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Anovel clinical decision support system is proposed in this paper for evaluating the fetal well-being from the cardiotocogram (CTG)
dataset through an Improved Adaptive Genetic Algorithm (IAGA) and Extreme Learning Machine (ELM). IAGA employs a new
scaling technique (called sigma scaling) to avoid premature convergence and applies adaptive crossover and mutation techniques
with masking concepts to enhance population diversity. Also, this search algorithm utilizes three different fitness functions (two
single objective fitness functions and multi-objective fitness function) to assess its performance. The classification results unfold
that promising classification accuracy of 94% is obtained with an optimal feature subset using IAGA. Also, the classification results
are compared with those of other Feature Reduction techniques to substantiate its exhaustive search towards the global optimum.
Besides, five other benchmark datasets are used to gauge the strength of the proposed IAGA algorithm.

1. Introduction

In clinical practice, cardiotocography (CTG) was introduced
in the late 1960s, which is a noninvasive and cost-effective
technique for evaluating the fetal well-being. This technique
has been widely used by obstetricians for examining the
fetal well-being (inside the mother’s uterus) as the fetus is
not available for direct observations. The baby’s fetal heart
rate (FHR) and the mother’s uterine contractions (UC) are
recorded on a paper trace known as cardiotocograph. The
CTG technique is highly instrumental in the early identifica-
tion of a pathological state (i.e., congenital heart defect, fetal
distress, or hypoxia) and it helps the obstetrician to predict
future complications.

During the critical period of labor, these FHR signals
are used as a denotation of the fetal condition and as a
warning of possible fetal and neonatal compromise, namely,
metabolic acidosis. Severe hypoxic injury of the fetus can
result in the neurodevelopmental disability and cerebral palsy
or even death [1]. Hence, such FHR patterns are devised in

such a way that such risky conditions of the fetus need to be
identified in earlier stages, in order to alert the obstetricians
to intervene before there is an irreversible damage to the
fetus. Although the FHR signals interpret and provide early
estimations and warnings about the fetal condition [2], still,
there has been lot of scepticism as there is inconsistency
in such interpretation and the increase of false positive
diagnosis. On one hand, advances in signal processing and
pattern recognition techniques have paved theway to develop
an efficient medical diagnosis system to analyze and classify
the FHR signal appropriately [3].

In this paper, a clinical decision support system called
Improved Adaptive Genetic Algorithm (IAGA) has been
developed to discern the FHR signals of the CTG recordings
into their respective groups. For this purpose, the CTG
dataset has been acquired from the UCI machine learning
repository for experimentation. This dataset consists of 2126
CTG samples and each of these samples has a feature length
of 21. Out of these 2126 samples, 1655 samples belong to
the normal state, 176 samples belong to the pathological
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Table 1: List of features in CTG dataset.

S.
number

Name of the
features Description

1 LB FHR baseline (beats per minute)
2 AC Number of accelerations per second
3 FM Number of fetal movements per second
4 UC Number of uterine contractions per second
5 DL Number of light decelerations per second
6 DS Number of severe decelerations per second

7 DP Number of prolonged decelerations per
second

8 ASTV Percentage of time with abnormal short
term variability

9 MSTV Mean value of short term variability

10 ALTV Percentage of time with abnormal long term
variability

11 MLTV Mean value of long term variability
12 Width Width of FHR histogram
13 Min Minimum of FHR histogram
14 Max Maximum of FHR histogram
15 Nmax Number of histogram peaks
16 Nzeros Number of histogram zeros
17 Mode Histogram mode
18 Mean Histogram mean
19 Median Histogram median
20 Variance Histogram variance

21 Tendency

Histogram tendency:
−1 = left asymmetric;
0 = symmetric;
1 = right asymmetric

state, and 295 samples belong to the suspect state. Features
of this CTG dataset used for experimentation have been
explained in Table 1. Single and multiobjective fitness func-
tions have been used to gauge the efficacy of the IAGA.
Several classifiers like 𝑘-NN (𝑘-Nearest Neighbor), SVM
(SupportVectorMachine), BN (BayesianNetwork), andELM
(Extreme LearningMachine) have been used to discern these
features.

With the objective of proving the robustness of this
search algorithm, apart from the CTG dataset, five other
benchmark datasets, that is, MEEI voice dataset, Parkin-
son’s (PD) dataset, Cleveland Heart Disease (CAD) dataset,
Erythemato-Squamous (ES) dataset, and Breast Tissue (BT)
dataset, have been taken from the UCI machine learning
repository for experimentation and tested with this algo-
rithm. The main aim is to select the best clinical features of
these datasets through the proposed IAGAmethod, which, in
turn, attains promising classification accuracywith aminimal
number of features.

The rest of this paper is organised as follows. Section 2
describes the literature works done in this specific problem
domain. Section 3 explains about the feature selection carried
out using IAGA. Section 4 presents the classifiers employed

and the performance measures. Section 5 enunciates the dis-
cussion of the classification results of CTG dataset. Section 6
elaborates the classification results of other datasets and
Section 7 concludes the entire work.

2. Previous Works on CTG Dataset

Numerous approaches have been investigated using conven-
tional and artificial intelligence techniques for feature extrac-
tion and also to come out with diagnostic systems [4]. In
[3], the automatic classification of FHR signal which belongs
to hypoxic and normal newborns has been carried out
through a hidden Markov models (HMM) based approach.
Yet again, an ANBLIR (artificial neural network based on
logical interpretation of fuzzy if-then rules) system is used
to evaluate the risk of low-fetal birth weight as normal or
abnormal using CTG signals recorded during the pregnancy
in [5].

2.1. Basic GA. As an expeditious search strategy, GA has
been utilized in the assessment of the fetal well-being.
For example, Ocak (2013) reported that a genetic based
optimization followed by SVM classification helps in pre-
dicting the substantial features for assessing the fetal state.
The classification accuracy with FHR data set obtained was
99.23%with 13 features [6]. An adaptive neurofuzzy inference
system (ANFIS) has been proposed for the prediction of fetal
status from theCTG recordings as normal or pathological [7].

Yılmaz and Kılıkçıer have suggested a combined scheme
of binary decision tree (BDT) and particle swarm opti-
mization (PSO) for handling this specific classification task.
Through least squares support vector machine (LS-SVM),
a good classification accuracy rate of 91.62% was achieved.
Besides, this experimentation has resulted in the three-class
classification of the CTG dataset using receiver operation
characteristic analysis and Cobweb representation [8]. How-
ever, the problem of design of a better genetic based search
heuristic that provides higher classification accuracy along
with a reduced number of voice features in this specific prob-
lem domain is still open. In other words, the reduced optimal
feature subset must be sufficient enough to classify the data
samples into their respective classes than the previous works.

Basic GA deals with candidate solutions which are
represented by individuals (or chromosomes) in a large
population. It starts with the random generation of ini-
tial set of chromosomes followed by their corresponding
fitness evaluation. The successive generations are created
(iteratively) by the picking of the highly fit individuals of
the current generation. On achieving the eligible individual
that satisfies our constraint, the GA cycle is stopped using
the termination criteria and this individual becomes the
solution of the problem. There are three significant genetic
operators called selection, crossover, and mutation, which
help in the reproduction process of the chromosomes [9].
Ideally, a GA cycle takes place using these genetic operators
and such genetic parameters influencing this process tend to
produce good individuals. Such a basic GA cycle is depicted
in Figure 1.
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Figure 1: Basic GA cycle.

3. An Improved Adaptive Genetic Algorithm
(IAGA) for Feature Selection

To begin with, initially, the input data of the CTG dataset
is extracted from the FHR signals. IAGA selects the best
optimal feature subset which is then fed as inputs to the
classifiers and these classifier inputs are distinguished into
their respective number of classes. The classification results
are presented in terms of performance measures like Positive
Prediction, Negative Prediction, Sensitivity, Specificity, Area
Under Receiver Operating Curve (AUC), Overall Accuracy,
𝐹-measure, 𝐺-mean, and Kappa statistic, and so forth.
Besides, the performance of the IAGA method has been
compared with three existing feature reduction and feature
selection methods (PCA, SFS, and SBS) so as to affirm the
strength of proposed search algorithm.

Despite the algorithm of Basic GA being applied to this
CTG dataset, IAGA is implemented in two different ways
with certain modification in the crossover and mutation
probabilities and their mode of usage during the search
procedure. Totally, three types of FS (Basic GA, IAGA-
method 1, and IAGA-method 2) have been performed on
this dataset followed by feature classification. Initially, Basic
GA is employed to this CTG dataset for optimizing the
features, which was mentioned earlier in Section 2. This is

further improved as IAGA for the same purpose, which varies
from Basic GA in terms of selection function, crossover and
mutation rates, and fitness functions. Three different fitness
functions have been formulated as the evaluation measures
of IAGA.

3.1. Stochastic Universal Sampling. The proposed IAGA
method employs the stochastic universal sampling (SUS)
technique for selecting the fittest chromosomes. This tech-
nique was developed by Baker in 1987 [10]. Based on this
random search, the SUS function utilizes a single random
value to sample the chromosomes. It makes use of several
strategies of GA to select the best parent chromosomes for
reproduction. Also, it ensures that these chromosomes are
highly capable of being reproduced. Through this selection
scheme, the genetic diversity of the population is highly
maintained.

3.2. Sigma Scaling. An important parameter that must be
fine-tuned during the genetic search is the selection pressure
(SP), that is, the degree to which the selection emphasizes
the better chromosomes. When this SP is very low, it will
result in the low convergence rate of the search algorithm. On
the other hand, a higher SP will make the search procedure
to attain premature convergence easily. Hence, to overcome
such conditions, various fitness scaling methods (a method
used to adjust the chromosomal fitness) have been proposed
to prevent GA from attaining the premature convergence.
Sigma scaling is one such a method that maintains a constant
SP throughout the entire generation and it is used in this
IAGA method for the reorientation of chromosomal fitness.
Suppose𝑓(𝑡)𝑥 is the fitness of some individual 𝑥 of generation 𝑡
and suppose the average fitness and standard deviation (SD)
of the fitness of the individuals in generation 𝑡 are given by
𝑓

(𝑡) and 𝜎

(𝑡), respectively; then the adjusted fitness of 𝑥 in
generation 𝑡 is given as follows:

ℎ

(𝑡)

𝑥 =

{

{

{

{

{

min(0, 1 +
𝑓

(𝑡)
𝑥 − 𝑓

(𝑡)

𝜎

(𝑡)
) , 𝜎

(𝑡)
̸= 0

1, 𝜎

(𝑡)
= 0.

(1)

3.3. Adaptive Crossover andMutationwithMasking. Uniform
crossover is applied in the search procedure of IAGA with
a crossover rate (𝑃𝑐) of 0.9. During uniform crossover, each
gene in the offspring is created by copying the corresponding
gene from one or the other parent, chosen according to a
randomly generated crossovermask. A single crossovermask
is randomly generated during the search of IAGA for each
pair of parents (P1—first parent and P2—second parent), in
which every “1” and “0” in the mask imply the copied gene
from the first parent and second parent, respectively [11].
The offspring produced in this way constitutes a collection of
genes from both the parents.

Flip-bit mutation is applied with a mutation rate (𝑃𝑚) of
0.03. The mutation operator makes use of a random mask.
It changes those corresponding bits which imply “1” in the
mask. Depending upon this random nature of the mask, the
value of 𝑃𝑚 is determined and this highly influences the
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random behavior of the 𝑃𝑚 value [12]. However, it is good to
vary the mutation rate between 0.1 and 0.001.

3.4. Fitness Functions

3.4.1. Objective Function I. Three fitness functions have been
devised to assess the chromosomal quality and they are given
below

Objv1 = Accuracy. (2)

3.4.2. Objective Function II. During the classification of
binary and multiclass problems, error rate and classification
accuracy are the two popular measures used for evaluating
the classifier performance. Generally, the classifier’s accu-
racy is determined as its performance measure in balanced
datasets [13]. But when dealing with imbalanced data, accu-
racy is known to be unsuitable to measure the classification
performance, as it may mislead the classification process due
to the emphasis on the influence of the majority class.

In order to overcome this convenience, a very fewmetrics
have been devised as fitness functions and they are geometric
mean (𝐺-mean), AUC (area under ROC curve), and 𝐹-
measure. In this approach of IGA, geometric mean (𝐺-mean)
has been chosen as an objective function as it is one of the
most popular measures for handling imbalanced data and
easier to calculate than 𝐹-measure and AUC. In this regard, a
new fitness function (Objv2) has been devised to evaluate the
fitness, where the classification performancewill be evaluated
through geometric mean and its equation is defined as

Objv2 =
𝑐

∏

𝑖=1

(𝑀𝑖)
1/𝑐

, (3)

where

𝑀𝑖 =
Number of correctly classified samples

Total number of samples

𝑐 = number of classes in the dataset.
(4)

For binary class, the value of 𝑐 = 2 and it corresponds to
classify the data into two groups. For multiclass, the value of
𝑐 = 1, 2, 3, . . . , 𝑁 and it corresponds to classify the data into
𝑁 number of classes.

3.4.3. Objective Function III. Eventually, in this IAGA
approach, a single objective fitness function (Objv2) has been
combined with a multiobjective fitness function (number of
zeros in the chromosome) to bias the genetic search towards
the global optimum and it is defined as

Objv3 = (𝑤)Objv2 + (1 − 𝑤) ( 𝑍
𝑁

) ,
(5)

where Objv2 corresponds to the 𝐺-mean value and 𝑤 (0 <

𝑤 < 1) is the equalizing factor, which adjusts the significance
of 𝐺-mean, 𝑍 implies the number of zeros in the chromo-
some, and𝑁 implies the length of the chromosome.

3.5. Methods of IAGA

3.5.1. IAGA-Method 1. The adaptive approach of IAGA has
been devised in two different ways. In basic GA, when the
values of𝑃𝑐 and𝑃𝑚 aremaintained constantly throughout the
entire search procedure, there will be no improvement in the
individuals’ fitness or it may result in premature convergence,
owing to attain a suboptimal solution.This not only will affect
the performance of search algorithm but also fails to achieve
the desired solution expeditiously. This can be avoided by
modifying the values of 𝑃𝑐 and 𝑃𝑚 in an adaptive manner
in accordance with the chromosomal fitness in their specific
generations [14].

Based on the convergence to the optimum, this IAGA-
method 1 (IAGA-M1) determines the adaptive crossover
and mutation rates. This is done with the help of certain
measures like average fitness value (𝑓avg) and maximum
fitness value (𝑓max) of the population, respectively. 𝑋 gives
this relationship between the maximum and average fitness
as follows:

𝑋 = 𝑓max − 𝑓avg. (6)

However, when GA converges to local optimum, that is,
when the value of𝑋 decreases, the values of𝑃𝑐 and𝑃𝑚 have to
be increased. Inversely, when the value of 𝑋 increases, these
values have to be decreased. Besides, when GA converges to a
locally optimal or even globally optimal solution, the increase
being done in the values of 𝑃𝑐 and 𝑃𝑚 will disrupt the near-
optimal solutions [14]. Due to this effect, the population may
never converge to the global optimum and the performance
of GA will be diminished considerably.

In order to overcome these issues, two more fitness
measures called 𝑓󸀠 and 𝑓󸀠󸀠 have been taken into account in
such a way that these measures help to preserve the excellent
individuals of the population. 𝑓󸀠 is the bigger fitness of the
two crossover chromosomes and 𝑓󸀠󸀠 is the fitness value of the
individual that has to be mutated. These measures are highly
instrumental in overcoming the premature convergence and
preserving the excellent individuals. Previously, the values of
𝑃𝑐 and 𝑃𝑚 are varied depending upon the 𝑋 value. But now,
we can conclude that 𝑃𝑐 and 𝑃𝑚 are not only related to 𝑋 but
also related to 𝑓max −𝑓

󸀠 and 𝑓max −𝑓
󸀠󸀠 [15]. Eventually, the 𝑃𝑐

and𝑃𝑚 values are determined using the following equation as

𝑃𝑐 =

{

{

{

{

{

{

{

𝑘1 (𝑓max − 𝑓
󸀠
)

(𝑓max − 𝑓avg)
𝑓

󸀠
≥ 𝑓avg

0.9 𝑓

󸀠
< 𝑓avg

𝑃𝑚 =

{

{

{

{

{

{

{

𝑘2 (𝑓max − 𝑓
󸀠󸀠
)

(𝑓max − 𝑓avg)
𝑓

󸀠󸀠
≥ 𝑓avg

0.03 𝑓

󸀠󸀠
< 𝑓avg.

(7)

For both these equations in (7), 𝑘1 and 𝑘2 are predeter-
mined values that are less than 1.0 considering the probability
formutation and crossover [14]. In this experiment, the values
of 𝑘1 and 𝑘2 have been empirically determined and fixed as
0.4 and 0.1, respectively.
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3.5.2. IAGA-Method 2. In IAGA-method 2 (IAGA-M2), the
values of 𝑃𝑐 and 𝑃𝑚 are devised with their maximum and
minimumprobabilities; that is, instead of applying two values
for 𝑃𝑐 and 𝑃𝑚, four values, namely, 𝑃𝑐max, 𝑃𝑐min, 𝑃𝑚max,
and 𝑃𝑚min are infused. This adaptive approach has been
followed in order to maintain diversity, thereby sustaining
the convergence capacity of IAGA [16]. Hence, the crossover
and mutation rates are chosen as described in the following
equation:

𝑃𝑐

=

{

{

{

{

{

{

{

𝑃𝑐max − (𝑃𝑐max − 𝑃𝑐min)

(1 + exp (𝜆 ((𝑓󸀠 − 𝑓avg) / (𝑓max − 𝑓avg))))
𝑓

󸀠
≥ 𝑓avg

𝑃𝑐max 𝑓

󸀠
< 𝑓avg

𝑃𝑚

=

{

{

{

{

{

{

{

𝑃𝑚max − (𝑃𝑚max − 𝑃𝑚min)

(1 + exp (𝜆 ((𝑓󸀠 − 𝑓avg) / (𝑓max − 𝑓avg))))
𝑓

󸀠
≥ 𝑓avg

𝑃𝑚max 𝑓

󸀠
< 𝑓avg,

(8)

where 𝑓max is the maximum fitness, 𝑓avg is the average fitness
of the population, 𝑓󸀠 is the bigger fitness of the two crossover
chromosomes, and 𝑓

󸀠󸀠 is the fitness value of the individual
that has to bemutated;𝑃𝑐max and𝑃𝑐min are themaximum and
minimum probabilities of crossover,𝑃𝑚max and𝑃𝑚min are the
maximum and minimum probabilities of mutation [16], and
lambda is a constant (𝜆 = 2).

While modifying the crossover and mutation rates, the
values of 𝑃𝑐max and 𝑃𝑐min are chosen as 0.9 and 0.6 on the
basis of empirical methods. Similarly, the values of𝑃𝑚max and
𝑃𝑚min are also chosen as 0.1 and 0.001 based on empirical
methods, respectively. Hence, when the chromosomes are
subjected to crossover and mutation, the values of 𝑃𝑐 and
𝑃𝑚 are modified adaptively and then masking is applied. The
specifications of IAGA are tabulated in Table 2 and Figure 2
shows the entire genetic cycle using the two methods of
IAGA.

4. Experimental Setup

4.1. Classifiers. The performance of the classifiers employed
in this work is examined by 10-fold cross validation scheme,
which have served as an evaluator of this proposed IAGA
algorithm. For the classification of selected features, four lin-
ear and nonlinear classifiers like 𝑘-NN, SVM, BN, and ELM
are applied. For performing binary classification, both 𝑘-NN
and SVM are used, in which SVM gives better classification
results. For multiclass classification, 𝑘-NN, BN, and ELM
are employed, wherein ELM achieves better classification
performance. A detailed description of these classifiers is
discussed below.

4.1.1. Support Vector Machine. Support vector, machine
(SVM) is an acknowledged classification technique, being
widely used for solving classification problems. In general,

Table 2: Specifications of IAGA.

Parameters Specifications
Probability of crossover, 𝑃𝑐 0.9
Type of crossover Uniform crossover
Probability of mutation, 𝑃𝑚 0.03
Type of mutation Flip-bit mutation
Selection method Stochastic selection
Number of runs 30
Length of chromosome 22
Population size 21
Number of elites 1
Maximum probability of crossover 0.9
Minimum probability of crossover 0.6
Maximum probability of mutation 0.1
Minimum probability of mutation 0.001

SVM separates the classes with a decision surface that
increases themargin between the classes.The surface is called
the optimal hyperplane and the data points closest to this
hyper plane are called support vectors [17]. The data used in
this work is not linearly separable. Hence, nonlinear kernel
functions are employed to transform the data into a new
feature space where a hyperplane tends to separate the data.
The optimal separating hyperplane is being searched by these
kernel functions in a new feature space to increase its distance
from the closest training point. Due to a better generalization
capability and low computational cost, RBF kernel has been
applied in this work for separating the optimal hyperplane
and the equation of the kernel function is given below

𝐾(𝑥, 𝑥𝑖) = exp(
−

󵄩

󵄩

󵄩

󵄩

𝑥 − 𝑥𝑖
󵄩

󵄩

󵄩

󵄩

2

2𝜎

2
) .

(9)

There are two significant parameters called regularization
parameter (𝛾) and squared bandwidth of the RBF kernel
(𝜎

2
), which should be optimally selected to obtain promising

classification accuracy. By trial and error, the value of sigma
(𝜎

2
) and gamma (𝛾) for the RBF kernel was set to 0.4 and 90,

respectively.

4.1.2. Extreme Learning Machine. A new learning algorithm
for the single hidden layer feed forward networks (SLFNs)
[18] called extreme learning machine (ELM) was proposed
byHuang et al. It has beenwidely used in various applications
to overcome the slow training speed and overfitting problems
of the conventional neural network learning algorithms [19].
For the given 𝑁 training samples, the output of a SLFN
network with 𝐿 hidden nodes can be expressed as the
following:

𝑓𝐿 (𝑥𝑗) =

𝐿

∑

𝑖

𝛽𝑖𝑔 (𝑤𝑖 ⋅ 𝑥𝑗 + 𝑏𝑖) , 𝑗 = 1, 2, 3, . . . , 𝑁. (10)

It can be described as 𝑓(𝑥) = ℎ(𝑥)𝛽, where 𝑥𝑗, 𝑤𝑖, and
𝑏𝑖 are the input training vector, input weights, and biases to
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the hidden layer, respectively. 𝛽𝑖 is the output weights that
links the 𝑖th hidden node to the output layer and 𝑔(⋅) is the
activation function of the hidden nodes.

Training an SLFN is simply finding a least square solution
by using Moore-Penrose generalized inverse:

̂

𝛽 = 𝐻†𝑇,
(11)

where 𝐻† = (𝐻

󸀠
𝐻)

−1
𝐻

󸀠 or 𝐻

󸀠
(𝐻𝐻

󸀠
)

−1, depending on
the singularity of 𝐻󸀠𝐻 or 𝐻𝐻󸀠. Assume that 𝐻󸀠𝐻 is not a
singular and the coefficient 1/𝜀 (𝜀 is positive regularization
coefficient) is added to the diagonal of𝐻󸀠𝐻 in the calculation
of the output weights 𝛽𝑖. Hence, more stable learning system
with better generalization performance can be obtained. The
output function of ELM can be written compactly as

𝑓 (𝑥) = ℎ (𝑥)𝐻

󸀠
(

1

𝜀

+ 𝐻𝐻

󸀠
)

−1

𝑇.

(12)

During the implementation of ELM kernel, the hidden
layer feature mappings need not to be known to users and
RBF kernel has been employed in this work. Best values

for positive regularization coefficient (𝜀) as 4 and RBF
kernel parameter as 1 were found empirically after several
experiments.

4.2. Implementation of the IAGA with Benchmark Datasets.
The implementation of the proposed IAGA methods along
with the respective FS and FR methods has been elaborated
in this section. The entire process takes place in three major
steps which are

(i) feature reduction/selection using four existing meth-
ods,

(ii) optimization using IAGA method,
(iii) classification through 𝑘-NN, SVM, BN, and ELM.

Initially, PCA is applied to the data samples of the
concerned dataset and their dimensionality is reduced to the
desired range. From PCA, only the principal components
of having 98% of the variability are selected as features.
Simultaneously, SFS and SBS are employed with the same
dataset to select the minimized feature subset. In SBS and
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Figure 3: Implementation of IAGA in pattern classification.

SFS, only 50% of the features are selected from optimally
ordered set of all features of the six datasets. The reduced
feature subsets of both these methods are individually fed as
inputs to the classifiers.

Secondly, the proposed IAGA method is applied for
choosing the best features of the specific dataset.Thismethod
involves certain significant levels of the genetic process like
population initialization, chromosome selection using SUS
with sigma scaling, applying crossover and mutation using
masking techniques, fitness evaluation using the three fitness
functions (Objv1, Objv2, and Objv3), and satisfying the
termination criteria. The selected feature subset obtained
through this optimization technique is fed as inputs to
the classifiers. Hence, three types of inputs are sent to the
classifiers (inputs from PCA, inputs from SFS and SBS, and
reduced inputs from IAGA).

Finally, the classifier tends to classify the inputs into their
respective binary or multiclass groups based on the number
of the classes of the concerned dataset. For instance, when
CTG dataset is subjected to the aforementioned processes,
classifiers like 𝑘-NN, BN, and ELM will classify the data
samples into pathological, suspect, and normal samples.
Similarly, whenPDdataset is subjected to the aforementioned
processes, the 𝑘-NN and SVM classifiers will classify the
data samples into pathological and normal samples. Figure 3
describes the implementation of the proposed IAGAmethods
along with the benchmark datasets.

4.3. Performance Measures-Confusion Matrix. A confusion
matrix is a plot used to evaluate the performance of a
classifier. As the proposed IAGA algorithm deals with both
binary andmulticlass classification problems, the experimen-
tal results are presented in terms of several performance
measures. Among these measures, the classification results
of binary classification are explained in terms of Sensitivity,

Specificity, AUC, Overall Accuracy, 𝐹-measure,𝐺-mean, and
Kappa statistic. The experimental results of multiclass classi-
fication are described in terms of Accuracy and𝐺-mean. True
positive (TP), true negative (TN), false positive (FP), and
false negative (FN) are the four basic elements of a confusion
matrix and the aforementioned performance measures are
evaluated from these elements, which are explained below.

Sensitivity (SE):

SE = 100 ×

TP
TP + FN

.
(13)

Specificity (SP):

SP = 100 ×

TN
TN + FP

.
(14)

Accuracy (ACC):

ACC = 100 ×

TP + TN
TP + TN + FP + FN

.
(15)

𝐹-measure:

𝐹-measure = 2 × precision × recall
precision + recall

, (16)

where

precision =

TP
TP + FP

, recall = TP
TP + FN

.
(17)

Area under ROC:

ROC =

SE + SP
2

.
(18)
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Figure 4: Classification accuracies of all the FR/FS methods using
CTG dataset.

Kappa statistic:

KS =
𝑃0 − 𝑃𝑐

1 − 𝑃𝑐

, (19)

where 𝑃0 is the total agreement probability and 𝑃𝑐 is
the hypothetical probability of chance agreement.

𝐺-mean:

𝐺-mean =

𝑐

∏

𝑖=1

(𝑀𝑖)
1/𝑐

. (20)

5. Results and Discussion

5.1. Classification Results of CTG Dataset. Pattern classifi-
cation is performed on the CTG data by employing IAGA
methods to perform FS. In addition, this dataset is also
treated with the three existing FS methods like PCA, SFS,
and SBS and their simulation results are compared with
those of the IAGAmethods. Table 3 presents the comparison
of simulation results obtained after applying the proposed
IAGAmethods and three existing FS methods. It can be seen
from this table that, from PCA, 16 principal components
containing 98% of the variability are selected.

When FS is performed using SBS and SFS, first 11 features
(50% of the features) are selected from the optimally ordered
set of 22 features. Totally, the simulation results unfold
that the three existing FS methods have brought out a best
average classification accuracy of 92.14%, 92.10%, and 92.71%,
respectively. In the view of comparing the classification
performance of the IAGA methods directly with that of
the three existing FS methods (PCA, SBS, and SFS), first
6 features are chosen and classification experiments are
conducted. The classification accuracy obtained by selecting
the first 6 features using PCA, SBS, and SFS is 89.84%, 91.44%,
and 90.64%, respectively.

Figures 4 and 5 show the comparative view of the clas-
sification accuracies and number of selection features using
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Figure 5: Number of selected features using all the FR/FS methods
for CTG dataset.

Table 3: Classification accuracies of all FS/FR methods using CTG
dataset.

FS methods Number of selected
attributes

Accuracy obtained
using ELM

PCA 16 92.14
6 89.60

SFS 11 92.10
6 91.44

SBS 11 92.71
6 90.55

Basic GA 14 97.87
IAGA-M1 6 93.61
IAGA-M2 13 93.61

Table 4: Performance measures of CTG dataset.

Metrics ELM
Acc. in % 𝐺-mean

PCA 92.14 80.97
SFS 92.10 83.30
SBS 92.71 83.40
Basic GA 97.87 95.07
IAGA-M1 93.61 85.57
IAGA-M2 93.61 85.88

all the FR/FS methods for the CTG dataset. The inference
from these Figures reveals that, among all the FR/FSmethods,
the overall (best) classification accuracy is yielded through
IAGA-M1 for 6 features.

Table 4 explains the performance measures of all the
FR/FS methods using this dataset. The observations show
that the two IAGA methods have come out with a moderate
accuracy ranging between 85% and 95%. However, when the
overall performance is taken into account, the best average
classification accuracy has been achieved by both IAGA-
M1 and M2 with 93.61%. But when comparing the feature
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Table 5: Classification accuracies of classifiers using CTG dataset.

Classifier Classification accuracy
With original features After FS % of increase

ELM 91.03 93.61 2.64

Table 6: Confusion matrix of CTG dataset.

Method ELM
Pathological Suspect Normal

IAGA-M1
1620 61 10
33 224 14
2 10 152

count, IAGA-M1 has accomplished better results than IAGA-
M2 by selecting only 6 CTG features and those six features
are LB (FHR baseline), AC (accelerations), UC (uterine con-
tractions), ASTV (abnormal short term variability), ALTV
(abnormal long term variability), and MLTV (mean value
of long term variability). Also, these two methods have
produced best 𝐺-mean values of 85.57% and 85.88% through
ELM classification.

Table 5 represents the classification results obtained
before and after undergoing FS procedure. At the initial stage
of classification, when the original CTG samples are directly
fed into the ELM classifier, the accuracy range obtained was
mediocre. However, when these features are selected through
IAGA, the accuracy seemed to increase by 2.64% significantly.
Eventually, the maximum classification accuracy of 94.01% is
obtained using IAGA-M1 for the discrimination of the CTG
samples with the SD of 0.24.

5.2. Confusion Matrix of CTG Dataset. Table 6 explicates
the simulation results of CTG dataset in the form of con-
fusion matrix for the three classifiers. Since 3 class classi-
fications have been performed on this dataset, there seems
to be moderate amount of misclassifications for all the
three groups. Out of the 1655 pathological samples, 1620
samples were correctly classified with remaining 35 incor-
rect classifications. For the 295 suspect samples, there are
224 correct classifications with 71 misclassifications. Finally,
out of 176 normal samples, 152 normal samples are cor-
rectly classified with the remaining 24 incorrectly classified
samples.

6. Classification Results of
Other Benchmark Datasets

6.1. Comparison with PreviousWorks for All the Datasets. The
observation from Table 7 shows the comparison of the clas-
sification results of CTG dataset and the other five datasets
with their previous works in the literature. Inferences from
the literature enunciate that the proposed IAGA technique
has achieved the best classification accuracies (e.g., 93.61% for
CTG dataset) and optimal feature subset (6 clinical features)
so far. The classification performance has been achieved
similarly for the remaining datasets as well.
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Figure 6: Comparison plot of overall performance of six datasets.

6.2. Overall Classification Performance. The overall clas-
sification performance is displayed in the form of com-
parison plot in Figure 6 and this figure substantiates the
maximum classification performances achieved using the
proposed search techniques. When analysing the overall per-
formance, the best classification accuracy has been achieved
through IAGA-M2 for four datasets and IAGA-M1 for two
datasets.

6.3. Comparison of Fitness Functions of the IAGA Methods.
Three fitness functions, namely, classification accuracy, 𝐺-
mean, and weighted aggregation (𝐺-mean + sum of unse-
lected features), have been devised as the first, second, and
third fitness function, respectively. Table 8 depicts the overall
comparison between these three different fitness functions of
the proposed IAGA methods. The overall observation from
this table implies that the third fitness function (Objv3) (indi-
cated by the symbol √) of all the three proposed methods
has produced the maximum number of best classification
accuracies for most of the datasets.

7. Conclusion

This paper has proposed an efficient clinical support system
called IAGA to discern the highly discriminative clinical fea-
tures from the CTG dataset through ELM classifier to assess
the fetal well-being. The classification results indicate that
IAGAmethod has performed better in terms of classification
accuracy and reduced feature count when compared with
the previous works in the literature. The classification results
are presented in terms of various performance measures like
Sensitivity, Specificity, AUC, Overall Accuracy, 𝐹-measure,
𝐺-mean, and Kappa statistic. In order to demonstrate the
effectiveness of this algorithm, five other benchmark datasets
have been testedwith the proposed IAGA searchmethod, and
the classification results are elaborated in detail. Also, these
results are compared with other existing feature selection
and feature reduction methods to potentiate its robustness.
Observing the classification results obtained, it can be con-
cluded that this decision support system has achieved the
optimal solution obtained so far and has been instrumental
for the obstetricians in predicting the fetal well-being more
accurately.
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Table 7: Comparison with previous works of all the datasets.

S. number [Reference Number] Features and methods Selected features Classifier Accuracy
Multiclass classification

CTG dataset
1 [7] ANFIS — — 97.15
2 [6] GA 13 SVM 99.23
3 [8] LS-SVM-PSO-BDT — SVM 91.62
4 Proposed study IAGA-M1 6 ELM 93.61 ± 0.42

ES dataset
1 [20] IFSFS 21 SVM 98.61
2 [21] Two-stage GFSBFS 20, 16, 19 SVM 100, 100, 97.06
3 [22] GA based FS algorithm 16 BN 99.20
4 Proposed study IAGA-M2 14 BN 98.83 ± 0.12

BT dataset
1 [23] Normalization — SVM 71.69
2 [24] Electrical impedance spectroscopy 8 92
3 [25] ACO and fuzzy system — SVM 71.69
4 Proposed study IAGA-M2 3 ELM 93.58 ± 0.42

Binary Classification
MEEI dataset

1 [26] 30 acoustic features and PCA 17 SVM 98.1
2 [27] LDA based filter bank energies Not reported LDA 85
3 [28] 22 acoustic features and IFS 16 SVM 91.55
4 Proposed study 22 acoustic features and IAGA 8 SVM 100

PD dataset
1 [29] GA 10 SVM 99
2 [30] GA 9 k-NN 98.20
3 Proposed study IAGA-M1 8 k-NN 99.38 ± 0.22

CAD dataset
1 [31] GA 9 SVM 83
2 [32] WEKA filtering method 7 MLP 86
3 Proposed study IAGA-M2 3 SVM 83.23 ± 0.84

Table 8: Overall comparison of fitness functions.

Datasets Basic GA IAGA-method 1 IAGA-method 2
Objv1 Objv2 Objv3 Objv1 Objv2 Objv3 Objv1 Objv2 Objv3

MEEI √ √ ×

PD × √ ×

CAD × √ √

ES √ × ×

BT √ √ √

CTG √ √ ×
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