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Abstract

BACKGROUND: Ecballium elaterium (common name: squirting cucumber) is an emerging weed problem in hedgerow or super-
intensive olive groves under no tillage. It colonizes the inter-row area infesting the natural or sown cover crops, and is consid-
ered a hard-to-control weed. Research in other woody crops has shown E. elaterium has a patchy distribution, which makes this
weed susceptible to design a site-specific control strategy only addressed to E. elaterium patches. Therefore, the aim of this
work was to develop a methodology based on the analysis of imagery acquired with an uncrewed aerial vehicle (UAV) to detect
and map E. elaterium infestations in hedgerow olive orchards.

RESULTS: The studywas conducted in two superintensive olive orchards, and the imageswere taken using a UAV equippedwith
an RGB sensor. Flights were conducted on two dates: in May, when there were various weeds infesting the orchard, and in
September, when E. elateriumwas the only infesting weed. UAV-orthomosaics in the first scenario were classified using random
forest models, and the orthomosaics from September with E. elaterium as the only weed, were analyzed using an unsupervised
algorithm. In both cases, the overall accuracies were over 0.85, and the producer's accuracies for E. elaterium ranged between
0.74 and 1.00.

CONCLUSION: These results allow the design of a site-specific and efficient herbicide control protocol which would represent a
step forward in sustainable weed management. The development of these algorithms in free and open-source software fosters
their application in small and medium farms.
© 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
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1 INTRODUCTION
Ecballium elaterium (L.) Richard, popularly known as squirting
cucumber, belongs to the Cucurbitaceae family and is an herba-
ceous, creeping, perennial plant present in the Mediterranean
basin. In recent years, it has caused serious problems as a weed
in olive groves and other woody crops because it is a hard-to-
control weed and thus can easily expand its populations.1,2 The
control of this weed is complicated by the fact that, being a peren-
nial plant that resprouts from rhizomes, it has continuous emer-
gence, such that at certain times of the year stands with
seedlings, flowering plants and fruiting plants can be found simul-
taneously in the same field. It colonizes the inter-row area of
orchards infesting the natural or sown cover crops. This is relevant
because hedgerow or superintensive olive groves are mainly
under a no-tillage system with natural covers, and only clearing
work is carried out, which is incapable of controlling this weed.
Blank et al.1 have shown that the spatial distribution of
E. elaterium in almond orchards shows an aggregate pattern in
stands that are also stable over time by using geostatistical

analyses. These characteristics make this weed susceptible to
being managed by site-specific treatments, thus avoiding the
application of homogeneous treatments in the entire plot and
allows for an improvement in the efficacy of its control.
Remote sensing based on uncrewed aerial vehicles (UAVs) has

shown suitability for the generation of weed infestation maps
for both herbaceous,3,4 and woody crops.5,6 The availability of
infestation maps allows the design of site-specific weed treat-
ments, which represents a step forward in sustainable agriculture.
In the detection of weeds with UAV imagery, object based image
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analysis (OBIA) has become almost standard in recent years, with
a plethora of papers using this image analysis paradigm for weed
detection.5,7–11 In OBIA, the minimal unit for classification is the
object instead of the pixel. Objects are groups of pixels with
homogeneous values which are characterized by their spectral,
geometrical and topological values, adding more variables to
the classification process than in traditional pixel-based image
analysis (PBIA). The creation of the objects is called segmentation,
and although there are several image segmentation algorithms,
all of them need the definition of a series of parameters. An opti-
mal selection of the segmentation parameters is crucial because
of its influence on the classification accuracy.12,13

In OBIA, as in PBIA, supervised and unsupervised classification
algorithms, and the selection of one of these approaches depends
on the classification problem to be addressed. Unsupervised OBIA
approaches have demonstrated accurate results in weed detec-
tion problems with no need to identify different weed species.
In these cases, the aim of the classification process is to discrimi-
nate a limited number of classes (soil, crop, weed) having features
that allow its discrimination based on a reduced set of thresholds.
For example, soil can be distinguished from vegetation using veg-
etation indices, and weeds can be differentiated from the crop
using attributes such as height or their position among the crop
rows.6,8,14 However, in the cases when it is necessary to detect dif-
ferent weed species, supervised approaches are needed since
they can more accurately deal with the discrimination of classes
with similar appearance such as weeds belonging to the same
family or genus.4,15 Among the supervised classification models,
the random forest (RF) classifier is a machine learning algorithm
widely applied in remote sensing because of its robustness and
resistance to outliers.16,17

Image classification processes can be performed on proprietary
or open-source software. The use of free and open-source soft-
waremay be an important advantage in relation to the implemen-
tation of precision agriculture and digitizing techniques, as
economic costs have been identified as one of the barriers to
the spread of these strategies.18,19 Furthermore, the use of
open-source software is gaining interest in the geospatial
community,20 and it has been successfully applied in previous
works on weed detection using UAV imagery.3,21

As a result of the above discussion, the aim of the present work
was to develop a methodology for the detection of E. elaterium
infestations in hedgerow olive orchards oriented to the imple-
mentation of site-specific control strategies. This methodology
consisted of combining images from a low-cost RGB sensor
onboard a UAV platform with OBIA algorithms developed on free
and open-source software. To the best of the authors' knowledge,
this is the first time that remote sensing has been used for weed
mapping in an olive orchard, and for detection of E. elaterium.

2 MATERIALS AND METHODS
2.1 Study fields and UAV flights
The studies were conducted in two plots from a hedgerow olive
orchard located in the province of Córdoba, southern Spain
(Fig. 1). This farm is located in an area with warm inland Mediter-
ranean climate, characterized by mild winters, and summers with
high temperatures and low precipitations. The private company
ELAIA, owner of the fields, authorized the UAV flights and field
work. Field 1 (central coordinates 37°48021”N, 4°45040” W, WGS-
84, planted in 2015) and Field 2 (central coordinates 37°48015”N,
4°46030” W, WGS-84, planted in 2016) had an area of 10 615 m2

and 11 758 m2, respectively. Both fields were planted with the
‘Arbosana’ variety at a density of 3.75 × 1.35 m (1,975 trees
ha−1), under no-tillage and natural cover crops in the inter-row
area. The selection of the fields' location and limits was based
on the information about E. elaterium infestations provided by
the company owning the olive farm.
UAV flights and field work were conducted on 05/19/2021,

when the orchards were naturally infested by E. elaterium and
other weeds such as Convolvulus spp. or Amaranthus spp., and
on 09/27/2021 when E. elaterium was the only infesting weed.
Coordinates of the E. elaterium plants and patches were registered
using a RTK GNSS. A GNSS Leica Viva GS15 antenna was used for
measuring the plants position. It is capable of receiving
signals from GPS, GLONASS, Galileo and Beidou systems.
The antenna was mounted to the top of a monopole at 1.80 m,
setting as mask angle 15°. Ground control points were measured
using incoming corrections from RAP network with a baseline dis-
tance lower than 10 km (https://www.juntadeandalucia.es/
institutodeestadisticaycartografia/rap/nodos). Corrections were
received via NTRIP (Network Transport of Radio Technical Com-
mission for Maritime Service (RTCM) via Internet Protocol) on a
RTCM3-iMAX mount point. Those, the RTCM-iMAX uses a real ref-
erence base GNSS station to send the network corrections. Under
these conditions, the manufacturer reported an accuracy of the
system with a RTK network of 8 mm + 0.5 ppm and 15 mm
+ 0.5 ppm taking into account horizontal and vertical accuracy.
Figure 2 shows images of the E. elaterium plant disposition in
the center of the inter-row areas on both dates. E. elaterium grows
in spring, summer and autumn, and germinates in both spring
and autumn, being possible to find flowering plants at any of
these times.2 Therefore, on both sampling dates coexisted plants
in a wide variety of growth stages: from seedlings, to adult plants
with flowers and fruits.
Aerial images were acquired with a quadcopter model Mavic

Pro 2 (DJI, Shenzen, China) equipped with an RGB camera Hassel-
blad LID-20c with 20 Mp. The UAV was configured for flights at
50 m over the terrain following flight lines parallel to the hedge-
rows. The aerial images had forward and side overlaps of 90%
and 85%, respectively. UAV flights were carried out around noon
on sunny days with no wind.
UAV images were processed with Agisoft Metashape Profes-

sional Edition software (Agisoft LLC, St. Petersburg, Russia) for
the generation of the geomatic products used in the classification
workflows: (i) the orthomosaic containing the spectral informa-
tion, and (ii) the Digital Surface Model (DSM) which provided
height information. The configuration parameters for the genera-
tion of geomatic products were the same as in de Castro et al.22

The orthomosaics from both fields and dates had a spatial resolu-
tion of 1.1 cm, and the DSMs had a spatial resolution of 2.2 cm.
The production of the geomatic products was automatic, with
the exception of the manual measurement of five ground control
points (GCPs) in the images (one in each corner plus one in the
field center). GCP coordinates were measured in the field with a
RTK GNSS receiver at the day of flights.

2.2 E. elaterium detection algorithms
Different approaches were tested for E. elaterium detection
depending on the agronomic scenario (Fig. 3). When E. elaterium
was the dominant weed and there were also various weed species
in the field (May), a supervised approach was applied consisting of
the training of an RFmodel. When E. elateriumwas the only infest-
ing weed (September), an unsupervised algorithm with no need
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of training dataset or user intervention was used. All the processes
involved in the classification workflows were carried out using
open-source software.

2.2.1 Image segmentation and object feature creation
In the supervised and the automatic weed detection algorithms
there were some common steps related to the segmentation of
the orthomosaic and the generation of the variables used in the
classification processes. All these previous steps and the classifica-
tion algorithms were programmed in the R computer language.23

In any OBIA classification algorithm, the first step is image seg-
mentation. Multiresolution segmentation was applied as imple-
mented in Terralib 5.2.1 (National Institute for Space Research
(INPE), Brazil),24 and executed in R through the package SegOp-
tim.13 This segmentation algorithm was used because it has been
successfully applied in previous weed detection algorithms.4,25,26

It requires the setting of a set of parameters (compactness weight,
color weight, minimum segment size, and merging threshold)
that influence the shape and size of the created objects, which
has paramount importance due to their effect on the perfor-
mance of OBIA classification algorithms.12,13,27 The selection of
the segmentation parameters was carried out by applying the

SegOptim package, which uses an approach based on genetic
algorithms (GA) to optimize these parameters. The parameter
optimizer needs as input a subset of the image and a vector file
with labeled samples of the searched classes. The aim of the GA
is to find the set of segmentation parameters able to achieve
the best results in the RF classification. According to that goal,
the GA segments the image iteratively with different parameter
sets and evaluates the accuracy of an RF model created with the
labeled samples in every segmentation created in each iteration.
The optimization process was applied in a 400 m2 tile from the
orthomosaic from field 1 in May. The optimization process was
not repeated in the images from the other field and dates because
they had similar characteristics and, consequently, the same seg-
mentation parameters could be used in all of them. As the seg-
mentation of a whole orthomosaic is a time-consuming task, the
orthomosaics were divided into 20 × 20 m tiles that were individ-
ually segmented to speed-up the process.
Once the image is segmented, the next step in an OBIA classifi-

cation algorithm is the calculation of the object features that will
be used for discriminating among the different classes in the
image. Table 1 shows the object variables used in the present
work. Among the set of variables included in Table 1, there were

Figure 1. Map showing the location of the study fields: orthoimage from the Spanish National Plan for Aerial Orthophotography (PNOA). Coordinate
system: WGS84 UTM 30 N.

Figure 2. Field view of the E. elaterium infestations in May (a) and September (b).
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four geometric, one topologic, and six spectral variables including
two commonly used vegetation indices: excess green (ExG) and
normalized green-red difference index (NGRDI).28,29 Two of the
variables are more complex features that require explanation
about their calculation: height and distance to the olive row axis.
The height of the plants was included in the set of objects vari-

ables because it has been successfully used in previous research
works for weed detection.11,25 The height of the objects was cal-
culated using a canopy height model (CHM) generated by sub-
tracting the height of the ground from the DSM values. The
height of the ground was estimated using a digital elevation
model (DEM) which was created by applying to the DSM a mini-
mum filter with a radius of 3 m using the process wbt_minimum_-
filter from the Whitebox Tools R package.30 This filter assigns each
cell in the DEM the minimum value in a moving window centered
on each grid cell from the DSM. In the present work, a window
with a side of 1.5 m was applied. It was assumed that the points
with a minimum height corresponded to soil pixels. This simple
approach was selected considering the smooth flat topography
of the olive orchards.
The first step to calculate the distance to the olive row axis was

to detect the olive rows. This was done by classifying all objects
with a height over 0.5 m as belonging to the olive rows. Then,
all these objects were merged to create a vector layer storing
polygons corresponding to the olive hedgerows. A similar
approach for crop row detection has been previously tested and
validated in olive,31 and other woody row crops such as vine-
yards.22 After the olive row classification, their axes were extracted
using the process wbt_polygon_long_axis from Whitebox Tools R
package, and the distance to the closest olive row axis was calcu-
lated for all the objects in the orthomosaics.

2.2.2 Random Forest model
RFmodels were created for fields 1 and 2 in May, when there were
other weeds apart from E. elaterium. These models were created
to classify the following classes: ‘Olive’, ‘Soil’, ‘Shadow’,
‘E. elaterium’, and ‘Other weeds’. The first step in the creation of
the RF model was the manual labeling of a set of objects belong-
ing to the five classes. To create the training dataset, 90 circular
plots with a radius of 1 m were randomly created over the ortho-
mosaics of the fields. Image objects inside these circular plots
were manually classified (Fig. 4) by only one expert to avoid

Figure 3. Flowchart of the workflow for E. elaterium detection in different scenarios.

Table 1. Object variables used in the classification algorithms

Variable type Variable name and formula

Spectral r= R
R+G+B†

g= G
R+G+B

b= B
R+G+B

ExG=2g−r−b
NGRDI= G−R

G+R

Brightness= R+G+B
3

Geometric Area of the object
Perimeter of the object

Area/Perimeter
Height (mean height in the canopy height model)

Topologic Distance to olive row axis

† R, G, and B indicate the mean values for the red, green, and blue bands
of the image object, respectively.
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discrepancies. The coordinates of the E. elaterium plants recorded
during the field work were used when there was doubt when
labeling weed objects.
RF models were created using the randomForest package in R.32

The models were fed with the object variables included in Table 1
and were created using 500 trees, which is the recommended
number of trees from a detailed review on the use of RF in remote
sensing.16 The number of variables randomly sampled as candi-
dates at each split in the creation of the forest of decision trees
was three, the closest number to the square root of the total num-
ber of variables. A study about the correlation among the input
variables was not performed because RF can successfully handle
multicollinearity,16 and because the number of variables was not
high enough to lead to excessive processing times. The training
dataset was not class-balanced, with ‘E. elaterium’ and ‘Other
weeds’ as the less represented classes in all fields. As the training
dataset needs to be class balanced,16 a random undersampling
process was implemented. Nonetheless, the RF models were also
created using the whole training dataset to compare the results
between models with balanced and unbalanced training
datasets.
RF models for Septembers' data were also created compare

their results with those from the automatic classification algo-
rithm. These RF models aimed to classify four classes: ‘Olive’, ‘Soil’,
‘Shadow’, and ‘E. elaterium’ since there were no other weeds.

2.2.3 Unsupervised classification algorithm
Starting after the segmentation of the image and the calculation
of the object variables, an automatic and unsupervised classifica-
tion algorithm was applied for the date with E. elaterium as the
only infesting weed. It did not need any user intervention during

the classification process, nor the previous creation of a training
dataset, and it can be divided into the following steps:

(1) All objects whose height was higher than 0.5mwere classified
as ‘Olive’. This height threshold was selected because the only
elements higher than 0.5 m in the field were the olive trees.

(2) The Otsu thresholding method33 was applied to the bright-
ness values of all the unclassified objects, and all the objects
whose brightness was below the calculated threshold were
classified as ‘Shadow’.

(3) After the first steps, the remaining unclassified objects
belonged to ‘Soil’ and ‘E. elaterium’. They were discriminated
by applying a threshold to the ExG (Table 1) values. This
threshold was calculated using the Otsu method for the
object values of this spectral index. After this step, all the
objects in the image were classified as ‘Olive’, ‘Soil’, ‘Shadow’,
or ‘E. elaterium’.

(4) To avoidmisclassification due to the presence of some objects
with anomalous values, some enhancements were applied to
the object classification:
4.1 There were segments belonging to the ‘Olive’ class that
could be classified as E. elaterium due to having low height
values associated with small mistakes in the DSM creation.
Since E. elaterium infestations grow in the center of the
inter-row area (Fig. 1), all the objects classified as E. elaterium
having a distance to the row axis lower than 1.2 m were clas-
sified as ‘Olive’.
4.2 Due to the growing habits of E. elaterium, some parts of
the plants projected shadows over other parts. Consequently,
there could have objects classified as ‘Shadow’ that belonged
to ‘E. elaterium’ class. To solve this possible misclassification,

Figure 4. Detailed view of some training points in field 1 in May. Original images with plots containing other weeds (a) and E. elaterium (c), and results of
the manual object labeling of the same plots (b and d).
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all the objects classified as ‘Shadow’ that were located more
than 1.2 m away from the row axis and had an ExG value
higher than the ExG threshold calculated in step 3 were reclas-
sified as ‘E. elaterium’. The 1.2m distance threshold for this and
the previous step (4.1) was based on the width of the olive
hedgerow and of its projected shadow.

2.3 Validation
Confusion matrices were calculated using the training datasets
manually labeled for the creation of the RF models as reference.
The amount of true positives (TP), true negatives (TN), false posi-
tives (FP), and false negatives (FN), were extracted from the confu-
sion matrices. To assess the accuracy of the classifying algorithms,
overall accuracy (OA) (Eqn (1)) was calculated from the confusion
matrix for every date and field, together with the producer's and
user's accuracy (PA and UA) (Eqns (2) and (3), respectively) for
the ‘E. elaterium’ class. PA represents the percentage of objects
belonging to a class that is correctly classified, while UA repre-
sents the percentage of objects assigned to a class that actually
belong to this class.

OA=
TP+TN

TP+FP+FN+TN
ð1Þ

PA=
TP

TP+FN
ð2Þ

UA=
TP

TP+FP
ð3Þ

In the RF models, out-of-bag (OOB) samples were used to create
the confusion matrix. The RF classifier uses a set of decision trees
to make a prediction. In the creation of the trees, approximately
two-thirds of the training dataset is used to train them, and the
remaining third (the OOB samples) is used in an internal cross-
validation process.34 The OOB error is claimed to be an unbiased
estimate of the generalization error,35 although OOB error is also
said to overestimate the true error in some situations,36 which
would imply that the RF performs better than indicated by OOB
error.
For a more complete assessment of the RF model accuracy,

apart from the use of the OOB estimations, each model was eval-
uated by applying it to the training dataset from the other field on
the same date. For example, the RF model from Field 1 in May was
validated by applying it to the training dataset from Field 2 inMay.
Using this approach, the accuracy of the models was evaluated
twice, and the transferability of the models was also tested.
The unsupervised classification algorithm was validated in

Fields 1 and 2 using the training datasets created for the RF
models generated in September, when E. elaterium was the only
weed in the olive orchards.

3 RESULTS
3.1 Image segmentation optimization
The optimization process of the segmentation parameters using
GA yielded values of 0.78, 0.93, 0.21, and 62.55 for the compact-
ness weight, spectral weight, merging threshold, and minimum
segment size, respectively. These segmentation parameters were
applied to the orthomosaics from both fields and dates.

3.2 Random Forest model
Due to a small area that presented some artifacts in the orthomo-
saic and DSM, one out of the 90 training plots from Field 1 in
September was not used. Table 2 shows the number of objects
manually labeled in the creation of the training datasets, detailing
the number of objects for the classes associated with weeds,
which were the less represented classes. In the balanced datasets
created from the complete training datasets, the number of sam-
ples by class was equal to the number of objects for the less repre-
sented class. Consequently, in Field 1, there were 113 and
137 objects by class in May and September, respectively, and in
Field 2, there were 111 objects for each class in May and 43 in
September.
Table 3 shows the results achieved from the RF models created

for analyzing the olive orchards in May, the month when there
were different weed species in the study fields. The OA was equal
to or higher than 0.89 in all cases. PA for E. elaterium ranged from
0.75 to 0.93, while UA was lower, yielding values between 0.45
and 0.86. In all the models, PA values for E. elaterium were higher
when evaluated in the OOB data than when the models were val-
idated in other fields. UA followed the same trend except in the
model for the unbalanced training dataset in Field 2 where the
UA for E. elateriumwas higher when themodel was tested in other
fields.
Regarding the balance of the dataset, OAwas always equal to or

higher for the complete unbalanced dataset. There was not a clear
trend for E. elaterium PA and UA, which were sometimes higher
for the unbalanced dataset and sometimes higher for the bal-
anced dataset.
Although in September, when E. elaterium was the only infest-

ing weed, an automatic classification algorithm with no need of
training data could be applied, RF models were also created and
validated to compare the automatic approach with a supervised
methodology. RF models for the classification of ‘Soil’, ‘Olive’,
‘Shadow’ and ‘E. elaterium’ were created using data from May
and September. Apart from the OOB validation, the RF models
created from the May dataset in one field were validated using
data from September in both fields, and the RF models created
with data from September in one field were validated in
September data from the other field. Table 4 shows the resulting
accuracy metrics achieved in all these cases.

Table 2. Number of objectsmanually labeled for the training datasets, with detailed data for the objects belonging to the less represented classes in
the complete training dataset

Date Field Complete dataset E. elaterium Other weeds Balanced dataset

May 1 14 068 271 113 565
2 15 392 111 267 555

September 1 17 406 137 NA 548
2 14 909 43 NA 172
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In the OOB validation, the OA values were always equal to or
higher than 0.93, achieving better results in the complete unbal-
anced dataset than in the balanced dataset. PA and UA for
E. elaterium were over 0.80 in all cases and were higher in the bal-
anced dataset, with the only exception of PA in the model created
for Field 1 using data from September.

When applying the RF models created from the September
dataset (E. elaterium as the only weed) in other fields and dates,
OA values were equal to or higher than 0.9, PA for E. elaterium
ranged from 0.66 to 1.00 with most of the values over 0.75,
and UA for E. elaterium was between 0.16 and 0.94. OA values
were very similar for the models created with the balanced and
unbalanced datasets, although slightly higher for the latter
one. Regarding the accuracy metrics for E. elaterium, although
PA was higher for the models created with balanced data, the
models created with the complete unbalanced dataset yielded
better UA values.

3.3 Unsupervised classification algorithm
Table 5 shows the validation results of the unsupervised algo-
rithm in both fields in September, when there were no other
weeds apart from E. elaterium. All the accuracy metrics were over

Table 3. Accuracy metrics for the random forest models in the scenarios with E. elaterium and other weeds (May)

Training field Balanced training dataset Validation field Overall accuracy Producer's accuracy E. elaterium User's accuracy E. elaterium

1 No OOB* 0.97 0.89 0.84
2 0.96 0.75 0.61

Yes OOB 0.89 0.91 0.82
2 0.96 0.75 0.69

2 No OOB 0.98 0.93 0.73
1 0.95 0.79 0.80

Yes OOB 0.92 0.91 0.86
1 0.89 0.86 0.45

*OOB: based on out-of-bag data from the same field.

Table 4. Accuracy metrics for the random forest models in the scenarios with E. elaterium as the only infesting weed (September)

Training field Balanced training dataset Training date Validation field Overall accuracy
Producer's accuracy

E. elaterium
User's accuracy
E. elaterium

1 No May OOB* 0.97 0.94 0.86
1 0.95 0.75 0.94
2 0.97 0.95 0.89

September OOB 0.97 0.97 0.82
2 0.98 0.98 0.91

Yes May OOB 0.96 0.98 0.97
1 0.95 0.87 0.44
2 0.97 0.98 0.51

September OOB 0.95 0.96 0.95
2 0.97 1.00 0.22

2 No May OOB 0.99 0.92 0.82
1 0.99 0.77 0.77
2 0.98 0.95 0.84

September OOB 0.98 0.95 0.91
1 0.96 0.66 0.94

Yes May OOB 0.97 0.98 0.97
1 0.90 0.95 0.16
2 0.96 0.98 0.22

September OOB 0.93 0.98 0.95
1 0.95 0.80 0.38

*OOB: based on out-of-bag data from the same field.

Table 5. Accuracy metrics for the automatic classification algorithm
in the scenarios with E. elaterium as the only infesting weed
(September)

Field Overall accuracy
Producer's accuracy

E. elaterium
User's accuracy
E. elaterium

1 0.93 0.74 0.76
2 0.95 0.91 0.91
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0.70, and although OA values were similar in both fields, PA and
UA for E. elaterium were higher in Field 2.

4 DISCUSSION
The optimization of segmentation parameters is of crucial importance
in OBIA. However, according to a semisystematic review conducted
by Gonçalves et al.,13 44% of scientific studies using OBIA do not
explain how they selected these parameters. Among some recent
papers using RF and OBIA for weed detection,7,25,26 the present work
is the only one that has applied amethodology for the optimization of
all the segmentation parameters, while de Castro et al.25 optimized
the scale using ESP12 but not the other segmentation parameters,
and Michez et al.26 only tested three scale parameter values.
The RF models created in this work were very accurate, with OA

values ranging from 0.89 to 0.99. Furthermore, this accuracy was
achieved regardless of whether they were validated on OOB sam-
ples or in other fields and dates. This fact implies that the RF
models were robust and transferable. RF models created with
training data from one field and date yielded high OA values
when tested in other fields and dates. As an example, the RF
model created for the detection of E. elaterium as the only infest-
ing weed using data from Field 1 in May achieved an OA of 0.97
when validated in data from Field 2 in September. This is impor-
tant because it means that it would not be necessary to create a
model with manually labeled samples for each field and date.
For example, in a practical use for E. elaterium management in
an olive farm, it would be rather sufficient to create one model
and it could be applied to the whole farm at any phenological
moment if the imagery is acquired under similar light conditions,
and flight and camera configurations. Although it has not been
tested, the use of another UAV platforms or sensors should not
affect the accuracy and transferability of the proposed methodol-
ogy as long as parameters such as spatial resolution and spectral
range of the images remain similar to the ones used in the
present work.
The OA values yielded by the RF models created in the present

work are in line with those obtained in UAV-basedweed detection
works by other authors. Michez et al.26 and Gao et al.7 reached OA
values of 0.97 and 0.945 for weedmapping using OBIA and RF and
using proprietary software, respectively. Other works that applied

OBIA in open-source environments for weed detection reached
OA values of 0.92 and 0.99, respectively.3,21

Moving the point of view from the OA to the accuracy achieved
in the classification of E. elaterium, which is the agronomical leit-
motif of this work, the RF models also achieved high accuracy
values. In themost complicated scenario, i.e., when there were dif-
ferent weed species in the olive orchard, the RF models achieved
PA values for E. elaterium ranging from 0.75 to 0.93. This fact
implies that the vast majority of the E. elaterium plants was
detected. Most of the UA values for this class were over 0.70 when
there were different weed species, which means that most of the
objects classified as E. elaterium actually belonged to this class.
Considering the high PA values, even lower UA values implying
an overestimation of the weed presence could be accepted by
olive growers, which would prefer this overestimation rather than
missing the detection of E. elaterium plants that could escape
from the weed treatment and act as a source of seeds.
In the analysis of the images from September (Table 4), when

E. elaterium was the only infesting weed, the RF models also
achieved high PA values for the detection of this weed. On average,
these RFmodels allowed the detection of 91% of the objects labeled
as E. elaterium. UA values for this weed were over 0.80 in most cases,
although there were UA values below 0.25 in three RF models cre-
ated with balanced data. The lower UA values were accompanied
by high PA values, which imply that there was an overestimation
of the E. elaterium infestation. According to the confusion matrices
(data not shown), this overestimation was caused by shadow and
soil objects being classified as E. elaterium. Maybe in this balanced
dataset from field 2 in September (including less samples), the het-
erogeneity of objects belonging to E. elaterium, shadow and soil
was underrepresented and caused the confusion among these clas-
ses. In any case, even in this situation, an adequate control of
E. elaterium could be achieved since the RF models presented high
PA values and consequently missed a small amount of weed plants.
Regarding the influence of balanced training datasets on the PA

and UA values for E. elaterium in the RF models, there was not a
clear influence of the balance of the samples in the models cre-
ated for the multiweed scenario. These accuracy metrics were
sometimes higher for the unbalanced dataset and sometimes
higher for the balanced dataset. However, when E. elaterium was
the only infesting weed, the UA values for this class were always

Figure 5. Detailed view of the orthomosaic (left) and the infestation map (right) created applying the automatic algorithm to Field 2 in September.
Coordinate system: WGS84 UTM 30 N.
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higher for the models created with the full dataset without class
balancing, while OA and PAwere similar regardless of the balance
of the training data. The better results achieved for UA with the
unbalanced dataset contrast with the general recommendation
of using balanced training datasets for the use of RF in remote
sensing,16 and this fact should be more deeply studied in future
research. Previous works devoted to weed detection using RF
and OBIA. de Castro et al.22 and Michez et al.26 used balanced
training data, while Gao et al.7 did not balance the training data-
set. However, none of these works compared the results of RF
models created with balanced and unbalanced data.
The unsupervised classification algorithm created for the detec-

tion of E. elateriumwhen there were no other weeds reached high
accuracy metrics, similar to those achieved by the supervised RF
models, but with the added value of not needing the manual cre-
ation of a training dataset. The only user intervention required for
using the automatic algorithm is the creation of a small training
dataset for the optimization of the segmentation parameters
using SegOptim package. However, this previous step is only
required the first time that the algorithm is going to be used. Once
the segmentation parameters are defined, they can be recursively
used in a potential commercial application as long as the UAV
imagery acquisition parameters (sensor, flying height, overlaps)
remain stable. Furthermore, this previous step is also needed for
the supervised classification approach. Consequently, and due
to its lower requirement of user intervention, the unsupervised
classification algorithm is recommended in olive orchards
affected only by E. elaterium. As this is a hard-to-control weed,1,2

it could also be used in fields where the rest of the weeds have
been eradicated by previous weed treatments and the farmer is
looking for the detection and treatment of the remaining
E. elaterium plants. This would be the case for the studied olive
orchards, where there were different weed species in May that
were effectively controlled by the corresponding treatments
applied on the farm, but E. elaterium tolerated these treatments
and was still present in the fields in September.
The results achieved by the RF models and the unsupervised

algorithm developed in the present work allow the generation
of accurate infestation maps, such as the one shown in Fig. 5.
These maps representing the location and extension of the
E. elaterium patches open the door to the creation of site-specific
weed treatments specifically designed for eradicating this hard-
to-control weed. Furthermore, as stated by Blank et al.,1 the
knowledge generated about the spatial distribution in patches
and patch temporal stability of E. elaterium could be useful not
only for the understanding of the species ecology, which is vital
for the design of appropriate weed management strategies, but
also because this tactic would not require new yearly mapping
but a relatively low frequency mapping (e.g. every few years)
which is relevant in woody crops.
The use of both free and open-source software for the develop-

ment of the E. elaterium classification algorithms together with
inexpensive UAVs and embedded sensors is on line with the
recent trend of developing affordable weed mapping systems
reported by other works, such as Lam et al.21 and Mattivi et al.3

The use of low-cost technologies and methodologies can repre-
sent a boost for the adoption of precision agriculture techniques,
as the economic costs have been identified as a barrier to the
implementation of these technologies both in developed regions
such as Europe and in developing countries such as India.18,19

The present work is, to the authors' knowledge, the first one to
address weed mapping in olive orchards by remotely sensed

imagery. Most other works on remote sensing for SSWM have
focused on horticultural or arable crops, with few exceptions deal-
ing with weed detection in woody crops,5,6 although none in olive
orchards. Therefore, the present paves the way to the implemen-
tation of SSWM in olive orchards under superintensive system,
which has a very high added value due to its high productivity
and precocity, with the consequent boost to crop sustainability
by rationalizing the use of herbicide treatments in line with the
EU Green Deal. In order to achieve an effective implementation
of SSWM in olive orchards, together with weed detection
between olive hedgerows, it is necessary to carry out research
on weed detection under the canopy of olive trees (i.e. within
the row). In this line of research, some preliminary work has been
published on the use of ground sensors for the detection of
Conyza spp. growing under olive hedgerows,37 which cannot be
detected by aerial remote sensing.

5 CONCLUSIONS
The present work presents a robust methodology for the detec-
tion of E. elaterium, a problematic weed that is expanding its infes-
tations in the interrow area of olive and other woody crops. To the
best of the authors' knowledge, this is the first time that remote
sensing has been used for weed mapping in olive orchards. The
developed workflow was based on low-cost UAV-RBG imagery
and OBIA algorithms developed in open-source software. The
classification of E. elaterium relied on RF models in scenarios with
multiple weed species and on an unsupervised process when
E. elaterium was the only infesting weed in hedgerow olive
orchards. The proposed workflow was created and validated in
commercial orchards with natural infestations, which hardened
the achievement of the proposed objective in comparison with
its development under controlled conditions in experimental
fields. The accuracy of the classification algorithms allows the cre-
ation of site-specific treatment maps for increasing the sustain-
ability of weed management. Therefore, the development of
these algorithms in free and open-source software fosters their
application in small and medium farms where economic cost is
a barrier to the implementation of precision agriculture and digi-
tizing techniques.
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