This region harbors three protein coding
genes: GABBR2, ANKS6, and GALNT12. The fourth locus is on chromosome 15q23 with
rs11072298 (p = 6.58 × 10−6), located within THSD4 (Supplementary Figure S2b), in which
a deleterious de novo mutation (p.P839L) is reported in ASD [11].

Table 1. Summary of SNPs suggestively associated with ASD.

SNP Chr Position A1 A2 A1 Freq (%) p OR 95% CI Genes

rs16823191 2 171,930,818 G A 6.0 3.8 × 10−6 1.22 1.09–1.36 TLK1,
GORASP2

rs13103662 4 157,249,803 A G 18.0 5.0 × 10−6 0.89 0.83–0.95 —

rs2295926 9 101,593,825 G A 29.5 2.6 × 10−6 0.90 0.84–0.95
GABBR2,
ANKS6,

GALNT12
rs11072298 15 71,854,982 A C 18.2 6.6 × 10−6 0.89 0.83–0.95 THSD4

rs2368671 X 71,523,650 T C 8.1 6.4 × 10−6 1.15 1.06–1.24

PIN4,
ERCC6L,
RPS4X,
CITED1,
HDAC8

rs2186039 X 125,384,433 C A 41.2 2.5 × 10−6 1.08 1.04–1.13 DCAF12L2
rs12557857 X 135,868,083 G T 2.2 3.5 × 10−6 1.29 1.12–1.48 ARHGEF6

Chr, chromosome; Freq, frequency; OR, odds ratio for allele A1; CI, confidence interval. Positions are in reference to human genome build
GRCh37.

The three remaining loci are located on chromosome X. The first is tagged by rs2368671
(p = 6.38 × 10−6) on Xq13.1 and located within CITED1 (Supplementary Figure S3a), but
this region contains other protein coding genes such as PIN4, ERCC6L, RPS4X, and HDAC8.
The second is on Xq25 tagged by rs2186039 (p = 2.55 × 10−6), which is located close to
DCAF12L2 (Supplementary Figure S3b). DCAF12L2 is located in a region with several
reported deletions and duplications in patients with intellectual disability (ID), global
developmental delay (GDD), and delayed speech and language development, as well as
seizures [45]. The third is on Xq26.3, and spans about 350 kb (Supplementary Figure S4).
The observed signal is tagged by rs12557857 (p = 3.52 × 10−6), and located within ARHGEF6,
a gene implicated in syndromic and non-syndromic X-linked intellectual disability [46,47].

We then assessed the predictive performance of PRS derived from European popu-
lations in our cohort by calculating PRS based on loci reported by Grove et al. [23] with
p < 1 × 10−6. Of the 466 SNPs reported by Grove et al., 24 were genotyped in our dataset
and were used to calculate PRS. Results showed that European-derived PRS were not
significantly associated with ASD in our cohort (OR = 1.03, 95% CI 0.96–1.11; p = 0.41),
although subject with ASD had slightly higher PRS (21.0) compared to controls (20.8), but
this was not statistically significant (p = 0.41; Figure 3).
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Figure 3. Analysis of polygenic risk scores (PRS). Assessment of PRS defined by SNPs with
p < 1 × 10−6 reported by Grove el al. (iPSYCH) [23] in our cohort. Values are presented as box
and whiskers plots showing the interquartile range (boxes), median (horizontal line), the minimum
and maximum values (whiskers).

Since none of the suggestively associated SNPs are coding variants, we investi-
gated their functional significance as eQTL using the Genotype-Tissue Expression (GTEx)
database. We found that three of the seven top associated SNPs are significant eQTL in
multiple tissues (Supplementary Figures S5–S7). eQTL plots from the tissue with highest
statistical significance are shown in Figure 4. The risk allele “T” of rs2368671 is associated
with reduced PIN4 gene expression in multiple tissues (Supplementary Figure S5). Simi-
larly, the rs2186039 allele “C” conferring risk of ASD is associated with reduced DCAF12L2
gene expression (Figure 4 and Supplementary Figure S6) and rs12557857 genotypes are
associated with ARHGEF6 gene expression (Figure 4 and Supplementary Figure S7).

Genes 2021, 12, x FOR PEER REVIEW 6 of 13 
 

 

the rs2186039 allele “C” conferring risk of ASD is associated with reduced DCAF12L2 gene 

expression (Figure 4 and supplementary Figure S6) and rs12557857 genotypes are associ-

ated with ARHGEF6 gene expression (Figure 4 and Supplementary Figure S7). 

 

Figure 3. Analysis of polygenic risk scores (PRS). Assessment of PRS defined by SNPs with p < 1 × 

10−6 reported by Grove el al. (iPSYCH) [23] in our cohort. Values are presented as box and whisk-

ers plots showing the interquartile range (boxes), median (horizontal line), the minimum and max-

imum values (whiskers). 

 

Figure 4. Gene expression in relation to genotypes of ASD-associated SNPs. Bean plots of normalized gene expression in 

relation to genotypes showing the median (white line) and interquartile range (black box). Data and plots were adapted 

from the GTEx database [48]. 

3.3. Replication of Loci Reported in Previous GWAS of ASD 

We investigated SNPs previously reported in GWAS of ASD in our sample, focusing 

on variants with genome-wide significant association first. Previous large scale GWAS 

studies identified six SNPs with robust genome-wide significant association with ASD (p 

< 5 × 10−8) [23,24]. These include: rs201910565, rs111931861, rs10099100, rs1409313, 

rs71190156, and rs910805. Only one SNP (rs910805) was genotyped in our dataset, but this 

showed no significant association with ASD (p > 0.05). However, we found evidence of 

association in our dataset (p < 0.05) for multiple SNPs located close to, and in linkage dis-

equilibrium (LD) with, two previously reported SNPs. For example, we found five SNPs 

in our dataset that were located within about 50 kb of rs10099100, showed evidence of 

Control ASD

0

10

20

30

40

P
o

ly
g

e
n

ic
 R

is
k
 S

c
o

re

iP
S

Y
C

H

P=0.41

Figure 4. Gene expression in relation to genotypes of ASD-associated SNPs. Bean plots of normalized gene expression in
relation to genotypes showing the median (white line) and interquartile range (black box). Data and plots were adapted
from the GTEx database [48].

3.3. Replication of Loci Reported in Previous GWAS of ASD

We investigated SNPs previously reported in GWAS of ASD in our sample, focusing
on variants with genome-wide significant association first. Previous large scale GWAS
studies identified six SNPs with robust genome-wide significant association with ASD
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(p < 5 × 10−8) [23,24]. These include: rs201910565, rs111931861, rs10099100, rs1409313,
rs71190156, and rs910805. Only one SNP (rs910805) was genotyped in our dataset, but
this showed no significant association with ASD (p > 0.05). However, we found evidence
of association in our dataset (p < 0.05) for multiple SNPs located close to, and in linkage
disequilibrium (LD) with, two previously reported SNPs. For example, we found five SNPs
in our dataset that were located within about 50 kb of rs10099100, showed evidence of
association with ASD (p < 0.05), and were in LD with rs10099100 (Supplementary Table S2).
Additionally, an SNP (rs4299400) in our dataset located within 85 kb of rs71190156 showed
evidence of association with ASD (p = 0.03), and was in LD with rs71190156 (D’ = 0.55). We
then assessed SNPs associated with ASD (p < 1 × 10−5; n = 66) from the GWAS catalog [42]
for replication in our dataset. Of the 66 SNPs from the GWAS catalog, 29 were genotyped
in our dataset, but none showed significant association with ASD (p > 0.05; Supplementary
Table S3). Comparison of the direction of effect was possible for 12 SNPs and showed a
concordance rate of 58.3% (sign test p-value = 0.39).

4. Discussion

We performed a family-based, genome-wide association analysis of ASD using a co-
hort from the Middle East and identified seven loci with suggestive evidence for association
with autism. The locus on 2q31.1 harbors two genes: TLK1 and GORASP2. TLK1 belongs to
a well-conserved Tousled-like kinases (TLKs) that are involved in various cellular functions
including DNA replication and repair, chromatin structure, and regulation of cell cycle.
Interestingly, SNPs in TLK1 have been associated with mathematical ability in GWAS
studies [49], whereas pathogenic mutations in TLK2, a paralog of TLK1, have been reported
in patients with ASD, intellectual disability (ID), schizophrenia, and microcephaly [50–53].
GORASP2 encodes a member of the Golgi reassembly stacking protein that plays a role
in Golgi ribbon formation. A de novo missense mutation in GORASP2 has been reported
in an ASD patient [54], and SNPs within this gene have been associated with cognitive
performance in GWAS studies [44]. Furthermore, the 2q31.1 region has been linked to ASD
and related pervasive developmental disorders in genome-wide linkage studies [55,56].

The locus on 9q22.33 harbors three genes, GABBR2, ANKS6, and GALNT12. GABBR2
encodes gamma-aminobutyric acid type B receptor subunit 2, a protein that belongs
to the G-protein coupled receptor and GABA-B receptor superfamily. This gene has
been implicated in many neurodevelopmental and neuropsychiatric disorders [57,58]. In
addition, several pathogenic variants in GABBR2 have been reported in patients with early
infantile epileptic encephalopathy [59], Rett syndrome-like disorders [60,61] and ASD [62].
On the other hand, ANKS6 encodes a protein that contains multiple ankyrin repeats with
possible role in renal and cardiovascular development. Studies have reported on two de
novo variants in individuals with ASD from the Simons Simplex Collection [63]; one was
intronic [64], and the other was a deleterious missense variant (p.R467Q) [11].

THSD4 is the only gene located within the 15q23 locus and has been associated, along
with a combined set of genes, with “social skills” quantitative trait association analyses
conducted in twins [65]. Additionally, a missense de novo variant (p.P839L) in THSD4 has
been reported in an ASD patient from the Simons Simplex Collection [63].

Two genes located within the locus on Xq13.1 have relevance to ASD. Missense
de novo variants in ERCC6L have been reported in patients with ASD (p.Q932H) [54]
and developmental disorders (p.M358T) [66]. The other is HDAC8, which is associated
with Cornelia de Lange syndrome (CDLS5), a developmental disorder characterized by
short stature and intellectual disability with variable clinical presentations [67]. Multiple
missense de novo and pathogenic variants have been reported in HDAC8 in patients
with developmental disorders including those with intellectual disability [66]. There is a
consensus among researchers that 20–49% of individuals with HDAC8 pathogenic variants
present with ASD [68]. A study reported a stop gain de novo pathogenic variant (p.Y174Ter)
in a child with ID [69].
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The DCAF12L2 gene is located within the locus on Xq25. Large CNVs spanning this
region have been reported in patients with developmental delay, intellectual disability, and
ASD [70]. The locus on Xq26.3 harbors many genes, but the strongest association signal
was located within ARHGEF6. This region is linked to X-linked mental retardation [62].
Moreover, mutations in ARHGEF6 have been reported in patients with X-linked mental
retardation [47] and in multiple families with ASD [11,12,71,72].

Although the association signals did not reach genome-wide significance (p < 5 × 10−8)
in our study, many were located within genes that have been implicated in ASD or related
neurodevelopmental disorders.

Moreover, three of the top associated SNPs were significantly associated with gene
expression suggesting a regulatory function. We also found evidence of association signals
in two previously reported, genome-wide significant, ASD susceptibility loci (rs10099100
and rs4299400) suggesting common genetic architecture across populations for these two
loci. However, we found no evidence of replication in our dataset for SNPs previously
associated with ASD at p < 1 × 10−5 from the GWAS catalog. This is consistent with a
previous meta-analysis of 14 ASD cohorts (totaling 7387 ASD subject and 8567 control) [24],
which did not identify any genome-wide significant locus, and few signals were consistent
among the 14 different studies. We found that European-derived PRS were not significantly
associated with ASD in our cohort. Despite being consistent with previous reports that
showed PRS derived from European populations have lower predictive performance when
applied to middle eastern populations [37], proper evaluation of PRS requires further
studies with larger sample sizes and higher number of SNPs. In our study, we were only
able to evaluate 24 out of the 466 SNPs reported by Grove et al. [23].

A limitation of this study is the small sample size. However, the family-based approach
utilized in this study is less likely to be influenced by population stratifications compared
to population-based case-control designs. Another limitation of this study is the lack
of genotype imputation, but this was not performed due to the absence of appropriate
reference haplotype panels for the Middle Eastern population to allow accurate imputation
of genotypes. Our data warrant further functional studies and replication to confirm their
association with ASD and provide further insights into the genetic architecture of ASD.

5. Conclusions

This study has identified suggestive evidence of association between ASD and com-
mon SNPs in several genes and loci that are suspected of playing a role in ASD or related
neurodevelopmental disorders. Our results are consistent with previous studies which
showed that common genetic variations in multiple loci contribute to ASD-susceptibility
and that the genetic architecture of ASD is complex and shared with other neurodevelop-
mental disorders. This study has provided new insights into the genetic architecture of
ASD in the Middle East.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/genes12050761/s1, Supplementary Table S1: Family structure of the study subjects, Sup-
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Regional association plot for chr 2q31.1 (a) and 4q32.1 (b) regions, Supplementary Figure S2: Regional
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