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Abstract Ciliopathies comprise a group of disorders
associated with genetic mutations encoding defective
proteins, which result in either abnormal formation or
function of cilia. As cilia are a component of almost all
vertebrate cells, cilia dysfunction can manifest as a
constellation of features that include characteristically,
retinal degeneration, renal disease and cerebral anomalies.
Additional manifestations include congenital fibrocystic
diseases of the liver, diabetes, obesity and skeletal
dysplasias. Ciliopathic features have been associated with
mutations in over 40 genes to date. However, with over
1,000 polypeptides currently identified within the ciliary
proteome, several other disorders associated with this
constellation of clinical features will likely be ascribed to
mutations in other ciliary genes. The mechanisms underly-
ing many of the disease phenotypes associated with ciliary
dysfunction have yet to be fully elucidated. Several elegant
studies have crucially demonstrated the dynamic ciliary
localisation of components of the Hedgehog and Wnt
signalling pathways during signal transduction. Given the
critical role of the cilium in transducing “outside-in”
signals, it is not surprising therefore, that the disease
phenotypes consequent to ciliary dysfunction are a mani-

festation of aberrant signal transduction. Further investiga-
tion is now needed to explore the developmental and
physiological roles of aberrant signal transduction in the
manifestation of ciliopathy phenotypes. Utilisation of
conditional and inducible murine models to delete or
overexpress individual ciliary genes in a spatiotemporal
and organ/cell-specific manner should help clarify some of
the functional roles of ciliary proteins in the manifestation
of phenotypic features.
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Introduction

Ciliopathies comprise a group of disorders associated with
genetic mutations encoding defective proteins, which result
in abnormal formation or function of cilia. As cilia are a
component of almost all cells, ciliary dysfunction can
manifest as a constellation of features that include primarily
retinal degeneration, renal disease and cerebral anomalies.
The notion of a “ciliopathic” disorder was first attributed to
Bardet–Biedl syndrome (BBS), when Ansley and col-
leagues identified genetic mutations in BBS8 whereby the
encoded protein was noted to have a pilF domain,
suggesting a conserved role for BBS8 in prokaryotic pilus
formation [1]. Intriguingly, the phenotypic consequences in
one family with a homozygous null mutation in BBS8
included situs inversus, a known defect of the embryonic
nodal cilium [1]. Subsequent immunohistochemical analy-
sis confirmed the localisation of BBS8 to centrosomes and
basal bodies within human embryonic kidney cells
(HEK293) in addition to spermatids, the connecting cilium
of the retina and the ciliated columnar epithelial cells of the
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lung [1]. Further supporting evidence for a role in cilia
function came from the elegant demonstration that other
BBS orthologues in Caenorhabditis elegans, bbs1, bbs2
and bbs7, all localised to the nematode ciliated sensory
neurons where osm-5, the orthologue of the mouse
polycystic kidney disease gene, polaris, was also previous-
ly localised. Thereafter, the innovative utilisation of
comparative genomic studies whereby the proteome of the
non-flagellated organism, Arabidopsis, was subtracted from
the shared proteome of the ciliated/flagellated organisms,
Chlamydomonas and human, led to the discovery of
mutations in another gene, BBS5, in patients with BBS
[2]. Following development of the original ciliary proteome
database, subsequent integration of ciliary proteomes from a
range of different organisms have contributed to the current
ciliary proteome database (http://www.ciliaproteome.org) [3].
The ciliary proteome database was employed by Beales and
colleagues to identify mutations in IFT80, which encodes an
intraflagellar transport protein in a subset of patients with
Jeune asphyxiating thoracic dystrophy (JATD), following the
observation that patients with JATD exhibited typical
ciliopathy features of retinal degeneration, renal disease and
skeletal dysplasia [4].

In the ensuing text, we will provide an overview of the
structure and function of cilia, which will provide a basis
for the subsequent clinical description of a range of
ciliopathic disorders. We will also highlight how ciliopa-
thies can be phenotypically heterogeneous from variation at
a single locus while mutations affecting a number of
different loci can at the same time result in similar
phenotypes. Thereafter, a brief description will follow on
the role of ciliary dysfunction in certain phenotypic features
that include renal abnormalities, liver disease, retinal
degeneration and skeletal dysplasias.

Overview of ciliary biology

As many as 1,000 different polypeptides are recognised
within the current ciliary proteome, highlighting the
structural complexity of this highly conserved organelle.
Projecting from the cell surface, cilia are microtubule-
based, hair-like cytoplasmic extensions with motile and a
range of sensory functions, which are critical for develop-
mental and physiological functions [5]. Comprising the
microtubular backbone, the ciliary axoneme develops from
and is anchored to a specialised centriole called the basal
body, which acts as a microtubule organising centre
(MTOC) for its ciliary counterpart (Fig. 1). The ciliary
axoneme consists of nine doublet microtubules that
originate at the triplet microtubules of the basal body
centriole and extend the length of the cilium. Cilia fall into
two broad categories: motile and immotile. Primary cilia are

typically immotile and consist of nine peripheral doublet
microtubules, while motile cilia in addition contain a
central pair of singlet microtubules (“9+2” arrangement)
to which they are connected by the radial spoke proteins
(Fig. 1c). Immotile cilia are characterised by the absence of
the central pair of singlet microtubules (“9+0” arrange-
ment; Fig. 1c) [6]. Motile cilia are distinguished from
primary cilia by their ability to beat rhythmically, an
activity that is powered by adenosine triphosphate (ATP),
hydrolysed by dynein proteins, which are anchored to the
inner and outer aspects of peripheral doublet micro-
tubules [7]. Motile cilia are utilised in both unicellular and
multicellular organisms for locomotion. Defective motile
cilia can result in primary ciliary dyskinesias, which
comprise a heterogeneous group of disorders characterised
by bronchiecstasis, left–right asymmetry and infertility.
Primary cilia have chemosensory, osmosensory and photo-
transduction functions, and will be discussed in more
detail later in this review.

Ciliary assembly

Cilia arise from basal bodies, which are formed from
centrioles, complex microtubule-based structures located
within the cytoplasm (Fig. 1b) [8]. Acting as an intracel-
lular scaffold, the microtubules at the pericentriolar material
(PCM) direct the trafficking of vesicles and organelles.
Delivery of ciliary cargo occurs in a sequential manner,
which involves sorting and packaging into carrier vesicles,
docking and fusion of vesicles with the base of the cilium
and assembly of cilia from the ciliary base to the tip
(Fig. 2). Ciliary targeting and assembly is mediated by
several multiprotein complexes that include intraflagellar
transport (IFT) proteins and the BBSome, a stable complex
of at least eight BBS proteins (BBS 1, 2, 4, 5, 7, 8, 9 and
BBIP10), which are modulated by members of the Arf and
Rab family of proteins [9]. From the ciliary base, cilia are
assembled by IFT, which utilises two microtubule-
associated motor proteins called kinesins and dyneins.
Structural axonemal components and membrane receptors
are transported in an anterograde manner along the ciliary
axoneme by kinesin-II. Retrograde transport of recycled
proteins down along the axoneme towards the basal body is
undertaken by the cytoplasmic dynein motor proteins [10].
Kinesin-II is a heterotrimeric complex comprised of two
motor subunits known as KIF3A and KIF3B in addition to
a non-motor subunit known as kinesin-associated protein
(KAP). IFT particles are composed of two protein com-
plexes, IFTA with 6 protein subunits and IFTB with 13
protein subunits (Fig. 3) [11]. Disruption of either the IFT
motors or the basal body proteins essential for their
function leads to impaired cilia assembly [12, 13].
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Signal transduction at the cilium

Hedgehog signalling

The Hedgehog signalling pathway is a highly conserved
and ubiquitous signalling pathway that plays a key role in
several developmental contexts regulating a variety of
cellular processes that include both cell fate specification
and cell proliferation. Hedgehog (Hh) ligands include Sonic
hedgehog (Shh) and Indian hedgehog (Ihh), which bind to
Patched (Ptch), a transmembrane receptor that represses
activation of a G-protein coupled receptor, Smoothened
(Smo) [14]. On ligand binding, Smo, moves in a lateral
transport pathway from the plasma membrane and accu-
mulates at the ciliary membrane [15]. Activated Smo

increases the accumulation of Gli2, a transcription factor
at the ciliary tip, which then translocates to the nucleus
where it activates Hh target gene expression. In the
presence of Hh ligand, Smo interacts within a molecular
complex consisting of IFT machinery, Fused (Fu) and
Suppressor of Fused (SuFu). Mutations in genes encoding
Ift172 and Ift88 were identified in two mouse mutants that
showed characteristic defects in Shh signalling following an
ethylnitrosourea (ENU) mutagenesis screen undertaken for
embryonic patterning mutations. Genetic studies showed
that IFT proteins act at the heart of the Shh pathway,
downstream of Ptch1 and Smo and upstream of the Gli
transcription factors, where they mediate the production of
activated to repressor forms of Gli, thereby regulating Hh
pathway activity [16].

Fig. 1 The primary cilium. a,
b Cilia are cytoplasmic exten-
sions projecting from the cell
surface and composed of a
microtubular-based ciliary
axoneme. The transition zone is
where the microtubules are
reorganised into pairs and an-
chor the pairs to the membrane.
Within this region, proteins
involved in trafficking along the
axoneme also accumulate. b, c
Schematic of a transverse
section through c the motile
cilium, showing the radial spoke
proteins and outer dynein arms,
and d the non-motile cilium
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Wnt signalling

Several studies have implicated ciliary and basal body
proteins in the regulation of Wnt signalling [17, 18]. The
Wnt family encodes a family of 19 secreted glycoproteins
that regulate a variety of biological processes implicated in
development and disease. Ligand binding to a complex of
the Frizzled (Fz) receptor and the low-density lipoprotein
receptors, LRP5 or LRP6, initiates signalling through

Dishevelled (Dvl). Inversin (Inv) interacts with Dvl and
targets the cytoplasmic fraction of Dvl for degradation [19].
In the absence of Wnt stimuli, β-catenin is constitutively
phosphorylated by the β-catenin destruction complex
consisting of axin, adenomatous polyposis coli (APC) and
glycogen synthase kinase 3β [GSK3β]. Phosphorylated β-
catenin is targeted for degradation. In canonical Wnt
signalling, the ligand binds to a complex of the Fz receptor
and LRP5/6 co-receptor, which then binds to Axin and Dvl,

Fig. 2 Intraflagellar transport.
Elongation of the axoneme
at the distal tip relies on intra-
flagellar transport (IFT). Ante-
rograde IFT is mediated by
kinesin II motors along with
axonemal precursors, while
retrograde IFT is mediated by a
dynein motor. IFT Type A
complexes are linked to retro-
grade transport and IFT Type B
complexes are linked to
anterograde transport

Fig. 3 The BBSome and
vesicular trafficking to the
primary cilium. The BBSome
is a multi-protein complex com-
prising BBS proteins (BBS 1, 2,
4, 5, 7, 8 and 9) that localises
predominantly at the ciliary base
and mediates vesicular transport
to the cilium
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leading to stabilisation of β-catenin in the cytoplasm. β-
catenin migrates into the nucleus, replaces TLE, and
activates transcription of β-catenin/TCF/LEF1-responsive
genes. In non-canonical signalling, activated Dvl is targeted
to the membrane and activates downstream targets. Disrup-
tion of ciliary or basal body components leads to loss of
non-canonical Wnt signalling and stabilisation of both Dvl
and β-catenin in the cytoplasm and nucleus, resulting in
activation of canonical Wnt signalling.

Emerging evidence suggests that non-canonical Wnt
signalling, also known as planar cell polarity signalling
(PCP), plays a role in ciliary formation. Mice mutant for the
core PCP effector, Fuzzy, have neural tube defects, skeletal
dysmorphologies and Hedgehog signalling defects stem-
ming from disrupted ciliogenesis. Further studies demon-
strated the key role of Fuz in trafficking ciliary cargo to
basal bodies and to the ciliary apex while interaction with a
Rab-small GTPase is required for ciliogenesis.

Diseases associated with ciliary dysfunction

As cilia are a component of almost all vertebrate cells,
ciliary dysfunction can manifest as a constellation of
features that include primarily retinal degeneration, renal
disease and cerebral anomalies. Additional manifestations
include congenital fibrocystic diseases of the liver and
pancreas, diabetes, obesity and skeletal dysplasias. Pheno-
typically heterogeneous, ciliopathic features can manifest
from variation at a single locus while mutations affecting a
number of different loci can, at the same time, result in
similar phenotypes. Mutations in over 40 genes to date
have been associated with ciliopathic features (Tables 1, 2).
However, with over 1,000 polypeptides currently identified
within the ciliary proteome, several other disorders associ-
ated with this constellation of clinical signs will likely be
ascribed to mutations in other ciliary genes. A brief
description of the characteristic features of some of the
ciliopathies encountered by paediatric nephrologists is
outlined in the following section.

Joubert syndrome and related disorders

Joubert syndrome (JBTS; MIM ID# 213300) is a rare
syndrome that is characterised by hypotonia, ataxia,
psychomotor delay, irregular breathing pattern and oculo-
motor apraxia. Distinctive cerebellar and brain stem
malformations associated with JBTS include vermis hypo-
plasia or agenesis (e.g. abnormalities at the pontomesence-
phalic junction). The characteristic “molar tooth sign”
(MTS) on cranial magnetic resonance imaging (MRI) is
demonstrated by elongated but thin superior cerebellar
peduncles and mild vermis hypoplasia with the resulting

images reminiscent of a section through a molar tooth and
is characteristic of JBTS (Fig. 4d). Dandy–Walker malfor-
mations may be evident in approximately 10% of cases as a
result of abnormal cerebrospinal fluid collections in the
posterior fossa. Additional clinical features include retinal
degeneration, cystic kidney disease (cystic dysplasia and
nephronophthisis [NPHP]), ocular colobomas, occipital
encephalocele, hepatic fibrosis, polydactyly, oral hamarto-
mas and endocrine abnormalities.

Genetically heterogeneous, JBTS has been associated
with mutations in several genes, including INPP5E [20],
ARL13B [21], CC2D2A [22], RPGRIP1L [23], TMEM67
[24], NPHP1 [25], AHI1 [26], CEP290 [27], CXORF5 [28]
and TMEM216 [29]. Mutations in CEP290, a gene
encoding a centrosomal protein with a molecular weight
of 290 kDa, are responsible for about 50% of JBTS
subgroup of ciliopathies, while they are rarely detected in
other related (JSRD) phenotypes that include Leber’s
congenital amaurosis (LCA), Senior–Løken syndrome
(SLS), nephronophthisis (NPHP), Meckel–Gruber syn-
drome (MKS), Bardet–Biedl syndrome (BBS) and orofa-
ciodigital (OFD) syndrome [30]. The majority of CEP290
mutations described to date are nonsense, splice-site or
frameshift mutations resulting in loss of protein function.
Part of the phenotypic heterogeneity associated with
CEP290 mutations may be attributed to the number of
proteins that CEP290 interacts with [31]. For example,
CEP290 exists in a complex with other proteins such as
retinitis pigmentosa GTPase regulator, nephrocystin-4 and
nephrocystin-8 [32]. Hypomorphic mutations in NPHP6
and NPHP8 (also known as RPGRIP1-L), which are
associated with relatively early-onset photoreceptor degen-

Table 1 Phenotypic overlap in the ciliopathies. (Table modified from
Gerdes et al. [130], used with permission)

Phenotype LCA SLS NPHP MKS BBS JBTS

Cerebellar √ √ √
hypoplasia

Encephalocele √
Hepatic disease √ √ √ √ √
Renal disease √ √ √ √ √
Mental
retardation

√ √ √ √

Obesity √ √
Polydactyly √ √ √
Retinopathy √ √ √ √ √
Situs inversus √ √ √ √ √
Skeletal dysplasia √
Cleft palate √

LCA, Leber’s congenital amaurosis; NPHP, nephronophthisis; BBS,
Bardet–Biedl syndrome; SLS, Senior–Løken syndrome; JBS, Joubert
syndrome; MKS, Meckel–Gruber syndrome
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eration, disrupt their association with the retinitis pigmen-
tosa GTPase regulator protein [32–34]. In a similar fashion,
other mutated gene products, such as AHI1, which encodes
jouberin, has been shown to interact with nephrocystin-1
[35]. For a comprehensive review of the phenotypic and
genotypic features associated with CEP290 mutations,
the reader is referred to a recent excellent review on this
topic [31].

Meckel–Gruber syndrome (MKS, MIM ID #249000)
phenotypically overlaps with JBTS. Clinical features
include occipital encephalocele and other posterior fossa
defects, cystic dysplastic kidneys, hepatic bile duct prolif-
eration and polydactyly. MKS is caused by mutations in
several genes including MKS1 [36], MKS3 (TMEM67)
[37], CEP290 [24], RPGRIP1L [23], CC2D2A [38] and
TMEM216 [29]. Both JSRD and MKS are allelic at several

loci (CEP290, TMEM216, TMEM67, RPGRIPL1,
CC2D2A) [23, 24, 29, 39, 40]. For example, homozygous
missense mutations have recently been described in
TMEM216, a tetraspan transmembrane protein required
for ciliogenesis in patients with JSRD [29]. Frameshift
mutations in TMEM216, resulting in a truncated protein,
were found in two Palestinian families with MKS in the
same study, emphasising that MKS is thought to represent
the severe end of the JSRD clinical spectrum.

Senior–Løken syndrome (SLS, MIM ID #266900) is
another rare disorder that shares phenotypic and genotypic
overlap with JBTS and other ciliopathies including BBS
and NPHP (Table 1). The main clinical features are retinitis
pigmentosa (RP) and renal disease. Presentation may occur
in infancy or late childhood. RP may present either as
congenital retinal blindness caused by retinal hypoplasia or

Gene LCA SLS NPHP MKS BBS JBTS OFD

CEP290 √ √ √ √ √ √
NPHP1 √ √ √
INVS √ √
NPHP3 √ √ √
NPHP4 √ √
NPHP5 √ √
GLIS2 √
NEK8 √
AHI1 √
TMEM67 √ √ √ √
RPGRIPL1 √ √ √ √
ARL13B √
BBS1 √
BBS2 √ √
BBS3 √
BBS4 √ √
BBS5 √
BBS6 √ √
BBS7 √
BBS8 √
BBS9 √
BBS10 √
BBS11 √
BBS12 √
MGC1203 √
MKS1 √ √
BBS15 √
CC2D2A √ √
TMEM216 √ √ √
INPP5E √
XNPEP3 √
OFD1a √ √

Table 2 Genotypic overlap
in the ciliopathies. (Table
modified from Gerdes et al.
[130], used with permission)

LCA, Leber’s congenital amau-
rosis; NPHP, nephronophthisis;
BBS, Bardet–Biedl syndrome;
SLS, Senior–Løken syndrome;
JBS, Joubert syndrome, MKS,
Meckel–Gruber syndrome,
OMA, oculomotor apraxia,
OFD, orofaciodigital
syndrome
a If in males
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as progressive retinal degeneration later in childhood with a
classical fundoscopic appearance of tapetoretinal degener-
ation. The characteristic renal manifestation is that of
nephronophthisis characterised by cystic dilatation of the
renal tubules. However, both cystic renal dysplasia and
polycystic kidneys have also been observed in SLS.
Mutations have been identified in the following genes,
which include CEP290 (also known as NPHP6 and MKS4)
[27], NPHP1 [41], NPHP3 [42], NPHP4 [43] and NPHP5
(also known as IQCB1) [44]. Significant genetic overlap is
evident between SLS and JBTS (Table 2).

Orofaciodigital syndrome

Orofaciodigital syndrome type 1 (OFDI; MIM 311200) is
a rare X-linked dominant disorder whereby affected males
die in utero. Characteristic features include malformation
of the oral cavity, face and digits, in addition to central
nervous system (CNS) abnormalities and cystic kidney
disease [45]. Mutations in OFD1, which encodes a
centrosomal protein localised at the basal bodies at the
origin of primary cilia has been described in OFD1
patients [46]. Diminished ciliogenesis has been observed
with disease-associated mutations and recent studies
suggest that Ofd1 acts at the distal centriole to build distal

appendages, recruit IFT proteins and thereafter stabilise
centriolar microtubules at a defined length [47]. Ofd1-/-

embryos display left–right patterning defects as a result of
absent nodal cilia [48]. A recent study has highlighted
genetic overlap between OFD and JBTS, whereby OFD1
was found to be mutated in males with Joubert syndrome
[28].

Leber’s congenital amaurosis

Leber’s congenital amaurosis (LCA, MIM ID #204000) is a
severe retinal dystrophy, which presents within the first
year of life. Frequently, visual function is poor and often
accompanied by nystagmus, sluggish or near-absent pupil-
lary responses, photophobia, hyperopia and keratoconus.
Functionally, visual acuity is rarely better than 20/400 and
the electroretinogram (ERG) is characteristically “non-
detectable” or severely subnormal. A characteristic finding
is Franceschetti’s oculo-digital sign, comprising eye pok-
ing, pressing and rubbing. Genes implicated in LCA
include GUCY2D [49], RPE65 [50], SPATA7 [51], AIPL1
[52], LCA5 [53], RPGRIPL1 [54], CRX [55], CRB1 [56],
IMPD1 [57], RD3 [58], CEP290 [27], NPHP5 [44] and
RDH12 [59]. The ophthalmological manifestations of LCA
may present as a manifestation of JSRD or SLS. Mutations

Fig. 4 Clinical features of
ciliopathies. a Renal ultrasound
demonstrating multiple cysts
distributed within the renal
parenchyma (white arrow). b
Renal biopsy demonstrating
cystic tubular dilation and inter-
stitial fibrosis characteristic of
nephronophthisis (NPHP; black
arrow). c Funduscopy of a
patient with Bardet–Biedl syn-
drome demonstrating peripheral
pigmentary changes in the
retina. d Cranial MRI of a
patient with Joubert syndrome
demonstrating characteristic
“molar tooth” sign (white
arrow) as a result of cerebellar
vermis hypoplasia
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in many of the same genes are responsible for these three
overlapping phenotypes (Table 2).

Bardet–Biedl syndrome

Primary features of Bardet–Biedl syndrome (BBS, MIM#
209900) include rod-cone dystrophy, polydactyly, obesity,
learning disabilities, hypogonadism and renal anomalies
(Fig. 4). Renal malformations and abnormal renal function
leading to end-stage renal disease (ESRD) can be a major
cause of morbidity and are present in at least 40% of cases
[60]. Renal manifestations include renal dysplasia, cystic
tubular disease (e.g. nephronophthisis) and less frequently,
focal segmental glomerulosclerosis [61, 62]. Lower urinary
tract malformations such as detrusor instability of the
bladder occur, but are less common than upper tract
malformations [62]. Secondary features include speech
delay or disorder, developmental delay, behavioural abnor-
malities, strabismus/cataracts/astigmatism, brachydactyly/
syndactyly, ataxia/poor coordination/imbalance, mild hy-
pertonia, anosmia, diabetes, fibrocystic liver disease,
Hirschsprung’s disease, and dental and cardiovascular
anomalies [62]. Craniofacial defects such as brachycephaly,
macrocephaly, bitemporal narrowing, male frontal balding,
large ears, short and narrow palpebral fissures, a long
shallow philtrum, nasal anomalies, midfacial hypoplasia
and mild retrognathia have been described in BBS [63].

Sixteen genes are known to be associated with BBS
(Table 2): BBS1 [64], BBS2 [65], ARL6/BBS3 [66], BBS4
[67], BBS5 [2], MKKS/BBS6 [68], BBS7 [69], TTC8/
BBS8 [1, 70], B1/BBS9 [70], BBS10 [71], TRIM32/
BBS11 [72], BBS12 [73], MKS1/BBS13 [74], CEP290/
BBS14 [74] C2ORF86/FRITZ/BBS15 [75] and
SDCCAG8/BBS16 [76]. The recent identification of muta-
tions in MKS1 in BBS has supported the observation that
MKS may represent a severe BBS phenotype [74].
Furthermore, previous studies have shown that the BBS
phenotype can vary considerably within affected families.
Some of this intrafamilial variability can be accounted
for by the presence of mutations at more than one BBS
locus as well as the presence of additional modifying
genes that exert an epistatic effect on known BBS loci.
For example, heterozygous mutations in MGC1203,
which encodes a pericentriolar protein that interacts with
BBS proteins, have been described in BBS patients [77].
As BBS proteins have now been shown to exist in a
macromolecular complex, it is likely that mutant proteins
within this complex can affect the function of interacting
proteins existing within the same complex. Approximately
20% of persons with BBS do not have identifiable
mutations in any of the 16 known BBS-related genes;
therefore, it is possible that more BBS genes are yet to be
identified.

McKusick–Kaufman syndrome (MKKS, MIM#236700)
is an autosomal recessive (AR) condition characterised by
the triad of hydrometrocolpos (HMC), post-axial polydac-
tyly (PAP) and congenital heart disease (CHD). Many cases
of BBS have been misdiagnosed as MKKS in infancy or
early childhood prior to the development of other manifes-
tations of BBS. MKKS is caused by mutations in the
MKKS gene, which can also cause BBS [68].

Alström syndrome

Alström syndrome (ALS, MIM#203800) is an AR disorder
characterised by cone-rod dystrophy, obesity, progressive
sensorineural hearing impairment, dilated cardiomyopathy,
the insulin resistance syndrome and developmental delay.
Over 60% of individuals with Alström syndrome develop
cardiac failure as a result of dilated cardiomyopathy at
some stage of their lives. Males may have hypogonado-
trophic hypogonadism. Renal disease may present as
polyuria and polydipsia resulting from a urinary concen-
trating defect. End-stage renal disease (ESRD) can occur as
early as the late teens. In contrast to BBS, Alström
syndrome is characterised by relative preservation of
cognitive function and the absence of polydactyly. Alström
syndrome is caused by mutations in the gene ALMS1 and
alms1 localises specifically to the proximal ends of
centrioles and basal bodies [78, 79].

Jeune asphyxiating thoracic dystrophy

Jeune asphyxiating thoracic dystrophy (JATD;MIM#208500)
is a rare AR chondrodysplasia that is frequently associated
with infantile death as a result of a severely constricted
thoracic cage associated with respiratory insufficiency from
pulmonary hypoplasia. Characteristic skeletal findings in-
clude a narrow thorax with short ribs, hypoplastic iliac wings,
trident acetabular roofs (horizontal acetabular roofs with spur-
like projections at the lower margins of the sciatic notches),
and rhizomelic limb shortening (Fig. 5). Radiological
confirmation of the diagnosis is essential [80]. JATD is
characterised by the presence of radiologically irregular
metaphyseal ends, histopathologically hyperplastic prolifer-
ating chondrocytes and defective endochondral mineralisa-
tion. Other skeletal manifestations include post-axial
polydactyly, brachydactyly and hydrocephalus [81]. Both
RP and retinal aplasia have been noted in JATD [82].
Glomerulosclerosis and cystic renal disease, including
NPHP, has been reported in JATD. Fibrocystic disease of
both the liver and pancreas has been described [83]. Early
death usually occurs in the majority of patients as a
consequence of asphyxia with or without pneumonia.

Jeune asphyxiating thoracic dystrophy is a genetically
heterogeneous disorder. Beales and colleagues identified
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two missense mutations and an in-frame deletion in IFT80,
the gene encoding the Ift80 protein, thereby linking JATD
to ciliary dysfunction [4]. Ift80 was shown to localise to the
basal body of cilia in a murine chondrocytic cell line.
Aberrant Shh signalling appears to underlie the skeletal
manifestations observed in IFT mutants [84]. Zebrafish
morphant for ift80 demonstrate downregulation of ptc1, a
Shh binding receptor. Phenotypic similarity is observed in
Ihh null mice compared with patients with JATD, in that
they exhibit extremely short narrow rib cages. Similarly,
mice carrying a mutation in Pthrp, a gene regulated by Ihh
via Gli3 during chondrocyte differentiation also have short
ribs and sternum leading to a narrow rib cage.

Ellis van Creveld syndrome

Ellis van Creveld (EvC, MIM 225500) syndrome is a rare
chondroectodermal dysplasia that falls under the differential
diagnosis of JATD and is characterised by short limbs, short
ribs, post-axial polydactyly and dysplastic nails and teeth
[85]. Nail dysplasia and a peculiar upper lip distinguish
EvC from Jeune syndrome, while congenital heart disease
such as atrial septal defects occur in about 60% of affected
individuals and are rare in JATD. Mutations in EVC1 have
been described in Amish and Brazilian pedigrees of EvC,
but only accounted for a small proportion of affected cases,
thereby suggesting that EvC is a heterogeneous disease
[86]. More recently, mutations in a second gene, EVC2,
have been described in an Ashkenazi child with EvC [87].
The Evc protein was shown to localise to the base of the
primary cilium of chondrocytes and defective Ihh signalling
was observed in proliferating chondrocytes of Evc-null
mice [88].

Sensenbrenner syndrome

Sensenbrenner syndrome (also known as cranioectodermal
dysplasia, MIM #218330), a recessive disorder similar to
EvC, but with the addition of renal cysts and dolichoceph-
aly (with sagittal suture synostosis) and sparse, slow-
growing, fine hair, epicanthal folds, hypodontia and/or
microdontia, brachydactyly and a narrow thorax. Mutations
in two IFT genes, IFT122 and WDR35, have been
implicated in CED with WDR35 recently identified by
exome sequencing [89, 90]. As both gene products encode
for ciliary proteins, Sensenbrenner syndrome has recently
been classified as a ciliopathic disorder.

Jeune asphyxiating thoracic dystrophy has been de-
scribed in patients with JBTS and intriguingly, no mutation
has been identified in any of the known causative genes for
either syndrome. Therefore, for such patients it is highly
likely that further cases of JATD will be attributed to ciliary
dysfunction in the future.

Systemic manifestations of the ciliopathies

While disease manifestation in any organ can occur in the
context of ciliopathic dysfunction, the predominant organs
affected include the kidney, eye, liver and brain. In the
ensuing text, we will outline the range of diseases that can
occur as each of these organs in the context of ciliary
dysfunction. Within each organ, diseases can be developmen-
tal phenotypes presenting at birth or later in childhood. Often
this may depend on the severity of the underlying mutation in
addition to the number of defective proteins encoded where
more than one mutation in a ciliary gene occurs.

Fig. 5 Skeletal manifestations of ciliopathies. a A Jeune asphyxiating
thoracic dystrophy (JATD) patient with a narrow thorax. b CT of same
patient demonstrating short ribs and narrow thoracic cage. c Upper

limb radiography of a patient with Mainzer–Saldino syndrome
demonstrating acromesomelic shortening with irregular metaphyses
and cone-shaped epiphyses
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Ciliary dysfunction and renal disease

A spectrum of renal diseases has been described as a feature
of several ciliopathic syndromes and includes a morpho-
logically heterogeneous group of disorders that have been
classified as polycystic, renal medullary cystic disease and
cystic renal dysplasia. We will briefly outline the clinical
and morphological features that distinguish each of these
renal phenotypes. A brief description will follow outlining
the underlying genetic aetiology, lessons learned from
animal models of cystic kidney disease and the role played
by their associated ciliary proteins in the manifestation of
disease phenotype.

Polycystic kidney disease

Polycystic kidney disease (PKD) is a group of monogenic
disorders that are characterised by the presence of multiple
cysts, primarily in the kidney and liver and can present both
in the neonatal period as well as in adulthood [91]. PKD is
inherited in an autosomal dominant (ADPKD) or recessive
(ARPKD) fashion. Typically, ADPKD is diagnosed in the
second and third decades of life, while ARPKD presents in
utero or in the neonatal period with bilateral enlarged
kidneys. ADPKD is one of the most common genetic
causes of chronic kidney disease, with an incidence of
1:400–1:1,000, while ARPKD is rare, with an incidence of
1 in 20,000. Macroscopically, ADPKD is characterised by
the presence of bilateral grossly enlarged kidneys, which
result from the presence of focal cysts occurring at all levels
of the nephron. Histologically, ARPKD has a characteristic
radial pattern of fusiform cysts present in the dilated
collecting ducts. Clinically, patients with enlarged kidney
cysts can present with flank pain, haematuria, renal colic,
urinary tract infection and hypertension. Cysts may be
found in other organs such as the liver, pancreas and
seminal vesicles. Rupture of intracranial arterial aneurysms
is a significant cause of morbidity and mortality in patients
with ADPKD. Childhood-onset end-stage kidney disease is
characteristic of ARPKD, with up to 30% requiring renal
replacement therapy. ARPKD is suspected when in addition
to the renal phenotype, congenital fibrocystic disease of the
liver is a manifestation with complications that include
portal hypertension, bleeding oesophageal varices and
cholangitis.

Autosomal dominant polycystic kidney disease is caused
by a mutation in either of two genes, PKD1 or PKD2,
encoding polycystin-1 (PC-1) and polycystin-2 (PC-2)
respectively. More than 85% of patients have mutations in
PKD1, while the remaining 15% have mutations in PKD2
[92, 93]. PC-1 and PC-2, the encoded polycystin protein
products of PKD1 and PKD2 respectively form a complex
that is located at various cellular sites, which include cell–

cell and cell–matrix interactions, the endoplasmic reticu-
lum, in addition to the cilium and/or its basal body [94].
Fibrocystin is the protein encoded by PKHD1 (polycystic
kidney and hepatic disease 1), the gene mutated in ARPKD
and has been found to be associated with the polycystin
complex. Fibrocystin also localises to primary cilia and
basal bodies [95].

Homozygous Pkd1 null mice die between 12.5 and
16.5 days postcoitum and phenotypically exhibit gross
cystic appearance of the kidneys and pancreas [96].
Conditional inactivation of Pkd1 later than postnatal day
13 results in a much milder course [97]. Although PKD1
and PKD2 mutations are typically autosomal dominant,
somatic second hit mutations, where loss of the second
PKD1 or PKD2 allele in the tubular epithelium occurs,
have been proposed as a mechanism for focal cyst
development in mature ADPKD kidneys [98, 99]. Recently,
co-inheritance of a truncating mutation in one PKD1 allele
in trans with missense mutations in a second PKD1 allele
has been shown in cases of PKD with onset in utero, in
three pedigrees with otherwise typical ADPKD, suggesting
a gene dosage effect in PKD [17]. Rodent Pkhd1 knockout
models develop biliary dysgenesis and fibrosis similar to
human ARPKD, while kidney disease is generally mild and
of later onset [100].

Nephronophthisis

Nephronophthisis (NPHP) is the most common genetic
cause of chronic kidney disease within the first three
decades of life [101]. The prevalence in a population of
childhood end-stage renal failure is estimated at 5%.
Patients usually present with symptoms of polyuria and
polydipsia, secondary enuresis and anaemia. Presentation
may occur during infancy, but more typically in late
childhood with progressive renal failure manifesting during
early puberty. Ultrasound features demonstrate normal
sized kidneys with loss of cortico-medullary differentiation
and increased echogenicity. Histologically, NPHP kidneys
are characterised by the presence of cortico-medullary
cysts, tubular basement membrane disruption and tubuloin-
terstitial nephropathy (Fig. 4b). Extra-renal involvement has
been described in over 10% of cases and primarily involves
retinal disease, fibrocystic liver disease, cerebellar vermis
hypoplasia and skeletal dysplasia.

Inherited in an autosomal recessive mode, NPHP is
genetically heterogeneous, with 13 genes currently impli-
cated, (NPHP1–NPHP11, NPHP1L, SDCCAG8), which
account for only 30% of cases (Supplementary Tables 1,
2). In the remaining 70% of cases, the causative gene is
unknown. Recent studies have employed combined homo-
zygosity mapping with “ciliopathy candidate exome cap-
ture” followed by massively parallel sequencing to identify
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SDCCAG8 as a cause of NPHP [76]. While mutations in a
single gene are sufficient to cause NPHP, it has also been
shown that more than one gene can be mutated in patients
with NPHP [102]. Furthermore, truncating mutations can
result in a more severe developmental phenotype such as
renal dysplasia in Meckel–Gruber syndrome patients with
NPHP3 mutations [103]. A milder phenotype has also been
observed for patients with cerebello-oculo-renal syndromes
(CORS) syndrome who have missense mutations in
RPGRIP1L compared with patients with Meckel–Gruber
syndrome who have truncating mutations in the same gene
[23, 104].

Similar to the polycystic kidney disease genes, the
nephrocystins have all been localised to primary cilia, basal
bodies and centrosomes (Supplementary Table 2). Several
NPHP gene products have been shown to interact with each
other in addition to other ciliary proteins such as BBS
proteins and Ofd1 proteins. Furthermore, subcellular local-
isation other than primary cilia has been described for
several NPHP gene products and includes adherens
junctions and focal adhesions (nephrocystin-1 and -4),
while nephrocystin-2 localises to different subcellular
locations in a cell-cycle-dependent manner where it can
be found at the mitotic spindle during mitosis, at the mid-
body in cytokinesis while in interphase it can be found in
cilia at the basal body and centrosome [101]. Genetic
inactivation in several murine Nphp genes have yielded a
range of phenotypes, which include cystic kidneys in both
Inv−/− mice and Nphp3 pcy/ko mice [103, 105]. Of interest,
Glis2 mutant mice show tubular atrophy and progressive
renal fibrosis [106]. For a comprehensive review of
nephronophthisis, the reader is referred to a recent excellent
review on this topic elsewhere in this series [101].

Renal dysplasia

While cystic renal disease has historically been described as
a cardinal feature of a ciliopathic disorder, other renal
malformations such as dysplastic kidneys are often an
under-recognised feature. Renal dysplasia occurs as a result
of defective differentiation of the renal parenchyma during
kidney development [107]. Histologically, dysplastic fea-
tures may include incompletely branched collecting ducts
surrounded by undifferentiated mesenchymal stroma. Ultra-
sonographically, dysplastic kidneys may be small (less than
the 50th centile for age), unilateral or bilateral, lack cortico-
medullary differentiation and demonstrate increased echo-
genicity with a variable number of small, subcapsular cysts.
The degree of renal impairment will depend on the presence
of functional nephron mass in the dysplastic kidney and as
a result, an elevated creatinine for age may be observed at
birth or later during childhood. Other features have
included aplastic and hypoplastic kidneys (reduced nephron

number and small size) or multicystic dysplastic kidneys
characterised by large cysts and no functioning renal
parenchyma. Renal dysplasia has been observed in several
ciliopathic disorders, which include BBS and Meckel–
Gruber syndrome [108]. As renal dysplasia is essentially a
developmental phenotype, its presence in the context of a
ciliopathy likely reflects a more severe genotype.

Cystic kidneys and the link to cilia

A role for the primary cilium in cystic disease was
suggested following the observation that almost all proteins
implicated in cystogenesis are localised to the primary
cilium. Evidence that cilia are important in cystic kidney
disease comes from the initial observation of renal cysts in
the Oak Ridge Polycystic Kidney (orpk) mouse that mimic
ARPKD. Orpk mice are hypomorphic for polaris (also
known as Tg737), which encodes the mouse orthologue of
Chlamydomonas Ift88. Cilia in Tg737orpk animals are
structurally defective and shorter than normal cilia while
complete Tg737 nulls lack cilia and present with neural
tube defects, left–right asymmetry and growth arrest during
embryogenesis [109]. Several other mouse models link cilia
to cystic kidney disease [110]. For example, kidney-specific
inactivation of Kif3a in mice results in a renal epithelium
that is devoid of cilia in cystic regions, which appear at
5 days of age [12]. Furthermore, congenital polycystic
kidneys (cpk) are observed in the cpk mouse, which carries
a mutation in cystin, which localises to the cilium of renal
epithelia [110].

Effector pathways implicated in renal cystogenesis

While a role for cilia in cystogenesis has been proposed, the
underlying mechanisms are poorly defined. Previous
studies have shown a role for cilia in mediating the switch
between canonical and non-canonical Wnt signalling [18].
Renal cilia project into the tubular lumen and bend in
response to tubular flow. Inversin, the protein product of the
gene mutated in NPHP type 2 is localised to the primary
cilium and mediates a switch from canonical to non-
canonical Wnt signalling, which mediates planar cell
polarity (PCP). PCP describes the organisation of cells in
the plane of an epithelium. Recent studies have provided
further support that loss of PCP signalling can lead to renal
cystogenesis. Genetic inactivation of Fat4, a protocadherin
and core PCP effector that is localised to the primary cilium
leads to renal cyst formation in mice and is evident at
embryonic day 16.5 [111]. PCP signalling plays a major
role in orientating the mitotic spindle along the longitudinal
axis of the developing tubule such that over 95% of cells
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divide within 34° of the axis of the tubule, a process known
as orientated cell division (OCD). Defective OCD has been
described in the pck rat, (pck is orthologous to Pkhd1) and
in Hnf1ß mice prior to the development of renal cysts [112].
However, recent studies in precystic mouse models of
Pkhd1, Pkd1 and Pkd2 failed to identify defective OCD
prior to onset of cystogenesis. Loss of OCD was observed,
however, during early tubular dilation in both Pkd1 and
Pkd2 mouse mutants [113]. Regulation of OCD along the
proximo-distal axis during tubular elongation after birth has
recently been shown to be regulated by Wnt9b signalling
[114]. Furthermore, convergent extension (CE) movements,
also regulated by Wnt9b, decrease the number of tubular
epithelial cells during tubular morphogenesis until a final
tubule diameter is reached. Hypomorphic Wnt9b mutant
mice develop renal cysts and exhibit defects in OCD and CE.

Other than PCP, several other signalling pathways have
been implicated in renal cystogenesis [115]. In the absence
of PCP, canonical Wnt signalling prevails. Over-expression
of β-catenin in transgenic mice leads to renal cysts
supporting a role for canonical Wnt activation in cysto-
genesis [116]. Aberrant Shh signalling has also been
associated with renal disease. Mutations in NPHP7
(GLIS2), an intracellular Shh effector, have been described
in a subset of patients with nephronophthisis [117].

Activation of the mTOR pathway has been demonstrated
in polycystic kidney disease and several studies have been
undertaken to assess a role for mTOR inhibition in
polycystic kidney disease [118]. Altered intracellular
calcium homeostasis has been implicated in PKD. Previous
studies have shown that calcium influx occurs via the
polycystin ion channel complex composed of PC1 and PC2
during tubular flow and is associated with bending of the
primary cilium. Furthermore, increased intracellular cAMP
has been demonstrated in several PKD animal models. As a
result, vasopressin receptor antagonists have been intro-
duced into human clinical trials in ADPKD patients [119].
As several pathways are implicated in cell proliferation and
differentiation, it is likely that many other mechanisms are
implicated in renal cystogenesis.

Liver disease and cholangiocyte ciliary dysfunction

Congenital fibrocystic diseases (CFD) of the liver are a
heterogeneous group of disorders that are characterised by a
spectrum of biliary dysgenesis that includes congenital
hepatic fibrosis, bile duct dilatation and cyst formation.
Hepatic cysts are lined by cholangiocytes, which are
specialised biliary epithelial cells. The concept of chol-
angiociliopathies first evolved with the observation that
patients with CFD frequently have other systemic features
including renal disease [120]. Ciliary dysfunction has been

shown to underlie the pathogenesis of both these cystic
disorders following the identification and localisation of
fibrocystin and nephrocystins, the genes mutated in
ARPKD and in NPHP respectively, to the primary cilium
of cholangiocytes and renal tubular epithelial cells [94, 121,
122]. Cholangiocyte cilia regulate bile formation through
mechanosensory, osmosensory and chemosensory cues.
Defects in cholangiocyte ciliary structure and/or their
integrated transducing function lead to a decrease in
intracellular calcium and increased cAMP, causing chol-
angiocyte hyperproliferation, abnormal cell matrix interac-
tions and altered fluid secretion/absorption, which can
result in hepatic cystogenesis [123].

Besides the association with cystic kidneys, CFD also
occurs as part of the pleiotropic phenotypes of JBTS/
COACH syndrome [124], BBS [125], Alström syndrome,
Meckel–Gruber syndrome and JATD [120].

Ciliary dysfunction and retinal disease

Degeneration of the retinal photoreceptors is a common
feature of ciliopathic disorders and manifests as progressive
loss of peripheral vision. Fundoscopic appearances include
maculopathy associated with optic disc pallor, pigmentary
changes within the peripheral retina and bone spicule
formation (Fig. 4c). Several proteins implicated in human
ciliopathic diseases have been localised to the photorecep-
tor cilium. Morphologically, photoreceptors have an outer
and an inner segment, which are connected by a modified
cilium, called the connecting cilium [126]. Maintenance of
photoreceptor integrity relies on continuous IFT. Arrestin,
transducin and opsin molecules are synthesised within the
inner segment and are then transported via IFT in a light-
dependent manner along the ciliary axoneme of the
connecting cilium to the outer segment [127]. Here,
phototransduction takes place across an extensive array of
photosensitive membranes, which are covered in opsin
molecules. About 2,000 rhodopsin molecules per minute
are transported to the outer segment via the connecting
cilium to compensate for lost material each day when at
least 10% of the distal ends of the photoreceptor outer
segments are shed and phagocytosed by the surrounding
retinal pigmentary epithelium.

A range of photoreceptor abnormalities has been
described in several murine ciliopathy models and include
the absence of outer segments, disorganised outer segments
or photoreceptor degeneration without any obvious abnor-
malities in photoreceptor morphology. Retinal degeneration
has been associated with increased cell death in murine
models of Bbs [128]. While the underlying mechanisms of
photoreceptor degeneration are largely still unknown,
defects in vesicular transport, proteosomal-mediated degra-
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dation and IFT have been postulated as potential mecha-
nisms [129, 130]. Future studies will need to address the
specific molecular pathways that become dysregulated in
ciliopathic retinal degeneration.

Conclusion

Since the seminal discovery of BBS8, as a novel ciliary
protein, by Ansley and colleagues [1], the primary cilium
has been the focus of intense research across a broad range
of scientific disciplines over the past few years. With over
1,000 polypeptides identified within the ciliary proteome, it
is highly likely that mutations in several more ciliary genes
will be identified in patients presenting with a “ciliopathic”
phenotype. While identification of new genes and new
ciliary proteins are of fundamental biological interest, it is
perhaps even more important to understand the mechanisms
underlying the functional consequences of ciliary dysfunc-
tion in an organ-specifc context. With the recent develop-
ment of inducible transgenic models, further investigation
in both a spatial and temporal manner within individual
organ systems should greatly aid our understanding of the
functional consequences of ciliary dysfunction.
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Multiple choice questions (answers appear following the
references)

1. Characteristic clinical features of a “Ciliopathy” DO
NOT include:

a) Renal disease
b) Retinal disease
c) Cerebral malformations
d) Abdominal distension

2. Ciliopathic syndromes DO NOT include:

a) Joubert syndrome
b) Bardet–Biedl syndrome
c) Orofaciodigital syndrome
d) Atypical haemolytic uraemic syndrome

3. What is the most common genetic cause of NPHP:

a) NPHP1
b) NPHP4
c) SDCCAG8

d) NPHP5
e) XNPEP3

4. A molecular diagnosis can be made in what percentage
of cases of NPHP

a) 25%
b) 40%
c) 60%
d) 10%
e) 70%
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