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Abstract
Purpose: Breast cancer is the most common malignancy in women. Unfortu-
nately, current breast imaging techniques all suffer from certain limitations: they
are either not fully three dimensional, have an insufficient resolution or low soft-
tissue contrast. Grating interferometry breast computed tomography (GI-BCT)
is a promising X-ray phase contrast modality that could overcome these limita-
tions by offering high soft-tissue contrast and excellent three-dimensional reso-
lution. To enable the transition of this technology to clinical practice, dedicated
data-processing algorithms must be developed in order to effectively retrieve
the signals of interest from the measured raw data.
Methods: This article proposes a novel denoising algorithm that can cope with
the high-noise amplitudes and heteroscedasticity which arise in GI-BCT when
operated in a low-dose regime to effectively regularize the ill-conditioned GI-
BCT inverse problem. We present a data-driven algorithm called INSIDEnet,
which combines different ideas such as multiscale image processing,transform-
domain filtering, transform learning, and explicit orthogonality to build an Inter-
pretable NonexpanSIve Data-Efficient network (INSIDEnet).
Results: We apply the method to simulated breast phantom datasets and to
real data acquired on a GI-BCT prototype and show that the proposed algo-
rithm outperforms traditional state-of -the-art filters and is competitive with deep
neural networks.The strong inductive bias given by the proposed model’s archi-
tecture allows to reliably train the algorithm with very limited data while providing
high model interpretability, thus offering a great advantage over classical con-
volutional neural networks (CNNs).
Conclusions: The proposed INSIDEnet is highly data-efficient, interpretable,
and outperforms state-of -the-art CNNs when trained on very limited training
data. We expect the proposed method to become an important tool as part of a
dedicated plug-and-play GI-BCT reconstruction framework,needed to translate
this promising technology to the clinics.
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1 INTRODUCTION

Breast cancer is the most prevalent malignancy in
women with one out of eight developing the disease in
her lifetime.1 To fight this public health burden, recent
years have witnessed the introduction of many screen-
ing programs to early detect and consequently to better
treat this disease.2 Unfortunately,both false positive and
false negative rates remain high, leading to unnecessary
psychological distress and missed tumors, respectively.2

The reason for this is attributable to the fact that current
breast imaging techniques,most notably mammography,
ultrasound, tomosynthesis, breast MRI, and absorption-
based breast CT,3,4 all suffer from some limitations. In
fact, none of these techniques simultaneously yields
fully three-dimensional (3D) data with sufficient soft-
tissue contrast and spatial resolution to detect crucial
imaging biomarkers (small soft tissue lesions and their
margins, microcalcifications, architectural distortions,
and tiny soft tissue density differences),5 thereby mak-
ing it difficult for radiologists to take confident decisions.

Consequently, there has been an ever-increasing
effort to utilize X-ray phase contrast imaging which can
potentially lead to higher soft-tissue contrast compared
to absorption-based imaging, without sacrificing spa-
tial resolution.6 In fact, with synchrotron sources and
in laboratory applications phase contrast already deliv-
ers far superior soft-tissue delineation.7,8 X-ray grating
interferometry (GI) is a phase contrast technique hold-
ing most of the prerequisites for clinical compatibility.9

For this reason, our group has designed and is cur-
rently building a grating interferometry breast computed
tomography (GI-BCT) prototype, that is, translating
the technology into a first-of -its-kind compact medi-
cal device.

Obtaining high-quality phase-contrast images in clini-
cally compatible settings remains a challenge. The the-
oretically achievable higher contrast in phase imaging
compared to absorption cannot yet be fully exploited
on compact X-ray sources because of the high-noise
amplitudes and noise distributions.10 Phase contrast
images are in fact characterized by intrinsic low-
frequency noise, especially in the low photon-count
case.11 Furthermore, those very same images contain a
nonuniform noise distribution due to imperfect gratings.
Finally, adhering to the severe constraints imposed by
the clinical environment (such as radiation dose, scan-
ning time, and patient comfort) demands for novel solu-
tions to handle sparse sampling and photon starvation,
thereby making it even more cumbersome to achieve
high image quality.

It is important to mention here that this problem is spe-
cific to the phase contrast channel. In fact, in the absorp-
tion image the noise is predominantly present at the high
frequencies,making it much easier to effectively denoise
these data and for which a variety of established denois-
ing methods12,13 work well.

A powerful denoising algorithm is thus necessary
to suppress the noise and let the higher intrin-
sic phase contrast emerge. In particular, a pipeline
is needed to cope with the high-noise amplitudes
and heteroscedasticity, while simultaneously offer-
ing high algorithm interpretability, reliability, and
robustness.

The two major groups of denoising algorithms,
which exist today, namely traditional methods and deep
learning methods, have both significant limitations.
Algorithms in the first category rely on hand-crafted
priors12,13 such as nonlocal similarity, low rankness,
small gradient norms, nonnegative values, and sparsity
in some transform domains,such as the wavelet domain.
They form reliable pipelines which work extremely well
on images with relatively little noise, but their per-
formance drastically deteriorates when dealing with
lower image quality, as they are unable to adapt to
the data at hand. In contrast, deep learning methods
have been shown to yield impressive results14–16 by
implicitly learning a prior in a data-driven fashion with-
out the need of human intervention. A big downside of
deep learning–based algorithms, however, is their high
sensitivity to training data and their limited interpretabil-
ity caused by the concatenation of (many) linear and
nonlinear operations.It is well known that deep network–
based denoisers might add structures which are not
present and remove the ones which are present in the
ground-truth data.17 Such behavior is unacceptable in
particular when it comes to denoising in medical appli-
cations. A third alternative is to combine the structure
of handcrafted regularization with data-driven learning,
thereby leveraging the power of data while maintaining
interpretability.

To date, to the best of our knowledge, a single article
has been published on the use of a data-driven method
for denoising of GI, and in particular differential phase
contrast (DPC), projection data.18 However, the authors
used a black-box model and restricted their analysis
to radiography. In contrast, we focus on GI phase CT
and propose a hybrid denoising algorithm, which we call
“Interpretable NonexpanSIve Data-Efficient network”
(INSIDEnet), that attempts to leverage the strengths of
both worlds:the interpretability of classical filters and the
flexibility of data-driven models. Importantly, the model
has been parameterized to maximize interpretability and
reliability, which are both imperative conditions for clini-
cal applicability.

In this article, we demonstrate the performance of
our hybrid algorithm on simulated breast phantoms and
real data acquired on our GI-BCT prototype. Our INSI-
DEnet achieves better results compared to traditional,
non-learning-based models, without paying in robust-
ness.The INSIDEnet shows that it is possible to achieve
an excellent denoising performance with superior inter-
pretability and robustness compared to deep neural
networks.
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2 MATERIALS AND METHODS

2.1 Grating interferometry breast CT

Conventional X-ray imaging is based on photon absorp-
tion in the imaged tissues. Unfortunately, biological soft
tissues have very similar attenuation coefficients as they
are all mainly composed of carbon, oxygen, and water.6

Therefore, there is limited contrast between different
body constituents. For phase, in the absence of noise,
the theoretically achievable contrast is higher because
the real part of the index of refraction 𝛿 (related to
phase) is orders of magnitude larger than the imagi-
nary part 𝛽 (related to absorption).6 It still has to be
explored though if such superior contrast can also be
achieved in a clinically compatible setting. Contrary to
attenuation-based imaging,which directly measures the
intensity of the transmitted X-ray beam, it is not possible
to directly detect the phase in a polychromatic setting,
which therefore has to be measured indirectly. Several
techniques have been proposed in this regard with the
most notable ones being propagation based,19 crystal
interferometry,20 analyzer based,21 edge-illumination,22

and GI.9,23,24 While all methods can be applied at syn-
chrotron light sources, GI has received special attention
as it satisfies the prerequisites for clinical applicability:
it has high mechanical robustness, can be scaled up to
large fields of view (FOV) and only requires moderate
spatial coherence and monochromaticity.9

GI encodes propagation-induced phase changes
in the beam wavefront—when passing through a
specimen—into an intensity modulation measured by a
detector placed downstream. Its simplest configuration,
Talbot interferometry, consists of two gratings placed in
a partially coherent beam. The latter is usually provided
by a third/fourth-generation synchrotron source or, with
significantly less intensity, by a microfocus X-ray tube.
The first grating is usually a phase grating, that is, it does
not absorb the beam but imposes a phase-shift result-
ing in a controlled wavefront modulation at a specific dis-
tance downstream,25 usually where the second,absorb-
ing analyzer grating is placed.When the source does not
provide a sufficiently high spatial coherence, like in the
case of a conventional X-ray tube, a third grating can be
introduced right after the source yielding to the so-called
Talbot–Lau configuration,23 as shown in Figure 1.

The intensity modulation of the resulting fringe pat-
tern is characterized by its visibility, while retrieval of
the absorption, phase, and dark-field signals can be
done with various methods with phase stepping26 and
fringe scanning27,28 being the most commonly used
approaches. By combining the interferograms obtained
with and without sample,one can retrieve the absorption
signal, the differential phase signal,which is proportional
to the larger-than-pixel-size refraction,and the dark-field
signal, which is proportional to the incoherent refraction
on a scale smaller than the pixel size. Finally, by rotating

the sample or the X-ray source and detector,GI naturally
extends to GI-CT.

High-quality phase-contrast tomograms of breast tis-
sue have been demonstrated with GI on small FOV
laboratory setups7 and with propagation-based, large
FOV imaging on a synchrotron.8 In the first case, good
image quality is obtained with long scanning times. The
second case benefits from high sensitivity, thanks to a
large propagation distance, and near-perfect coherent
source. A clinically compatible device must on the other
hand handle sparse sampling and photon starvation.As
known from absorption-based X-ray imaging, low pho-
ton counts lead to lower signal-to-noise ratio (SNR) and
thus lower image quality. Unfortunately, in GI this effect
is even more detrimental. First, the characteristic imag-
ing scheme based on the acquisition of an interfero-
gram in GI leads to an amplification of the counting
noise, with each of the three channels having a differ-
ent noise propagation.29 Second, noise amplification is
not uniform across the FOV as, in fact, grating fabrica-
tion defects and grating misalignment cause strong local
noise amplitude variations.Finally,during reconstruction,
correlations between pixels are introduced and,crucially,
integration of DPC leads to an amplification of low-
frequency noise,11 making the noise pattern even more
difficult to deal with.

We would like to stress that since a clinically com-
patible one-shot acquisition method30 does not allow
to explicitly retrieve the sinograms for the three signals,
the proposed INSIDEnet is ultimately envisioned to act
as a denoising prior (or proximal operator) in a plug-
and-play framework31 by iteratively denoising image iter-
ates within a gradient-based optimization scheme. This
approach will be presented elsewhere and will not be fur-
ther discussed in this article, as we would like to focus
here on the introduction of the denoising engine itself.

2.2 Simulated breast phantoms

2.2.1 Clean breast phantoms

We generated 30 in silico breast phantoms of 44 ×
1536 × 1536 voxels with a voxel size of 100 μm (real
phantom size of 0.44 × 15.36 × 15.36 cm) contain-
ing three main tissue types, namely adipose, glandular,
and skin.

To start with, we randomly generated 10 000 ellip-
soids of different sizes, shapes, positions, and orienta-
tions, followed by two thresholds. We then multiplied this
preliminary phantom with the central part of two ran-
domly rotated binary masks (one for the whole breast
and one for the skin) obtained from a 3D mask of a real
breast that has been acquired with a breast CT scanner
at the University Hospital Zürich. These data were part
of a retrospective analysis of patient data approved by
the local ethics committee. All patients gave their writ-
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F IGURE 1 Left: Schematic drawing of GI setup in Talbot–Lau configuration. Right: phase stepping curves, with (orange) and without a
sample (blue). The logarithm of the ratio of the average of the blue and orange curve gives the absorption signal, the reduction in its amplitude
gives the dark-field signal, whereas the relative shift of the curve with respect to its reference gives the differential phase signal

F IGURE 2 Absorption and phase contrast breast phantoms. The units for absorption are attenuation coefficients, while for phase it is phase
shift coefficients

ten informed consent. The edges of the ellipsoids were
used to simulate duct-like structures radiating out of the
glandular tissue.

Realistic attenuation coefficients 𝜇 [cm−1] and phase
shift coefficients 𝜙 [cm−1] for the absorption and the
phase image, respectively, were assigned to the differ-
ent regions representing adipose tissue, glandular tis-
sue, and skin. Phase shift values were calculated start-
ing from decrements in the real part of the index of
refraction 𝛿 and using the known relation 𝜙 = 2𝜋𝛿∕𝜆,10

where 𝜆 is the X-ray wavelength corresponding to the
design energy of our prototype. 𝛿 and 𝛽 values have
been calculated using NIST XCOM32 and f1f2 Kissel.dat
of the DABAX library,33 respectively, based on the tis-
sue definition in ICRU 46.34 Finally, we added anatomi-
cal noise to model more realistic slight 𝛽 and 𝛿 inhomo-
geneities in the tissues as well as breast lesions of dif-
ferent sizes and contrasts to investigate the algorithms’
performance in terms of lesion detectability. One slice
of a phantom pair for absorption and phase is shown

in Figure 2. It is important to mention here that these
values represent an ideal setting. In reality, it will not be
possible to reconstruct these 𝜇 and 𝛿 values precisely
due to X-ray polychromaticity, Compton scattering, and
limited phase sensitivity.

We would like to highlight that in this simulation,
apart from differing contrasts between tissues, phase,
and absorption images contain exactly the same struc-
tures, that is, the same information. While research
into X-ray phase contrast imaging is evidently being
carried out in the hope that extra diagnostic informa-
tion becomes available, to date we do not know how
such extra information would look like at a macro-
scopic scale in mammary tissue at clinically compat-
ible doses. We are therefore not able to realistically
simulate such structures. Since absorption and phase
contrast data will be processed independently in this
paper, the lack of extra information in phase contrast
images will not affect the validity of the proposed
method.
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2.2.2 Noisy breast phantoms

Each of the simulated breast phantom pairs was then
used to generate noisy counterparts. First, we used the
ASTRA toolbox projector35 to obtain differential phase
and transmission sinograms as follows10:

𝜑s =
𝜆d2

g2

𝜕

𝜕x ∫ 𝜙(x, y, z)dz, (1)

T = exp
[
−∫ 𝜇(x, y, z)dz

]
, (2)

where d2 is the sample-G2 distance, g2 is the pitch
of G2. The sample-G2 distance was 73 cm, the pitch
of G2 was 4.2 μm, and the system’s design energy
was 46 keV.The source-to-sample distance was 103 cm,
and the sample-to-detector distance was 74 cm. More
detailed information about our prototype is provided in
Section 2.3.

Flat-field data (intensity map I0, visibility map V0, and
phase map 𝜑r ) were obtained from our scanner to pro-
vide simulations as realistic as possible. Due to grat-
ing imperfections, I0, V0 𝜑r were all highly inhomoge-
neous, as shown in Figure 3. Combining these data, we
then simulated phase-stepping curves with the sample
in place:

Is,k = I0T ⋅ [1 + V0D ⋅ cos(k + 𝜑r − 𝜑s)]. (3)

Here, k is the kth phase step, uniformly spaced
between 0 and 2𝜋 and Is,k is the intensity value mea-
sured at the kth phase step. We neglected visibility
reduction in the sample, that is, D = 1, as no significant
small-angle scattering is to be expected in breast tissue
apart from microcalcifications, which, however, were not
simulated here.

Likewise,the background phase stepping curves were
simulated as follows:

Ir,k = I0 ⋅ [1 + V0 ⋅ cos(k + 𝜑r )]. (4)

We then simulated detector quantum noise by sam-
pling from the Poisson distribution with mean Is,k . We
empirically determined the necessary photons to match
the image quality of our real data. We thus simulated
40 000 photons leaving the source at every exposure,
which resulted in the flat-field data displayed in the first
row of Figure 3.

We would like to mention here that this corresponds to
a much higher dose than what is allowed in clinical prac-
tice.Such a higher dose allows to compensate for the yet
insufficient grating quality which severely impacts the
visibility.Once grating quality,and especially flat-field vis-
ibility,will improve, the same image quality will be achiev-
able with significantly less dose.

F IGURE 3 Flat-field data of our GI-BCT prototype: intensity map
I0, phase map 𝜑r , and visibility map V0

By combining the two-phase stepping curves Is,k and
Ir,k , we then retrieved both the differential phase and the
attenuation signal with simple Fourier analysis. Finally,
absorption and phase images were obtained by recon-
structing the retrieved signals with analytical recon-
struction algorithms available in the ASTRA toolbox.35

Importantly, the Hilbert filter had to be applied for recon-
structing the phase contrast image.36

All denoising algorithms were deployed on two-
dimensional (2D) slices of the reconstructed data.While
the algorithm could be easily extended to work on 3D
data, we did not pursue this because of GPU mem-
ory constraints.

While denoising could also have been performed in
the projection domain, we found that due to strong local
noise amplitudes in the measurements, this yielded far
inferior results than denoising the reconstructions in
which these strong local noise amplitudes have pre-
viously been attenuated by backprojection. Moreover,
since the algorithm is envisioned to be used as a prox-
imal operator in the image space, we wanted to test
its ability to denoise the latter rather than the sino-
gram data.

10 volumes were used for training, 10 for validation
during training, and 10 for testing. All reported metrics
in the simulations study have been obtained on the 10
testing volumes.

2.3 Real data

To demonstrate the performance of our algorithm on
real data we applied our algorithm trained on simulated
data to a tomogram acquired on our GI-BCT prototype
of a chunk of meat with roughly the same volume as a
human breast.

We used a fifth Talbot-order symmetric interferometer
with 4.2 μm pitch, with a single G0, single G1, and three
G2 gratings. All gratings are bent. As X-ray source we
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F IGURE 4 Denoising pipeline applied at each image scale. The trainable parameters are displayed in light gray. The learning signal enters
the pipeline after the aggregation step. In yellow: noisy data, in blue: transformed data, and in green: denoised data

used a Comet MXR-225HP/11 tube operated at 70 kVp
and 10 mA and as a detector a CdTe photon count-
ing Dectris prototype with 75 μm pixel size operated at
10 Hz. We acquired five scans in continuous rotation,
each consisting of 600 projections and then averaged
the tomograms to obtain the input for our denoising algo-
rithm. This averaging of five scans has been performed
to compensate for the (yet) insufficient flat field visibility
of our scanner.

2.4 INSIDEnet: Interpretable
NonexpanSIve Data-Efficient network

The proposed method combines different image-
processing paradigms, namely transform domain
thresholding, transform learning, multiscale processing,
explicit orthogonality (thus nonexpansiveness), and
deep learning.

With the assumption that the signal can be expressed
as a linear combination of few basis elements, trans-
form domain thresholding transforms image patches
into another domain such as the wavelet domain or the
discrete cosine transform (DCT) domain.12 Owing to the
high levels of cross-correlation within patches, this rep-
resentation of the data will be highly sparse.12 Filtering
can be performed by thresholding or shrinking the coeffi-
cients. Finally, the filtered patches are transformed back
to the image domain and the patches are aggregated to
form the final denoised image.

Data-adaptive bases have been shown to be supe-
rior compared to handcrafted ones. Transform learning
in particular builds upon the idea that it might be ben-
eficial to replace a fixed hand-designed operator such
as the wavelet transform or the DCT with an operator
adapted to the data at hand. It thus aims to learn a trans-
form matrix which moves the images to a space in which
they have a highly sparse representation.37 This trans-

form operator can then be used to regularize ill-posed
inverse problems like denoising.

We propose to combine these two ideas with deep
learning and multiscale image processing to efficiently
denoise highly corrupted images. Crucially, an explicit
orthogonality constraint38 has been used to achieve
high model robustness and interpretability. To exclude
channel cross-talk and be able to inspect the quality of
the two signals of interest independently, we applied the
INSIDEnet to absorption and phase data separately. It
should be noted though that the proposed method can
be applied to multiple channels if correlations between
the two signals should be leveraged.

The fixed transform is replaced with learnable matri-
ces, and the images are processed across four differ-
ent scales. This ensures that our model can remove
the noise across a broad frequency band. The entire
pipeline is end-to-end trainable, thus allowing to not only
learn the transforms but also the thresholds, thereby
leaving very few tunable hyperparameters.

In the simulation study, the models have been trained
in a supervised manner to map noisy images to their
clean counterparts.For quantitative and qualitative eval-
uation, the trained models have been applied to simu-
lated testing data and real data, respectively.

We will first introduce the stacked orthogonal trans-
form learning denoising pipeline which is applied across
each image scale (see Figure 4), before explaining how
the multiple scales are generated and combined (see
Figure 5).

2.4.1 Image preprocessing

Before entering the denoising pipeline, the data are
scaled to be within [0,1]. The same scaling is then
applied to their noisy counterparts. During training, the
images are randomly shuffled to ensure unbiased learn-
ing.
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F IGURE 5 INSIDEnet overview. Image decomposition: the noisy input image gets first denoised at full resolution, with the aim to remove the
highest frequencies. Next, downsampling leads to a lower resolution image with still all lower frequency noise present. Applying the denoising
pipeline again removes the noise corresponding to high frequencies at this scale. This process is repeated three times, effectively removing
noise at both high and low frequencies. Image reconstruction: high-frequency components are obtained by subtracting the low frequencies at
each scale. These denoised high-frequency components are then iteratively added to the lowest frequency components in a Laplacian pyramid
fashion

2.4.2 Stacked orthogonal transform
learning

Let Xnoisy ∈ ℝNX×NX be the noisy input image and
Xtarget ∈ ℝNX×NX the corresponding target image.

Xnoisy is divided into overlapping patches (stride 2 was
empirically determined to be optimal), here represented
by tensor P ∈ ℝ(4NX∕NP−1)×(4NX∕NP−1)×NP×NP, where NP
is the patch size in horizontal and vertical directions.
Next, the patches are flattened, thereby effectively

reshaping P, which now is in ℝ(4NX∕NP−1)×(4NX∕NP−1)×N2
P .

This tensor gets then multiplied through an Ein-
stein sum with the orthogonal transform matrix Q ∈

ℝN2
P×N2

P yielding the transformed image patches P̂ ∈

ℝ(4NX∕NP−1)×(4NX∕NP−1)×N2
P

P̂ = QP. (5)

We enforce Q to be orthogonal by employing the Cay-
ley transform.38,39 An orthogonal matrix can in fact be
obtained by computing Q = (A − I)(A + I)−1, where A is
a skew-symmetric matrix which can in turn be obtained

by an arbitrary matrix B:

A = B − B⊤. (6)

We thus let B be our trainable matrix, with random ini-
tialization,which is explicitly transformed into an orthog-
onal matrix.

The filtering step itself is very simple and draws inspi-
ration from the proximal operator of the l0 norm, that is,
a hard threshold on the coefficient magnitudes. To allow
this threshold to be trainable, we approximate the hard
threshold with a steep sigmoid function:

T =
1

1 + exp (−(|P̂| − Γ) ⋅ 𝜇)
, (7)

where 𝜇 = 100 is the of the sigmoid and is not trainable.
It was selected by visually plotting the resulting activa-
tion function and exploiting the fact that P̂ is approxi-
mately in the same range (0–1) as P.Γ,which defines the
threshold, was initialized to 10−6 at all scales to ensure
that at the start of the training all coefficients are kept,
thus mapping the input image to itself. Element-wise
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multiplication of T with P̂ yields the filtered represen-
tation of our image:

P̂denoised = P̂ ⊙ T . (8)

The data are then transformed back to the image
domain through an Einstein sum

Pdenoised = Q⊤P̂denoised. (9)

The steps above are repeated m times. This effec-
tively coincides with iterative denoising since every iter-
ation of transform domain thresholding improves the
quality of the image by removing some noise. Alter-
natively, it can be interpreted as a layer of a neural
network. However, where in convolutional neural net-
works (CNNs) each layer is just an unconstrained for-
ward operator followed by an arbitrary nonlinearity, here
each layer has a clear mathematical meaning and is
stabilized by projecting back the filtered coefficients to
the image space. Our network is in a way also more
general than a convolutional network in the sense that
the transform operators are not necessarily convolu-
tional. This can compensate for a possible loss of
transform expressiveness imposed by the orthogonality
restriction.

Finally, the patches are rearranged back to their orig-
inal position in the image to obtain Xdenoised.

We would like to stress that, while many algorithms
have been proposed to learn sparsifying transforms,40

this end-to-end approach allows (1) to learn the “regu-
larization”parameters (i.e., the thresholds) as well,which
would otherwise have to be tuned with an expensive grid
search and (2) to jointly learn stacked transform matri-
ces which would otherwise have to be optimized sepa-
rately in a greedy fashion.

2.4.3 Image decomposition

Since the noise in our phase data corrupts the entire fre-
quency spectrum,applying the steps above solely to the
input image will only attenuate the high-frequency noise,
leaving all low-frequency noise intact. This is because
the lowest frequency value accessible to the pipeline
above is NP pixels (the patch size).Therefore, in our par-
ticular case, it is important to process the images at mul-
tiple scales. After applying our proposed pipeline to the
input image Xnoisy ∈ ℝNX×NX, we thus blur the denoised
output image with a 2D Gaussian kernel of radius (or
size) r = 3 and standard deviation 𝜎 = 0.667 and then
downsample it by a factor of 2. 𝜎 has been chosen so
that 99% of the downsampled area is covered by the
kernel, r = 3 was sufficiently large coverage for the ker-
nel. The resulting image is again denoised and then
downsampled. This process is iteratively repeated three

ALGORITHM 1 Image decomposition

times, thereby generating n downscaled and denoised

versions Xn,denoised ∈ ℝ
NX
2n ×

NX
2n of the input image Xnoisy

for n ∈ [0, 1, 2, 3] (see Figure 5). We stopped at n = 3
because successive layers did not improve denoising
performance, that is, the mean squared error (MSE) did
not further improve (see Figure 7).

Let  be the denoising pipeline illustrated in the previ-
ous section. d and u (used below) are 2 × 2 downsam-
pling and upsampling operators, respectively, and  is a
zero-centered Gaussian smoothing filter with 𝜎 = 0.667.
The image decomposition of our model is then summa-
rized by Algorithm 1.

It is important to note here that the denoising at mul-
tiple scales happens sequentially. While it could also
be applied in parallel, this led to less accurate results.
This is also more intuitive, since it seems redundant
to denoise the same frequencies at more than one
scale. As shown in Figure 5, this sequential process
resembles the encoder of the U-net.41 In the U-net,
however, the filtering is not as interpretable since the
filtering steps are not based on an established image fil-
tering technique such as transform domain thresholding,
but instead apply convolutions followed by a rather arbi-
trary activation function. The highly nonlinear and com-
plicated decoder of the U-net is replaced in our model
by a simple Laplacian pyramid assembling.

U-Nets are state-of -the-art models for image-to-
image problems, and our approach opens up the
possibility of being competitive with U-Nets using an
interpretable algorithm.

2.4.4 Image reconstruction

Once all n images Xn,denoised have been denoised at
different scales, they are used to reconstruct the final
image. The approach has been inspired by Burger and
Harmeling42 and consists of the steps displayed in
Algorithm 2 and Figure 5.

At scale n, we separate the low-frequency Ln (blue in
Figure 5) and high-frequency components Hn (yellow in
Figure 5). Ln is obtained by first smoothing and down-
sampling the image, thus removing the high-frequency
details, followed by upsampling and smoothing. The
high frequencies in contrast are simply obtained by
subtracting the low frequencies from the image. Com-
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ALGORITHM 2 Image reconstruction

bining the best of two adjacent scales, that is, the low
frequencies from the lower scale and the high frequen-
cies from the upper scale, we obtain Yn, a better version
of Xn,denoised. By starting with the coarsest two scales
and iteratively applying these steps, the final image is
assembled.

2.4.5 Loss function and optimization

We used the MSE on the full-resolution image as a loss
function and propagated back all gradients with respect
to both the transform matrices and the thresholds:

 = ||Xdenoised − Xtarget||22. (10)

We deployed the Adam optimization algorithm43 with
an exponentially decaying learning rate (initial learning
rate of 0.0001) and trained all models with a batch size
of 1 (because of GPU memory constraints) until conver-
gence, that is until the MSE on the validation set was not
improving anymore.

2.4.6 Algorithm interpretability and
nonexpansiveness

Our algorithm is essentially composed of linear fil-
ters and thresholding. By reshaping the learned trans-
forms into NP × NP filter kernels, it is possible to get
insights about what types of features are being used to
build sparse data representations. Likewise, the learned
threshold values indicate how strongly the images get
filtered.

While the inspection of filter kernels is also possi-
ble in CNNs, and the bias terms can give some hints
about filtering strength, CNNs do not allow to easily
inspect how the images are being denoised within the
network.This is because of the immense number of filter
channels that are applied at each layer, and which are
not projected back into the image space after each filter-
ing step. In contrast,our model allows us to easily visual-
ize the results in the intermediate layers of the network
as we iteratively move back and forth between image

space and transform space. By looking at Figures 6 and
7, we observe that our model gradually improves image
quality, both visually and quantitatively. From this plot, it
also emerges that four scales and 10 filtering steps are
good hyperparameters for this application.

Moreover, by design, our model starts training with
an excellent parameter initialization. In fact, owing to its
peculiar architecture and by setting the starting thresh-
olds to 10−6, prior to training,a forward pass through the
network will leave the image unchanged.This is in strong
contrast with conventional models such as the U-net in
which a first forward pass will yield a very different output
than the image target. This implies that smaller param-
eter adjustments need to be made during training in the
INSIDEnet as compared to the U-net.

What further sets our model apart from most state-of -
the-art denoising networks is that the linear transforma-
tion is explicitly constrained to be orthogonal, thereby
increasing the stability of the network. In fact, it has
been shown that orthogonality is sufficient for a 1-
Lipschitz and nonexpansiveness property which in turn
makes networks more robust to adversarial attacks.38

Moreover, nonexpansiveness is an important property
when it comes to proximal operators in plug-and-play
frameworks, where the presented model is envisioned
to be used.

All in all, our model resembles the U-net architecture.
However,each part in our architecture has a clear math-
ematical rationale which comes with desirable proper-
ties and the possibility to better look inside the denois-
ing process, thus making our approach both more inter-
pretable and more reliable compared to standard CNNs.

2.4.7 Computational aspects

The algorithm has been implemented in Tensorflow
2.1,44 and all computations have been carried out on
an NVIDIA Titan RTX GPU with 24 GB of memory. Pro-
cessing of a single 1536 × 1536 slice takes an average
of 0.15 s,depending on the hyperparameters NP and m.
This is three orders of magnitude faster than the BM3D
filter and approximately as fast as a deep CNN.

3 RESULTS

3.1 Simulated data

To assess the effectiveness of the INSIDEnet, we per-
formed a comparative study on the simulated breast
phantoms (absorption and phase). We compared the
INSIDEnet with a classical state-of -the-art algorithm,
namely the BM3D filter, as well as with a deep CNN. We
performed various experiments by changing the hyper-
parameters NP and m and found NP = 8 and m = 10
to work well. We would like to mention that by using
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F IGURE 6 Denoising progression within INSIDEnet. The outputs after every second filter across the four scales are shown. Each row
corresponds to one scale. From left to right, subsequent filters are shown. Only every second filter is shown for better visualization. Starting at
the top left and moving to the bottom right, we observe that the image quality steadily improves. This is also confirmed by the results in Figure 7.
As expected, the filters in the upper row only remove the high-frequency noise. The lower frequency noise is removed at the lower scales
(subsequent rows)

F IGURE 7 MSE of the images in Figure 6. Different scales
(rows in Figure 6) are plotted in different colors for clarity. The biggest
improvement in MSE happens at the finest scales, with less and less
improvement when going to coarser scales

a larger NP, less image scales would be necessary as
large patches allow to denoise lower frequencies com-
pared to small patches. However, this would go at the
expense of a much higher parameter number needed
to transform large patches. Therefore, to keep a smaller
parameter number for higher generalizability, it is rec-

ommended to use a small patch size with more image
scales.All performance metrics have been computed on
440 testing images and are provided in Table 1. To be
able to compute SNR and contrast-to-noise ratio (CNR)
efficiently over all 440 slices, we calculated mean and
standard deviations in regions of interest where the gray
level values in the ground truth image were approxi-
mately constant.

We used the BM3D filter of the bm3d.py software
package.12 The sigma value was obtained by computing
the standard deviation in a uniform region of the noisy
input image. Processing of a single 1536 × 1536 pixels
slice took 76 s on a CPU.

As a deep CNN, we implemented a U-net41 with
269 176 parameters trained with am MSE loss in Ten-
sorflow 2.144 which, as for the INSIDEnet, separately
processes either phase or absorption images. The
parameter number has been kept relatively small to be
approximately in the same range as the 166 403 param-
eters of the INSIDEnet model and to avoid overfitting.
We used an initial learning rate of 0.0001 with exponen-
tial decay, along with the Adam optimization algorithm
(𝛽1 = 0.9, 𝛽2 = 0.999).43 Before entering the network,
the input images were brought to zero mean and unit
variance. As for our proposed algorithm, the training set
consisted of 440 pairs of noisy and clean simulated



INSIDENET FOR DENOISING IN GI-BCT 3739

F IGURE 8 Denoising result on the phase
contrast phantom obtained with the INSIDEnet,
the U-net, and the BM3D filter. Top left: noisy input
image, top right: clean image. In subsequent rows
left: denoised image, on the right: difference
image between noisy input and denoised image.
Gray value units are phase shift coefficients
[cm−1]. The black scale bar is 5 mm

breast phantom slices.We would like to point out that we
purposely chose a rather small training set, as this will
be our real-world scenario once we will start acquiring
real data. Therefore, we wanted to investigate the algo-
rithm’s capability to generalize well from little data. Early
stopping has been used to arrest the training when the
validation loss was not improving anymore.The process-
ing time for a single slice during prediction was 0.06 s.

The denoising results of the three algorithms on
phase contrast phantoms are shown in Figure 8. We
display the results on a zoomed-in part of the image
for better visualization. In the top row, a noisy image
is shown along with its clean counterpart. In the other
rows, the performance of the three algorithms is shown,
along with the difference image of the denoised and
the input data. We see that the INSIDEnet is able to
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TABLE 1 Denoising results

Model nMAE SNR CNR SSIM

Phase

Input 0.030 (0.002) 29.776 (1.998) 2.905 (0.193) 0.861 (0.023)

INSIDEnet 0.017 (0.003) 64.305 (5.944) 6.179 (0.470) 0.962 (0.012)

BM3D 0.017 (0.002) 53.420 (4.380) 5.208 (0.417) 0.965 (0.010)

U-net 0.015 (0.002) 72.919 (7.095) 6.934 (0.480) 0.973 (0.007)

Absorption

Input 0.059 (0.004) 15.143 (1.111) 2.975 (0.207) 0.694 (0.014)

INSIDEnet 0.017 (0.002) 62.463 (6.473) 11.663 (0.995) 0.926 (0.011)

BM3D 0.018 (0.002) 63.103 (6.515) 11.742 (0.948) 0.924 (0.010)

U-net 0.016 (0.002) 64.541 (6.378) 11.945 (0.958) 0.939 (0.008)

Note: Standard deviations of the metrics across all 440 slices are displayed in parentheses.
Abbreviations: CNR, contrast-to-noise ratio; Interpretable NonexpanSIve Data-Efficient network; INSIDEnet, nMAE, normalised mean absolute error; SNR, signal-to-
noise ratio; SSIM, structural similarity index.

effectively remove noise across the frequency spectrum
while keeping sharp edges. This is also supported by
the difference image in which no signal, but a large
range of frequencies are present. The third row shows
that, as our proposed model, also the U-net is able to
satisfactorily denoise the data. The performance of the
BM3D filter in contrast is much inferior: it is unsurpris-
ingly unable to remove low-frequency noise owing to
its small patch-based strategy. In fact, the difference
image shows only high-frequency noise. A quantitative
comparison between the three models (see the upper
part of Table 1) reveals that the proposed model is
only slightly inferior compared to the U-net which, in
the absence of any architectural constraints, achieves
the best results. In agreement with a visual inspection,
the BM3D model performs significantly worse in terms
of SNR and CNR. Interestingly, in terms of normalised
mean absolute error (nMAE) and structural similarity
index (SSIM),the BM3D algorithm is competitive with the
two data-driven pipelines. This shows the limitations of
such metrics as visually the superior performance of the
latter methods is evident.

By looking at the denoising performance of the three
algorithms on absorption data in Figure 9, we see a dif-
ferent pattern than in phase. In particular, owing to the
different noise spectrum, concentrated in the high fre-
quencies, all three filters achieve a satisfying result. The
metrics in the lower part of Table 1 confirm that the three
algorithms achieve a very similar performance.

As expected,a comparison between denoising results
on phase and absorption data reveals that it is easier to
denoise the latter data. In fact, all image quality metrics
improve more significantly in absorption than in phase.

3.1.1 Data efficiency

To assess the data-driven models’generalization perfor-
mance,we performed an experiment in which we trained

both architectures on very limited data, that is, a single
image and tested them on 440 slices as in the previous
experiment. The results in Table 2 show that under such
conditions the INSIDEnet quantitatively outperforms the
U-net.A visual inspection of the results in Figure 10 con-
firms these findings. In fact, a close look at the images
reveals that the U-net blurs the phase image and intro-
duces dark artifacts around some edges in the absorp-
tion image.

These results suggest that (1) the INSIDEnet archi-
tecture imposes a strong inductive bias on the denois-
ing problem, thereby enabling it to fit its parameters
with very limited data; and (2) that the INSIDEnet’s effi-
cient initialization strategy indeed helps to more easily
fit the model. These two aspects clearly set our model
apart from classical CNNs. This has a great practical
significance as training data is always scarce in a clini-
cal setting and especially in the development phase of
a clinical prototype. Therefore, having a model which
can effectively be trained with small amounts of clean
images is crucial.

3.1.2 Lesion detectability task

To assess our algorithm’s performance in terms of
lesion detectability, we added identical lesions with dif-
ferent contrasts at random locations to our simulated
testing data. In Figure 11, five lesions with varying con-
trast (1.02, 1.04, 1.06, 1.08, and 1.10) are shown for
the clean phase contrast phantom data, for the corre-
sponding noisy data as well as for all algorithms consid-
ered in this paper. We see that none of the algorithms
is able to recover the lesion below a contrast of 1.06.
The BM3D filter leads to relatively good lesion delin-
eation, despite its inability to remove the low-frequency
noise. The INSIDEnet and the U-net achieve a compa-
rable performance when trained on 440 images.A close
look reveals that the INSIDEnet seems more robust
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F IGURE 9 Denoising result on the absorption
contrast phantom obtained with the INSIDEnet, the
U-net, and the BM3D filter. Top left: noisy input image, top
right: clean image. In subsequent rows left: denoised
image, on the right: difference image between noisy input
and denoised image. Gray value units are attenuation
coefficients [cm−1]. The black scale bar is 5 mm

TABLE 2 Denoising results with a model trained on a single image pair

nMAE SNR CNR SSIM

Phase

INSIDEnet 0.018 (0.003) 60.347 (5.480) 5.832 (0.413) 0.956 (0.012)

U-net 0.021 (0.002) 52.369 (5.241) 4.928 (0.333) 0.961 (0.009)

Absorption

INSIDEnet 0.017 (0.002) 61.459 (6.313) 11.515 (0.973) 0.924 (0.011)

U-net 0.020 (0.002) 53.149 (8.013) 9.265 (0.874) 0.924 (0.010)

Note: Standard deviations of the metrics across all 440 slices are displayed in parentheses.
Abbreviations: CNR, contrast-to-noise ratio; Interpretable NonexpanSIve Data-Efficient network; INSIDEnet, nMAE, normalised mean absolute error; SNR, signal-to-
noise ratio; SSIM, structural similarity index.
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F IGURE 10 Illustration of higher data efficiency
of the INSIDEnet compared to the U-net. The
models have been trained on a single training image.
The black scale bar is 5 mm

compared to the U-net as it leads to slightly better
lesion delineation than the U-net, when trained on a sin-
gle image.

By looking at Figure 12 for detectability on absorption,
we see a slightly different result.The INSIDEnet and the
BM3D filter enable lesion delineation down to the con-
trast of 1.06, with the latter achieving the best overall
performance.Somewhat surprisingly,the U-net is unable
to retrieve the lesion at contrast 1.06. As for the phase,
we see that the INSIDEnet is more robust compared to

the U-net when trained on a single image. In fact, the for-
mer show very little loss in performance when trained on
a single image.

3.2 Real data

Figure 13 shows the meat sample scanned on our
GI-BCT prototype in phase and absorption contrast.
It is easy to see that indeed in absorption the noise
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F IGURE 11 Lesion detectability task on phase contrast data. First row: phantom data, second row: noisy data, third row: denoised with
INSIDEnet, fourth row: denoised with INSIDEnet trained on a single image, fifth row: denoised with U-net, sixth row: denoised with U-net trained
on a single image, seventh row: denoised with BM3D. From left to right the lesion contrast increases (1.02, 1.04, 1.06, 1.08, 1.10). The displayed
area is 7 mm × 10 mm

is concentrated in the high frequencies, whereas in
phase also lower frequencies are affected, thus making
denoising more challenging. However, as it emerges
from Table 3, phase contrast data actually have both a
higher SNR as well as a higher CNR than in absorp-
tion contrast, thus highlighting why there is such a

high interest in bringing phase contrast to clinical
practice.

However, on this particular sample there does not
appear to be a qualitative advantage of phase contrast
data over absorption as no extra information appears to
be present compared to absorption.
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F IGURE 12 Lesion detectability task on
absorption contrast data. First row: phantom
data, second row: noisy data, third row:
denoised with INSIDEnet, fourth row:
denoised with INSIDEnet trained on a single
image, fifth row: denoised with U-net, sixth row:
denoised with the U-net trained on a single
image, seventh row: denoised with BM3D.
From left to right, the lesion contrast increases
(1.02, 1.04, 1.06, 1.08, 1.10). The displayed
area is 7 mm × 10 mm

F IGURE 13 Phase contrast (left) and
absorption (right) contrast of meat scan
acquired on our GI-BCT prototype. The red
boxes have been used to compute SNR and
CNR values in Table 3. The white scale bars
are 15 mm
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TABLE 3 Denoising results on real data

Phase Absorption
Model SNR CNR SNR CNR

Input 25.607 3.618 13.996 1.869

INSIDEnet 57.967 8.332 82.777 13.540

BM3D 38.161 5.391 79.956 12.321

U-net 63.949 8.785 86.270 14.278

Abbreviations: CNR, contrast-to-noise ratio; Interpretable NonexpanSIve Data-
Efficient network; INSIDEnet, nMAE, normalised mean absolute error; SNR,
signal-to-noise ratio; SSIM, structural similarity index.

Figure 14 shows the denoising results of the two data-
driven models as well as BM3D. As on the simulations,
on phase contrast both data-driven models achieve a
satisfactory performance, whereas BM3D fails to effec-
tively denoise the tomograms. A close look suggests
though that the U-net slightly blurs the image as it was
the case when we trained the model on a single slice.
This might suggest that the U-net tends to blur images
when it has to generalize to unseen data. Quantitatively,
the U-net achieves the highest performance. BM3D per-
forms significantly worse on both metrics. On absorp-
tion, all methods achieve a satisfying performance. The
U-net achieves the highest SNR and CNR, closely fol-
lowed by both the INSIDEnet and the BM3D filter. The
line profiles in Figure 15 indicate that all models are able
to maintain sharp edges, except for the U-net on phase
contrast data.

The fact that the models could be trained on simu-
lations and applied to real measurements suggests that
both image and noise statistics of the simulations match
well to real measurements. This is an important finding
as it allows us to efficiently train models in the absence
of ground truth.

4 DISCUSSION

This paper is part of a larger effort to translate GI-
BCT to the clinics and provides physicians and patients
with a technology which can offer higher tissue contrast
and thus increased chances of spotting potential malig-
nancies.To achieve this,data-processing algorithms are
needed which can handle the low raw data quality as it is
currently acquired in GI-BCT.The goal of this paper was
to investigate denoising of reconstructed tomograms.
We used two established methods (BM3D and U-net),
proposed a new dedicated method (INSIDEnet), and
tested their ability to reliably deal with the complex noise
pattern in GI’s phase contrast channel.

Where the BM3D filter was unable to satisfactorily
denoise phase contrast images, we could show that
it is possible to significantly increase phase contrast
image quality with the two data-driven methods. The U-
net yielded the best quantitative results when trained on
relatively large amounts of data, whereas the proposed

F IGURE 14 Denoising results on a scan of a chunk of meat.
The red lines (10 mm) show the region at which the line profiles in
Figure 15 have been computed

model has proven to be very data efficient. In fact, a
single image sufficed to obtain a satisfactory denoising
performance.The power of combining data- and model-
based methods has thus been highlighted by the INSI-
DEnet in outperforming the U-net when trained on very
limited data.

The INSIDEnet has been designed to find a
good trade-off between performance and interpretabil-
ity/robustness, crucial in the medical field. It is possible
to inspect all of its trainable weights which are inter-
pretable as they (1) indicate how strong the sparsity
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F IGURE 15 Line profiles taken at the locations displayed in Figure 14

enforcing regularization is or (2) show the filter ker-
nels used to achieve sparse data representation. Fur-
thermore, as shown in Figure 6, one can visualize the
progress the model makes in its deeper layers, thus
offering superior interpretability compared to CNNs.The
steady image quality improvement that emerges in this
regard supports our claim of high model reliability.

We started developing this algorithm by leveraging
classical ideas in image denoising. Curiously, the final
architecture resembles the U-net in many ways. First of
all, the multiscale processing is very similar to the “U”
structure of the U-net. Second, our model also consists
of linear matrix multiplications, followed by nonlinear
activations. In our case, however, the activation function
is not a simple Rectified linear unit (ReLU) function but is
rather mathematically motivated by the proximal opera-
tor of the l0 norm.Finally, the concatenation of the trans-
pose of the current transform Q⊤

n and the next transform
Qn+1 could be parameterized with a single matrix with-
out losing expressive power. However, we believe that
the inductive bias realized by going back to image space
after each thresholding operation, by leveraging explicit
orthogonality, instead of applying solely feed-forward
matrix multiplications, is the key feature that gives our
model higher robustness compared to the U-net.

A crucial part of our algorithm is thus given by the
explicit orthogonality constraint enforced with the Cay-
ley transform.38,39 In fact,with no such constraint,model
training and performance were much more unstable.
While such explicit constraints could also be imple-
mented in a convolutional layer,38 this would require sig-
nificantly higher computational costs, which are avoided
by enforcing kernel orthogonality on transform matrices
operating on image patches.

We would like to further point out that, besides pro-
viding more than satisfactory results, our algorithm is
fast, which is critical in our project as we must process
large image volumes. Finally, while the algorithm has
been developed to cope with phase contrast CT, it can
be applied to a variety of image data.

Finally, we could show that real data could be effi-
ciently denoised by our model, even if trained on sim-
ulated data, thus confirming the validity of our simula-
tion study. Unfortunately, both simulations and real data
have shown that with the current setup we are unable
to generate phase contrast data which are superior to
absorption, neither prior to denoising nor after. Future
efforts will thus be oriented towards improving grating
quality to reduce the noise propagation in the phase con-
trast images.
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5 CONCLUSION

In conclusion, we have shown that it is possible to effi-
ciently denoise both simulated and real noisy phase
contrast images with a data-efficient, fast, and inter-
pretable data-driven algorithm. We expect the INSID-
Enet to become an important tool as part of a dedicated
plug-and-play iterative reconstruction framework, which
is currently under development. We hope that in future,
together with improved grating quality, this will allow us
to effectively deal with the low-frequency noise of the
phase contrast channel and let its higher intrinsic con-
trast emerge.

ACKNOWLEDGMENTS
The authors would like to thank Dr. Joan Vila Coma-
mala and Simon Spindler for their help in designing the
simulation. This work has been funded by the Promed-
ica Stiftung Chur, ETH-Research Commission Grant Nr.
ETH-12 20-2,the SNF Sinergia Grant Nr.CRSII5 183568
as well as the Swisslos Lottery Fund of Kanton Aargau.

Open access funding provided by Eidgenossische
Technische Hochschule Zurich.

CONFL ICT OF INTEREST
The authors have no conflicts to disclose.

DATA AVAILABIL ITY STATEMENT
The data and source code that support the findings of
this study are available from the corresponding author
upon reasonable request.

REFERENCES
1. Harbeck N,Gnant M.Breast cancer.Lancet.2017;389:1134-1150.
2. Løberg M, Lousdal ML, Bretthauer M, Kalager M. Benefits

and harms of mammography screening. Breast Cancer Res.
2015;17:1-12.

3. Kalender WA, Kolditz D, Steiding C, et al. Technical feasibility
proof for high-resolution low-dose photon-counting CT of the
breast. Eur Radiol. 2017;27:1081-1086.

4. Shim S, Saltybaeva N, Berger N, Marcon M, Alkadhi H, Boss A.
Lesion detectability and radiation dose in spiral breast CT with
photon-counting detector technology: a phantom study. Invest
Radiol. 2020;55:515-523.

5. D’Orsi CJ, Sickles EA, Mendelson EB, Morris EA, et al. ACR BI-
RADS Atlas, Breast Imaging Reporting and Data System; 2013.
Reston, VA: American College of Radiology.

6. Zhou SA,Brahme A.Development of phase-contrast X-ray imag-
ing techniques and potential medical applications. Phys Med.
2008;24:129-148.

7. Vila-Comamala J, Romano L, Jefimovs K, et al. High sensitiv-
ity X-ray phase contrast imaging by laboratory grating-based
interferometry at high Talbot order geometry. Opt Express.
2021;29(2):2049-2064.

8. Longo R, Arfelli F, Bonazza D, et al. Advancements towards
the implementation of clinical phase-contrast breast computed
tomography at Elettra. J Synchrotron Radiat. 2019;26:1343-
1353.

9. Weitkamp T, Diaz A, David C, et al. X-ray phase imaging with a
grating interferometer. Opt Express. 2005;13:6296-6304.

10. Raupach R, Flohr T. Performance evaluation of x-ray differen-
tial phase contrast computed tomography (PCT) with respect to
medical imaging. Med Phys. 2012;39:4761-4774.

11. Raupach R, Flohr TG. Analytical evaluation of the signal and
noise propagation in x-ray differential phase-contrast computed
tomography. Phys Med Biol. 2011;56:2219-2244.

12. Dabov K, Foi A, Egiazarian K. Image denoising by sparse 3D
transform-domain collaborative filtering. IEEE Trans Image Pro-
cess. 2007;16:2080-2095.

13. Buades A, Coll B, Morel JM. A non-local algorithm for image
denoising. In: 2005 IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition (CVPR’05).Piscataway,NJ:
IEEE Press; 2005:Vol. 2;60-65.

14. Lempitsky V, Vedaldi A, Ulyanov D. Deep image prior. In: 2018
IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition. Piscataway, NJ: IEEE Press; 2018:9446-9454.

15. Lehtinen J,Munkberg J,Hasselgrem J,et al.Noise2Noise:Learn-
ing image restoration without clean data. In: 35th International
Conference on Machine Learning, ICML 2018. Red Hook, NY:
Curran Associates; 2018:Vol. 80; 2965-2974.

16. Batson J & Royer L Noise2Self: Blind denoising by self -
supervision. In:36th International Conference on Machine Learn-
ing. Red Hook, NY Curran Associates; 2019:524-533.

17. Abdelhamed A, Timofte R, Brown MS, et al. NTIRE 2019 chal-
lenge on real image denoising: methods and results. In: 2019
IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition Workshops (CVPRW). Los Alamitos, CA: IEEE Computer
Society; 2019:2197-2210.

18. Ge Y, Liu P, Ni Y, et al. Enhancing the X-Ray differential phase
contrast image quality with deep learning technique. IEEE Trans
Biomed Eng. 2021;68:1751-1758.

19. Snigirev A, Snigireva I, Kohn V, Kuznetsov S, Schelokov I.
On the possibilities of x-ray phase contrast microimaging by
coherent high-energy synchrotron radiation. Rev Sci Instrum.
1995;66:5486-5492.

20. Bonse U, Hart M. An x-ray interferometer. Appl Phys Lett.
1965;6:155-156.

21. Davis TJ,Stevenson AW.Direct measure of the phase shift of an
X-ray beam. J Opt Soc Amer A. 1996;13:1193-1998.

22. Diemoz PC, Endrizzi M, Hagen CK, et al. Edge illumination
X-ray phase-contrast imaging: nanoradian sensitivity at syn-
chrotrons and translation to conventional sources. J Phys Conf
Ser. 2014;499:012006.

23. Pfeiffer F, Weitkamp T, Bunk O, David C. Phase retrieval
and differential phase-contrast imaging with low-brilliance X-ray
sources. Nat Phys. 2006;2:258-261.

24. Olivo A, Speller R. A coded-aperture technique allowing X-ray
phase contrast imaging with conventional sources. Appl Phys
Lett. 2007;91:074106.

25. Talbot H.LXXVI.Facts relating to optical science.No. IV.The Lon-
don, Edinburgh, and Dublin Philosophical Magazine and Journal
of Science. 1836;9:401-407.

26. Momose A, Kawamoto S, Koyama I, Hamaishi Y, Takai K, Suzuki
Y. Demonstration of X-ray Talbot interferometry. Japan J Appl
Phys. 2003;42:L866-L868.

27. Arboleda C, Wang Z, Stampanoni M. Tilted-grating approach
for scanning-mode X-ray phase contrast imaging. Opt Express.
2014;22:15447-15458.

28. Kottler C, Pfeiffer F, Bunk O, Grünzweig C, David C. Grating inter-
ferometer based scanning setup for hard X-ray phase contrast
imaging. Rev Sci Instrum. 2007;78:043710.

29. Revol V, Kottler C, Kaufmann R, Straumann U, Urban C. Noise
analysis of grating-based X-ray differential phase contrast imag-
ing. Rev Sci Instrum. 2010;81:073709.

30. Teuffenbach MV, Koehler T, Fehringer A, et al. Grating-based
phase-contrast and dark-field computed tomography: a single-
shot method. Sci Rep. 2017;7:1-8.



3748 INSIDENET FOR DENOISING IN GI-BCT

31. Reehorst ET, Schniter P. Regularization by denoising: clar-
ifications and new interpretations. CoRR. 2018;abs/1806.
02296.

32. Berger M, Hubbell JH, Seltzer SM, et al. NIST Standard Refer-
ence Database 8 (XGAM).NIST,PML,Radiation Physics Division;
2010.

33. DABAX library. http://ftp.esrf.eu/pub/scisoft/xop2.3/DabaxFiles.
34. White DR, Griffith RV, Wilson IJ. ICRU Report 46. J Int Comm

Radiat Units Meas. 1992;os24.
35. van Aarle W, Palenstijn WJ, De Beenhouwer J, et al. The ASTRA

Toolbox: A platform for advanced algorithm development in elec-
tron tomography. Ultramicroscopy. 2015;157:35-47.

36. Huang ZF, Kang K-J, Li Z, et al. Direct computed tomographic
reconstruction for directional-derivative projections of computed
tomography of diffraction enhanced imaging. Appl Phys Lett.
2006;89:041124.

37. Ravishankar S, Bresler Y. Learning sparsifying transforms. IEEE
Trans Signal Process. 2013;61:1072-1086.

38. Trockman A, Kolter JZ. Orthogonalizing convolutional layers with
the Cayley transform. Paper presented at Ninth International
Conference on Learning Representations, 2021.

39. Chang JR, Li C-L, Póczos B, Vijaya Kumar B, Sankaranarayanan
AC. One network to solve them all – solving linear inverse prob-
lems using deep projection models. In: 2017 IEEE International
Conference on Computer Vision (ICCV). Piscataway, NJ: IEEE
Press; 2017:5889-5898.

40. Ravishankar S, Bresler Y. Learning doubly sparse trans-
forms for images. IEEE Trans Image Process. 2013;22:4598-
4612.

41. Ronneberger O, Fischer P, Brox T. U-net: Convolutional
networks for biomedical image segmentation. In: Navab N,
Hornegger J, Wells W, Frangi A, editors. Medical Image Comput-
ing and Computer-Assisted Intervention – MICCAI.Lecture Notes
in Computer Science, vol 9351. Cham, Switzerland: Springer;
2015;234-241.

42. Burger HC, Harmeling S. Improving denoising algorithms via a
multi-scale meta-procedure. In: Pattern Recognition. DAGM, vol.
6835. Berlin, Germany: Springer; 2011:206-215.

43. Kingma DP, Ba JL. Adam: a method for stochastic optimization.
Proceedings of the Third International Conference on Learning
Representations, ICLR 2015 - Conference Track Proceedings;
ICLR 2015, San Diego California. 2015:1-15.

44. Abadi M, Barham P, Chen J, et al. TensorFlow: Large-scale
machine learning on heterogeneous distributed systems. Soft-
ware available from tensorflow.org; 2015.

How to cite this article: van Gogh S, Wang Z,
Rawlik M, Etmann C, Mukherjee S, Schönlieb
C-B, Angst F, Boss A, Stampanoni M. INSIDEnet:
Interpretable NonexpanSIve Data-Efficient
network for denoising in grating interferometry
breast CT. Med Phys. 2022;49:3729–3748.
https://doi.org/10.1002/mp.15595

http://ftp.esrf.eu/pub/scisoft/xop2.3/DabaxFiles
https://doi.org/10.1002/mp.15595

	INSIDEnet: Interpretable NonexpanSIve Data-Efficient network for denoising in grating interferometry breast CT
	Abstract
	1 | INTRODUCTION
	2 | MATERIALS AND METHODS
	2.1 | Grating interferometry breast CT
	2.2 | Simulated breast phantoms
	2.2.1 | Clean breast phantoms
	2.2.2 | Noisy breast phantoms

	2.3 | Real data
	2.4 | INSIDEnet: Interpretable NonexpanSIve Data-Efficient network
	2.4.1 | Image preprocessing
	2.4.2 | Stacked orthogonal transform learning
	2.4.3 | Image decomposition
	2.4.4 | Image reconstruction
	2.4.5 | Loss function and optimization
	2.4.6 | Algorithm interpretability and nonexpansiveness
	2.4.7 | Computational aspects


	3 | RESULTS
	3.1 | Simulated data
	3.1.1 | Data efficiency
	3.1.2 | Lesion detectability task

	3.2 | Real data

	4 | DISCUSSION
	5 | CONCLUSION
	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST
	DATA AVAILABILITY STATEMENT

	REFERENCES


