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Abstract

Reactive oxygen species (ROS) play an important pathogenic role in the development of many 

diseases, including kidney disease. Major ROS generators in the glomerulus of the kidney are the 

p47phox-containing NAPDH oxidases NOX1 and NOX2. The cytosolic p47phox subunit is a key 

regulator of the assembly and function of NOX1 and NOX2 and its expression and 

phosphorylation are up-regulated in the course of renal injury, and have been shown to exacerbate 

diabetic nephropathy. However, its role in non-diabetic-mediated glomerular injury is unclear. To 

address this, we subjected p47phox-null mice to either adriamycin-mediated or partial renal 

ablation-mediated glomerular injury. Deletion of p47phox protected the mice from albuminuria 

and glomerulosclerosis in both injury models. Integrin α1-null mice develop more severe 

glomerulosclerosis than wild type mice in response to glomerular injury mainly due to increased 

production of ROS. Interestingly, the protective effects of p47phox knockout were more profound 

in p47phox/integrin α1 double knockout mice. In vitro analysis of primary mesangial cells showed 

that deletion of p47phox led to reduced basal levels of superoxide and collagen IV production. 

Thus, p47phox-dependent NADPH oxidases are a major glomerular source of ROS, contribute to 

kidney injury, and are potential targets for antioxidant therapy in fibrotic disease.
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Introduction

Glomerulosclerosis, characterized by excessive extracellular matrix (ECM) deposition in the 

glomeruli of the kidneys, is the common final pathway of many chronic kidney diseases 

irrespective of their etiologies.1, 2 The development of glomerulosclerosis is modulated by 

multiple factors including reactive oxygen species (ROS) and integrins.3, 4

ROS are a group of active intermediate oxygen molecules produced under both 

physiological and pathological conditions. Although low levels of ROS are essential for 

physiological processes, excessive production leads to oxidative stress, which is an 

important mediator of pathological conditions, including kidney injury.5-8 ROS are 

produced during many intracellular processes and major cellular sources of ROS are the 

mitochondrial respiratory chain, the NOX family NADPH oxidases, the xanthine oxidase, 

the uncoupled endothelial nitric oxide synthase and the cytochrome P450 systems.9, 10

The NOX family NADPH oxidases are superoxide generating enzymes that catalyze 

electron transfer from NADPH onto molecular oxygen. The first NADPH oxidase described 

was the neutrophil phagocytic NADPH oxidase that contains the membrane-bound catalytic 

subunit gp91phox/NOX2.11 NOX2 is expressed in many different cell types and tissues 

including the kidney.12, 13 The phagocytic NADPH oxidase requires the assembly of five 

subunits to function properly: the two membrane-bound gp91phox/NOX2 and p22phox 

subunits and the cytosolic regulatory subunits p40phox, p47phox, p67phox. In addition, 

assembly of this NADPH oxidase is regulated by the balance between inactive (GDP-bound) 

and active (GTP-bound) small GTPase Rac. GTP-bound Rac leads to the translocation of 

cytosolic subunits to the membrane, association with the membrane subunits and formation 

of an active NOX2 containing complex.14, 15

In addition to the gp91phox/NOX2, six other catalytic subunits have been identified, 

including NOX1, NOX3, NOX4, NOX5, Duox1 and Duox2.11 NOX1, like NOX2, is 

expressed in many different tissues including the kidney12, 16 and requires p22phox and the 

regulatory subunit p47phox as well as active Rac for its stabilization and function. Its 

dependence on p22phox, however, is less stringent than that observed for NOX2.11 NOX4, 

originally identified as a NADPH oxidase homolog, is also highly expressed in the 

kidney.17, 18 It requires interactions with p22phox, but not the cytosolic organizer subunit 

p47phox or Rac for its stabilization and function.11 Due to its selective expression in the 

kidney, NOX4 has been suggested to be the major NOX in kidney and the major source of 

ROS in animal models of diabetic nephropathy.18, 19 However, recent studies have cast 

doubt on the pathological role of NOX4 in kidney injury, since NOX4-null mice showed 

worse glomerular and tubular kidney injury than wild type mice.20, 21 Interestingly, deleting 

NOX2 did not change the severity of tubulointerstitial injury in the kidney nor did it alter the 

phenotype of NOX4-null mice subjected to the same injury.13, 21 In contrast to the data 

showing no role for NOX2 in tubulointerstitial disease, p47phox-null mice have reduced 

kidney hypertrophy and mesangial matrix expansion in diabetic nephropathy.22-24 As 

p47phox affects both NOX1 and NOX2, this finding suggests that simultaneous inactivation 

of both these NOXs is required to alleviate diabetic nephropathy. The role of p47phox-

containing NOXs in non-diabetic glomerular injury is unknown.
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Integrins can also regulate the levels of ROS in both physiological and pathological 

conditions. Integrins are transmembrane receptors for matrix components formed by two 

non-covalently associated α and β subunits that combine to form 24 different heterodimers 

with different ligand specificity to matrix molecules.25 Upon binding to matrix, integrins 

initiate multiple cell signaling pathways which regulate critical cellular functions such as 

survival, proliferation, and matrix homeostasis.26, 27 Integrin α1β1, a major collagen binding 

receptor, is highly expressed on all major cell types in the glomeruli of the kidney and it has 

been identified as an important negative regulator of collagen synthesis.4, 28 In this context, 

integrin α1-null mice develop more severe glomerulosclerosis than wild type mice in 

response to glomerular injury and this is mainly due to increased production of pro-fibrotic 

ROS.29, 30 In contrast, mice lacking another collagen receptor, integrin α2β1, are protected 

from ROS-mediated injury.31 These findings suggest that integrin α1β1 decreases, while 

integrin α2β1 increases ROS production.32 The mechanism whereby integrin α1-null 

glomerular cells produce increased basal levels of ROS is in part due to increased growth 

factor receptor-mediated Rac activation.28 Thus, integrin α1-null mice and cells are 

predisposed to produce excessive collagen because of increased activity of Rac-dependent 

NOXs (NOX1 and NOX2) and they are an excellent model to define the mechanisms 

whereby ROS production contributes to glomerulosclerosis.

To determine the role of p47phox-dependent NOXs in non-diabetic glomerular injury, we 

subjected p47phox null mice as well as p47phox null mice crossed with the integrin α1-null 

mice to adriamycin- and partial renal ablation-mediated glomerular injury. We provide 

evidence that deletion of p47phox protects mice from renal-injury mediated albuminuria and 

glomerulosclerosis found in both injury models and these effects are more profound in mice 

on the integrin α1-null background. This protection is also accompanied by decreased 

production of free radicals, decreased activation of the EGF receptor/GTP-Rac axis and 

consequent decreased collagen production. Thus, our data indicate that p47phox-containing 

NOXs are an important source of ROS in the kidney and point to p47phox as a potential 

target for amelioration of albuminuria and renal fibrosis following injury.

Results

Loss of p47phox ameliorates kidney injury

To identify the role of NADPH oxidase-mediated ROS production in glomerular injury, we 

used p47phox-null (p47phoxKO) mice crossed onto the integrin α1-null (α1KO) mouse. This 

choice is dictated by the fact that integrin α1KO mice develop exacerbated 

glomerulosclerosis following injury due in part to increased baseline and injury-mediated 

ROS production.29 Glomerular injury was induced either by a single intravenous injection of 

adriamycin29 or by partial renal ablation.31

Mice received a single intraperitoneal injection of adriamycin (10mg/kg) and their weight 

was assessed at 0, 1, 2, 3 and 4 weeks after injection. As previously reported, integrin α1KO 

mice lost ∼ 20% of body weight at 2 and 3 weeks after adriamycin injection.29 In contrast, 

no body weight loss was observed in injured wild type control, p47phoxKO or p47phoxKO/

integrin α1KO mice (DKO) (Fig. 1A). At 4 weeks, ∼ 50% mortality was observed in 

integrin α1KO mice and ∼ 20% in wild type mice, while no deaths were observed in either 
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p47phoxKO or DKO mice. To determine whether there were differences in renal function 

among the various groups, we analyzed albuminuria by measuring urine albumin-to-

creatinine ratio at 1 and 4 weeks after adriamycin injection. One and four weeks were 

chosen because at 1 week albuminuria is observed in both wild type and integrin α1KO 

mice, but glomerular matrix deposition and injury are evident primarily in the latter group, 

and at 4 weeks albuminuria decreases in both groups, but it stays more elevated (together 

with overall kidney damage) in the integrin α1KO group.29 One week after adriamycin 

injection, albuminuria was evident in both wild type and integrin α1KO mice, although it is 

was more prominent in the latter group (Figs. 1B, C). In contrast, significantly lower 

albuminuria was evident in p47phoxKO and DKO compared to injured wild type and integrin 

α1KO mice, respectively. Albuminuria decreased in all groups at 4 weeks after injury, 

although it was significantly lower in p47phoxKO and DKO mice (Figs. 1B, C). Similar 

results for the urine albumin-to-creatinine ratio were seen in mice post-partial renal ablation, 

with albuminuria in 12 weeks injured p47phoxKO or DKO mice significantly lower than that 

measured in injured WT and integrin α1KO mice (Suppl. Fig. 1A). Thus, p47phox deletion 

ameliorates both adriamycin- and partial renal ablation-induced albuminuria. To 

characterize and quantify the degree of adriamycin-mediated injury, the kidneys were 

subjected to pathological examination. Four weeks after adriamycin injection, integrin 

α1KO mice showed more severe glomerular and tubular injury than injured WT mice. 

Injury was characterized by exacerbated mesangial matrix expansion, glomerulosclerosis, 

tubular accumulation of proteinacious casts, and interstitial fibrosis (Figs. 2A-D). By 

contrast, the kidneys of injured p47phoxKO and DKO mice looked relatively normal with 

minimal matrix mesangial expansion, glomerulosclerosis and tubulointerstitial fibrosis 

(Figs. 2A-D). Similar differences in glomerular injury were seen among the different strains 

of mice 12 weeks after partial renal ablation (Suppl. Fig. 1B). These results show that loss of 

p47phox in mice that either do or do not express integrin α1β1 ameliorates adriamycin- and 

renal ablation-mediated glomerular injury.

Loss of p47phox ameliorates kidney fibrosis

Increased collagen deposition is a key pathological feature of glomerular injury leading to 

glomerulosclerosis. Trichrome staining of kidney sections from 4 week adriamycin-injured 

mice revealed increased accumulation of fibrillar collagen in both glomeruli and tubules of 

integrin α1KO mice compared to injured WT mice (Fig. 3A). In contrast, kidneys of injured 

p47phoxKO and DKO showed low levels of fibrillar collagen (Fig. 3A). Fibrillar collagen 

staining was not evident in uninjured mice independently of their genotype (Fig. 3A).

As collagens I and IV are the principal fibrillar and non-fibrillar collagens induced in 

glomerulosclerosis, we examined their expression levels in kidney either by 

immunohistochemistry or Western blot analysis. Increased levels of collagen IV were 

evident in injured integrin α1KO mice compared to wild type mice and this was independent 

of the type of renal injury (Figs. 3B-D, Suppl. Figs. 1C, 1D). Moreover, decreased collagen 

IV deposition (especially in glomeruli) was detected in both p47phoxKO and DKO mice 

(Figs. 3B-D, Suppl. Figs. 1C, 1D). Similar to Trichrome staining, increased levels of 

collagen I were evident in injured integrin α1KO mice compared to WT mice and these 

levels were significantly decreased in the kidneys of DKO mice (Figs. 3C, 3D). These 
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results suggest that p47phox, at least in part, accounts for the increased injury and collagen 

deposition observed in the injured α1KO mice.

Loss of p47phox ameliorates adriamycin-induced oxidative stress

p47phox is a critical regulatory subunit of the NOX1 and NOX2 containing NADPH 

oxidases and deleting it reduces in vivo ROS production and therefore oxidative stress.33, 34 

Thus, we examined markers of oxidative stress in vivo to determine whether reduced ROS 

production correlates with the decreased renal damage observed in the p47phoxKO 

background. Urinary levels of F2-isoprostane and nitrotyrosine in kidney tissues were 

analyzed as they are recognized markers of in vivo oxidative stress. The levels and/or 

expression of both markers peaked at 1 week after adriamycin injury in all groups analyzed 

(Figs. 4A-D). The nitrotyrosine staining in the kidneys of injured mice localized primarily to 

podocytes, mesangial cells, proximal tubule cells, and infiltrating cells (Fig. 4B) which have 

been all shown to express p47phox. Both oxidative stress markers were significantly reduced 

in DKO mice compared to injured integrin α1KO mice. Similarly, p47phoxKO mice showed 

significantly decreased oxidative stress markers in both urine and kidney tissues compared 

to injured WT mice (Figs. 4A-D). At 4 weeks, the overall levels of F2-isoprostane and 

nitrotyrosine were decreased in all four groups, although the levels of nitrotyrosine remained 

significantly higher in the kidneys of injured integrin α1KO mice (Figs. 4A-D).

As the expression of p47phox increases in the course of renal injury and correlates with the 

degree of injury, we analyzed the levels of p47phox in the kidneys of uninjured (Control), 1 

week and 4 weeks after adriamycin-injured mice. While no basal expression of p47phox was 

detected in uninjured mice, increased expression of this NADPH regulatory subunit was 

evident primarily in 1 week injured integrin α1KO mice and remained elevated at 4 weeks 

(Fig. 5A, 5B). The translocation of the p47phox subunit to the plasma membrane is a key step 

for the formation of an active NOX2 containing complex.14,15 Thus, we analyzed the 

membrane localization of the p47phox by performing Western blot analysis of membrane 

enriched fractions of kidneys from uninjured (control) and 4 week-adriamycin injured wild 

type and integrin α1KO mice. Increased levels of membrane-associated p47phox were 

detected in kidneys of injured integrin α1KO mice (Fig. 5C).

Oxidative stress was still detected in the kidneys of adriamycin-treated DKO mice compared 

to p47KO mice (Fig. 4B), suggesting that in addition to p47phox other ROS generating 

enzymes might be responsible for the generation of nitrotyrosine in the kidneys of integrin 

α1KO/p47phox double KO mice. We therefore analyzed the levels of NOX4, a ROS-

producing enzyme highly expressed in the kidneys and upregulated in kidney injury,35, 36 in 

the kidneys of control and adriamycin-treated mice. While no difference in the basal levels 

of NOX4 were observed in kidneys of uninjured mice, increased expression of this enzyme 

was observed in the kidneys of 1 and 4 week injured mice, although it was more significant 

in the kidneys of integrin α1KO mice (Figs. 5A, 5B). Thus p47phox and NOX4 contribute to 

the renal damage observed in the integrin α1KO mice.
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Loss of p47phox attenuates podocyte injury and macrophage infiltration in integrin α1KO 
mice

Podocytes are a major target of adriamycin-induced kidney injury.37, 38 Because these cells 

express p47phox and NOX4 (reviewed in39) they could contribute directly to podocyte and 

consequent glomerular injury by generating ROS in response to injury. To evaluate whether 

podocyte injury/loss directly correlates with the degree of renal damage observed in injured 

mice, we stained kidneys sections of control and injured mice with anti-WT1 antibodies. 

While no difference in the number of WT1 positive cells were observed in kidneys of 

uninjured mice, significantly less WT1 positive cells was observed primarily in the kidneys 

of 1 and 4 week injured wild type and integrin α1KO mice, although it was more significant 

in the latter group (Figs. 6A, 6B).

Another feature associated to adriamycin-mediated injury is macrophage infiltration starting 

at 2 weeks after adriamycin treatment.38 As interstitial fibrosis and collagen production are 

still evident in adriamycin-injured integrin α1KO mice (despite decline in albuminuria and 

urinary ROS) at 4 weeks, we investigated whether infiltrating macrophages could account 

for these fibrotic features. No difference in macrophage number was observed among the 4 

groups at baseline or 1 week after ADR treatment (Figs. 7A, 7B). This is consistent with the 

observation that infiltrating cells become evident at 2 weeks after adriamycin treatment and 

the primary cells affected by adriamycin are resident cells (e.g., podocytes and mesangial 

cells).29, 38 In contrast, at 4 weeks a significant increase in the number of F4/80 positive 

cells was detected only in the kidneys of integrin α1KO mice (Figs. 7A, 7B), suggesting 

that, in addition to ROS and resident cells, macrophages might contribute to the late fibrotic 

phenotype observed in this group.

Loss of p47phox leads to decreased glomerular activation of EGF receptor

We next determined the mechanism whereby loss of p47phox protects against renal injury. 

The EGF receptor (EGFR) contributes to the development of kidney injury through multiple 

mechanisms.40, 41 We showed that increased basal activation of EGFR in integrin α1KO 

mice contributes to kidney injury and matrix synthesis by promoting Rac-mediated 

activation of NADPH oxidase complex and in turn ROS production.28, 29 As ROS can 

potentiate the activation status of receptor tyrosine kinases42, we analyzed the levels of 

activated EGFR in glomeruli isolated from WT, α1KO, p47phoxKO, or DKO mice 1 week 

after adriamycin injection. As expected, glomeruli from injured integrin α1KO mice showed 

significantly higher levels of activated EGFR compared to injured WT mice, and this 

activation was significantly reduced in glomeruli of injured p47phoxKO and DKO mice 

(Figs. 8A, 8B). Thus, the p47phox/ROS axis is required for activation of EGFR in vivo.

Crosstalk between the EGFR-Rac pathway and p47phox regulates ROS and collagen IV 
production in vitro

In addition to podocytes, mesangial cells are a major glomerular cell type responsible for 

production of ROS and collagen IV. To further dissect the mechanisms whereby p47phox 

regulates ROS and collagen IV production, the levels of activated EGFR, Rac, as well as the 

levels of ROS and collagen IV production were analyzed in mesangial cells isolated from 

WT, α1KO, p47phoxKO, and DKO mice. Consistent with the in vivo data, integrin α1KO 
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mesangial cells showed significantly higher levels of activated EGFR, activated Rac (GTP-

Rac), ROS and collagen IV (Figs. 8C-E) than the other cell types analyzed. In contrast, 

deletion of p47phox profoundly decreased activation of EGFR, GTP-Rac, ROS and collagen 

IV production (Figs. 8C-E).

We previously showed that integrin α1KO mesangial cells have increased basal level of 

activated ERK 43. This MAPK kinase is not only downstream EGFR,44-46 but also promotes 

ROS production by regulating the expression and/or phosphorylation of p47phox.47, 48 

Therefore, we analyzed the levels of activated ERK in mesangial cells and found that, in 

contrast to the activated levels observed in integrin α1KO mesangial cells, deletion of 

p47phox resulted in decreased levels of activated ERK (Fig. 8D). These results suggest that 

integrin α1β1-mediated downregulation of ROS production is mainly mediated by the 

p47phox-dependent NADPH oxidase complex, and this complex also plays a role in 

regulating the activation of EGFR, Rac, ERK, and collagen IV production (Figs. 9A, 9B).

Discussion

Increased ROS production or oxidative stress has been documented in various human 

diseases, and studies using animal models have demonstrated that increased ROS levels are 

an important pathogenic mechanism in the development of fibrotic injuries. The overall goal 

of this study was to evaluate the role of p47phox, the regulatory subunit of NOX1 and 

NOX2, in the development and progression of glomerular kidney disease. To do this, we 

used p47phox-null mice crossed to integrin α1-null mice, a model of increased ROS 

production and exacerbated glomerulosclerosis following injury.28, 29 Using both ROS-

mediated and non-ROS mediated glomerular injury models; we provide evidence that 

deletion of p47phox protects mice from albuminuria and kidney fibrosis which is consistent 

with reduced in vivo oxidative stress in the p47phox-null background. In addition, we provide 

evidence that deletion of p47phox in mesangial cells leads to significantly reduced ROS and 

collagen IV production. Thus, our study indicates that p47phox-dependent NOXs are an 

important source of ROS in the kidney and suggests that p47phox can be viewed as a 

potential target for amelioration of albuminuria and renal fibrosis following injury.

NOX1, NOX2, and NOX4 are major sources of ROS in various organs, including the 

kidneys. The finding that the expression of these oxidases is upregulated in the course of 

fibrosis has initiated a series of studies aimed to determine their contribution to fibrotic 

disease. NOX4, for example, has been implicated in the initiation and progression of 

diabetic nephropathy.18 The finding that glucose induces upregulation of NOX4 and 

oxidative stress in kidney tubular cells, and this effect is prevented by inhibition of the 

protease ADAM17, suggests that the ADAM17/NOX4 axis is a key mediator of glucose-

promoted kidney tubular injury.49 Moreover, the recent finding that inhibition of mTOR 

prevents NOX-4-mediated ROS generation and glomerular podocyte apoptosis in a model of 

type 1 diabetes, suggests that NOX4 mediates mTOR-induced podocyte instability in the 

course of glomerular injury.19 Consistent with a deleterious role of NOX4 protein in 

glomerular injury, we show that the kidneys of adriamycin-injured integrin α1KO mice have 

increased levels of NOX4 and p47phox levels, both of which could contribute to the severe 

glomerular injury observed in these mice. At present, it is unclear how loss of integrin α1β1 
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might lead to increased NOX4 production, although MAPK kinases have been implicated in 

the regulation of NOXs under physiological and pathological conditions (reviewed in50). 

Thus, further studies are needed to determine whether the increased ERK activation we 

detected in integrin α1KO mesangial cells might contribute directly to the regulation of 

NOX4.

Although studies indicate that activation of NOX4 plays a deleterious role in fibrotic 

diseases, recent studies have cast a shadow on the pathological role of NOX4 in kidney 

injury. In this context, NOX4-null mice show worse pathology than wild type mice 

following glomerular and/or tubular injury.20 Moreover, NOX4-null mice develop 

exaggerated cardiac contractile dysfunction, hypertrophy, and dilatation during exposure to 

chronic overload.51 Collectively, these results not only suggest that NOX4 might 

paradoxically play a protective role in stress-induced kidney injury, but also indicate that 

other sources of ROS-generating enzymes might play a role in disease, especially NOX1 

and NOX2 complexes. p47phox-null mice have been used to investigate the role of these 

complexes, as well as factors able to regulate their assembly, to disease. In this regard, 

p47phox-null mice are protected from angiotensin-2 mediated liver fibrosis due to the 

inability of angiotensin-2 to promote phosphorylation and consequent activation of 

p47phox.52 Consistent with this finding, loss of p47phox ameliorates the susceptibility to heart 

disease in mice lacking the angiotensin converting enzyme 2, a negative regulator of the 

renin-angiotensin system, clearly indicating a positive correlation between angiotensin-2 and 

p47phox in fibrosis and disease.53 Despite these promising findings, it has been recently 

shown that loss of p47phox leads to cytoskeleton destabilization and decreased activation of 

kinases found in focal adhesions, thus making the heart more susceptible to overload-

induced biomechanical stress.54 In addition, mice lacking p47phox show increased neutrophil 

alveolitis and exacerbated lung injury following LPS treatment due to enhanced NF-κB 

activity.34 All together these results indicate that the beneficial and/or deleterious role of 

p47phox is highly dependent on the type of injury and the cell type affected.

In renal disease, the contribution of p47phox has been investigated primarily in diabetes-

mediated injury. Its genetic deletion reduces kidney hypertrophy, oxidative stress and 

mesangial matrix expansion in a spontaneous model of type 1 diabetes.24 However, no 

protection from albuminuria was observed in this study.24 In contrast to this finding, we 

show that mice lacking p47phox expression show decreased oxidative stress which is 

accompanied by decreased albuminuria and kidney fibrosis compared to wild type mice in 

two different models of glomerular injury. The beneficial effects on albuminuria are more 

evident when p47phox-null mice are crossed onto the integrin α1-null mouse, a model of 

increased NADPH-mediated oxidative stress and kidney injury.29, 30 Our results suggest that 

p47phox and NOX4 contribute primarily to the early phase of adriamycin-mediated renal 

injury. In this context, at 1 week, proteinuria, matrix accumulation, podocyte loss and 

glomerular injury directly correlated to the levels of renal p47phox and NOX4 expression and 

oxidative stress markers. This was particularly evident in 1 week injured integrin α1-null 

mice which showed the highest levels of p47phox and NOX4 proteins, F2 isoprostanes, and 

nitro-tyrosine. At 4 weeks, however, we observed an overall decrease in albuminuria and 

oxidative stress markers in all groups, although the p47phox and NOX4 protein levels 

remained elevated in the kidney of injured α1-null mice. Despite an overall decrease in 
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oxidative stress, significantly more glomerular injury (as determined by podocyte loss) as 

well as glomerular and tubular interstitial sclerosis were detected in integrin α1-null mice at 

4 weeks. This suggests that factors independent of ROS might contribute to the severity of 

injury in these mice at late phases of adriamycin-induced renal injury. A plausible 

explanation is that the high albuminuria detected in 1 week injured integrin α1-null mice 

could have triggered tubule cell death with consequent generation of pro-fibrotic and pro-

inflammatory mediators.55 This possibility is supported by the significantly increase in 

collagen deposition and numbers of infiltrating macrophage particularly evident in the 

kidneys of 4 weeks injured integrin α1-null mice. Another feature of 4 week injured integrin 

α1-null mice was an overall increase in podocyte loss despite decreased albuminuria 

compared to 1 week injured integrin α1-null mice. Although this seems to be a counter 

intuitive result, our finding agrees with studies in humans and rodents showing that 

proteinuria is not uniformly associated with podocyte injury. To this end, podocyte injury 

does not directly correlate to the levels of proteinuria in human glomerulopathies56 and 

injection of antibodies to nephrin leads to rapid proteinuria in the presence of intact 

podocyte foot processes.57, 58

p47phox is required for both NOX1- and NOX2-mediated ROS production, suggesting that 

deletion of p47phox might affect both NOX pathways. Surprisingly, the NOX2-null mice 

show no overall renal protection upon induction of type 1 diabetes.13 On the other hand, 

inhibition of the NOX1/NOX4 axis with the dual inhibitor GKT136901 protects mice from 

renal injury induced by type 2 diabetes.59 Thus, it is conceivable that the p47phox/NOX1 

axis might be a major generator of ROS in kidney injury. Although more studies are needed 

in order to determine which of the two NOXs is activated by p47phox in the course or renal 

injury, our study shows that p47phox-dependent NADPH oxidase plays a key role in the 

progression of kidney injury and suggests that targeting p47phox is sufficient to ameliorate 

both fibrotic responses and albuminuria.

In addition to p47phox, the activity and assembly of NOX1 and NOX2 containing NADPH 

oxidase are mediated by the small GTPase Rac.11, 32, 60-62 We previously showed that 

integrin α1β1 acts as a negative regulator of ROS production by preventing EGFR 

phosphorylation and consequent Rac activation.28 Consistent with this finding, transfection 

of integrin α1KO cells with dominant negative Rac significantly decreases basal levels of 

ROS.28 In addition, we here show that injured integrin α1-null mice crossed onto the 

p47phox-null background produces less in vivo markers of oxidative stress than integrin α1-

null mice. However, the levels of oxidative stress in the integrin α1/p47phox-null mice were 

still higher than those detected in injured p47phox- mice mice. This difference suggests that 

integrin α1β1 might also negatively regulate ROS productions in a Rac/p47phox independent 

manner. In this context, mitochondria and 5-lipoxygenase have been found to be involved in 

integrin-mediated ROS production.63 Moreover, the presence of integrin αvβ3 at focal 

adhesion sites inhibits local ROS production,64 suggesting that integrin-mediated adhesion 

is important in regulating the local redox environment.

In conclusion, our study suggests that p47phox contributes to the generation of ROS in 

kidney glomeruli and contributes to kidney injuries. This, together with the finding that the 

Wang et al. Page 9

Kidney Int. Author manuscript; available in PMC 2015 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



assembly of Rac-dependent NOXs is negatively regulated by integrin α1β1, points to 

integrins and p47phox as potential targets for fibrotic diseases.

Methods

In vivo Injury Models

All in vivo experiments were performed according to institutional animal care guidelines and 

conducted in Association for Assessment and Accreditation of Laboratory Animal Care–

accredited facilities. p47phox-null (p47phoxKO) mice on C57/B6 background were 

backcrossed onto the BALB/c background for 8 generations and then were crossed with 

integrin α1-null (α1KO) mice onto the BALB/c background29 to generate integrin 

α1het/p47phoxhet. The integrin α1het/p47phoxhet mice were then crossed among themselves 

in order to generate wild type (WT), integrin α1KO, p47phoxKO, and integrin α1KO/

p47phoxKO (DKO) mice, all on the BALB/c background. For adriamycin-mediated 

glomerulosclerosis, male mice (6 weeks old, 24 g body weight) received a single 

intravenous injection of adriamycin (10 mg/kg; Sigma Aldrich), and mice were sacrificed 0, 

1 or 4 weeks after injection. One and 4 weeks were chosen because at these time points most 

of the integrin α1KO mice develop severe albuminuria and glomerular injury.29 Six to 18 

mice/genotype were used for this set of experiments. For the remnant kidney model (5/6 

nephrectomy), WT, integrin α1KO, p47phoxKO, and DKO BALB/c male mice (6–7 weeks 

old, 20–23 g body weight) underwent 5/6 nephrectomy or sham operation as described.31 

Mice were then sacrificed 12 weeks after injury. Twelve mice/genotype were used for this 

set of experiments.

Clinical Parameters and Morphological Analysis

Body weight was measured weekly and expressed in grams. For the analysis of albuminuria, 

spot urine was collected at 0, 1, and 4 weeks after adriamycin injection or at 0 and 12 weeks 

after partial renal ablation and the concentration of urine albumin and creatinine was 

measured using the ELISA Albuwell M kit (Exocel Inc., Philadelphia, PA). The albumin-to-

creatinine ratio (ACR) was expressed as micrograms per milligram.

Kidneys, removed immediately at sacrifice, were fixed in 4% formaldehyde for paraffin 

section for both morphological and immunohistochemistry analysis. Paraffin tissue sections 

were stained Masson's Trichrome Blue for the evaluation of kidney fibrosis. Paraffin 

sections were stained with periodic acid Schiff (PAS) to assess glomerular mesangial 

expansion and sclerosis, acute tubular injury, and interstitial fibrosis. The total number of 

glomeruli per each kidney section was counted with a total of ∼ 150 glomeruli/kidneys and 

7-13 mice per each group analyzed. Global sclerosis and segmental sclerosis are presented 

as a percentage. A semi-quantitative index was used to evaluate the degree of glomerular 

mesangial expansion. Each glomerulus on a single section was graded from 0 to 4, where 0 

represents no lesion, and 1, 2, 3 and 4 represent mesangial matrix expansion involving <25, 

25-50, 51-75, and >75% of the glomerular tuft area, respectively. Tubular injury was scored 

according to the percentage of damaged tubules (loss of brush border, shedding of both 

necrotic and viable epithelial cells into the tubular lumen, tubular dilation, cast formation, 

and cell lysis): 1) <25% damaged; 2) 25–50% damaged; 3) 51–75% damaged; and 4) >75% 
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damaged, respectively. A semi-quantitative index was used to evaluate the degree of 

interstitial fibrosis: 0: no interstitial fibrosis; 1) <25%; 2) 25– 50%; 3) 51–75%; and 4) 

>75% interstitial fibrosis, respectively. Histologic analysis was performed in a blind fashion 

by a renal pathologist (PP).

F2-isoprostane Assay

The levels of urinary F2-isoprostane were determined using an EIA kit following the 

manufacturer's instruction (Cayman Chemical Company, USA). Briefly, spot urines were 

diluted 100 times with water. 50 μl of standard or urine samples were placed in 96-well plate 

pre-coated with mouse anti-rabbit IgG. Then, 50 μl F2-isoprostane tracer and F2-isoprostane 

antiserum were added into each well and incubated for 18 h at 4 °C. The plates were then 

washed to remove all unbound reagents and captured F2-isoprostane was detected with 

Ellman's reagent followed by absorbance at 420 nm using multiskanascent analyzer 

(Thermo Labsystems). All samples were assayed in duplicate. The values of F2-isoprostane 

were calculated using a computer spreadsheet available from Cayman Chemical Company 

and expressed as a ratio to creatinine (pg/μg).

Cell Culture

Primary mesangial cells from WT, α1KO, p47phoxKO, and DKO BALB/c mice were 

isolated, cultured, and immortalized by retroviral-mediated expression of T-antigen as 

previously described.65

Immunohistochemistry

Immunohistochemistry staining for the evaluation of collagen IV and Nitro-tyrosine (N-Tyr) 

levels, as well as macrophage and podocyte numbers in uninjured and injured kidneys was 

performed on paraffin kidney sections as reported.29, 66-68 Briefly, kidney sections were 

incubated with rabbit anti-mouse collagen IV (1:500, AbD Serotec), rabbit anti-N-Tyr 

antibody (1:400, Santa Cruz), mouse anti-WT1 antibody (1:100, Santa Cruz), and rat anti-

F4/80 (AbD Serotec) overnight at 4°C followed by 1 hour incubation with the appropriate 

horseradish peroxidase-conjugated secondary antibody (1:100, Santa Cruz) at room 

temperature. Slides were developed using Sigma Fast DAB chromogenic tablets (Sigma) 

and then counterstained with toluidine blue in order to increase the contrast with DAB 

staining.

In vitro ROS Detection

ROS production was measured with dihydro-rhodamine as previously described 29. Briefly, 

1.5 × 105 mesangial cells were plated in six-well plates in Dulbecco's modified Eagle's 

medium (DMEM) containing 1% fetal calf serum (FCS). After 2 days, the cells were 

washed with PBS and then incubated in serum-free medium with 2 μM dihydro-rhodamine 

(Sigma) for additional 2 hours. The cells were then trypsinized and the generation of 

fluorescent rhodamine 123 was analyzed by a FACScan (BD Bioscience). Three 

independent experiments were performed in triplicate.
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GTP-Rac Assay

PAK1-p21Rac binding domain (PBD)-conjugated glutathione Sepharose beads were 

prepared and used as previously described.28 24 hour serum starved cells were scraped in 

lysis buffer containing 50 mM Tris-HCl (pH 7.5), 10 mM MgCl2, 200 mM NaCl, 1% 

NP-40, 5% glycerol, 0.05% Tween 20, 1 mM NaF, 1 mM Na3VO4, and proteinase inhibitor 

(Roche). Equal amount of cell lysates were incubated with 30 μl of PAK1-PBD-conjugated 

glutathione Sepharose beads at 4 °C for 1 hour. Beads were then centrifuged, washed with 

25 mM Tris-HCl (pH 7.6)-30 mM MgCl2-40 mM NaCl-1 mM dithiothreitol-1% NP-40, 

suspended in 20 μl of Laemmli's sample buffer and analyzed by Western blotting as 

indicated below.

Western Blot Analysis

For analysis of collagen IV, collagen I, p47phox, NOX4, and N-Tyrosine levels, total kidney 

lysates were prepared in 62.5 mM Tris, pH 6.8, 2% SDS, and 10% glycerol by 

homogenization. For p47phox membrane localization, kidneys were homogenized in 20 mM 

Hepes pH 7.2 using a Polytron homogenizer. After addition of NaCl (100 mM final 

concentration) the homogenates were centrifuged at 3,000 rpm for 5 minutes to remove 

debris. The supernatant was collected and centrifuged at 55,000 rpm for 50 minutes in order 

to separate membrane (pellet) and cytosol (supernatant) rich fractions. For analysis of 

phosphorylated EGF receptor, glomeruli were isolated 1 week after adriamycin injection as 

described 69 and lysed in the buffer described above. For analysis of phosphorylated and 

total ERK, as well as collagen IV levels in mesangial cells, 24 hour serum starved cells were 

lysed in RIPA buffer (50mM Tris, pH 7.4, 150mM NaCl, 1% NP40, 0.25% Na-

deoxycholate, 1× Roche complete mini protease inhibitor cocktail, and 4 mM Na 

Orthovanadate).

Equal amounts of total proteins (20-40 μg/lane) were resolved in 8% SDS-PAGE, 

transferred onto nitrocellulose, and probed with anti-collagen IV (MD Bioproducts), anti-

collagen I (MD Bioproducts), anti-p47phox (Santa Cruz), anti-NOX4 (Abcam) anti-β-actin 

(Santa Cruz), anti-phosphorylated-EGF receptor and anti-EGF receptor (Santa Cruz), anti-

Rac1 (Cell Signaling Technology), anti-ERK and anti-phosphorylated ERK (Cell Signaling 

Technology), and anti-N-Tyrosine (Saint Cruz) followed by the appropriate horseradish 

peroxidase-conjugated secondary antibodies.

In some experiments, collagen IV, collagen I, p47phox, NOX4, N-Tyrosine, phosphorylated 

and total EGF receptor bands, and β-actin bands were quantified by densitometry analysis 

and the levels of collagen IV, collagen I, N-Tyrosine, p47phox, NOX4, and phosphorylated 

EGF receptor expressed as collagen IV/β-actin, N-Tyrosine/β-actin, p47phox/β-actin, 

NOX4/β-actin or phosphorylated EGF receptor/EGF receptor.

In some experiments 1 μl spot urine was analyzed for presence of albuminuria on 10% SDS-

PAGE and stained with SimplyBlue (Invitrogen)
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Statistical Analysis

We used ANOVA and Tukey's Post Hoc Test to analyze the statistical differences between 

multiple groups. p≤0.05 was considered statistically significant. Unpaired two tailed t-test 

was used for comparison of two groups.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Loss of p47phox improves adriamycin-mediated albuminuria
Kidney injury was induced by a single tail vein injection of adriamycin (10 mg/Kg b.w.) in 

wild type (WT), integrin α1KO, p47phoxKO, integrin α1KO/p47phoxKO (DKO) mice and 

changes in body weight (A) and urine albuminuria (B, C) were examined over time. (*) 

indicates significant differences (p≤0.05) between α1KO and WT, or α1KO and p47phoxKO, 

or α1KO and DKO. Values are the mean ± SD of the number of mice indicated. (B) 

SimplyBlue staining of 1 μl urine showing elevated albuminuria in adriamycin-treated 

integrin α1KO mice compared to WT, p47phoxKO or DKO mice. Alb = mouse serum 

albumin (1.25 μg/lane). (C) Urine albumin excretion expressed as albumin-to-creatinine 

ratio (ACR) in untreated or adriamycin-treated WT, α1KO, p47phoxKO, and DKO mice. 

Values represent the mean ± SD of the mice indicated. Difference between injured WT and 

α1KO (*) or injured WT and p47phoxKO (**) or injured α1KO and DKO (δ) mice were 

significant (p≤0.05).
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Figure 2. Loss of p47phox improves adriamycin-induced kidney injury
(A) Representative light micrographs of periodic-acid-Schiff (PAS) stained kidneys from 

uninjured (Control) or adriamycin-treated (4w-ADR) WT, α1KO, p47phoxKO, and DKO 

mice. Loss of p47phox rescues the severe glomerular and tubular damage observed in injured 

integrin α1KO mice. (B-D) Matrix mesangial expansion (MME) (B), global 

glomerulosclerosis index (GSI) (C), and interstitial fibrosis index (IFI) (D) were evaluated 4 

weeks after adriamycin injection and scored as described in the Methods. Values represent 

the mean ± SD of the number of mice indicated.
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Figure 3. Loss of p47phox improves adriamycin-induced matrix deposition
(A) Masson's Trichrome staining of kidneys from uninjured (Control) or adriamycin-treated 

(4w-ADR) WT, α1KO, p47phoxKO, and DKO mice. Note the presence of fibrillar collagen 

(blue) in both glomeruli and tubules of integrin α1KO mice which was reduced in kidneys 

of p47phoxKO and DKO mice. (B) Collagen IV staining of kidney sections from 4 weeks 

injured WT, α1KO, p47phoxKO and DKO mice. Note the high levels of glomerular collagen 

IV in integrin α1KO mice which were reduced in kidneys of p47phoxKO and DKO mice. (C) 

Equal amount of kidney lysates (20 μg/lane) from WT, α1KO, p47phoxKO, and DKO mice 

(n=3 shown) 4 weeks after adriamycin injection were analyzed by Western blot for levels of 

collagen IV and collagen I. (D) The collagen I, collagen IV and β-actin bands were analyzed 

by densitometry analysis and the levels of collagen IV are expressed as collagen I/β-actin or 

collagen IV/β-actin ratio. The values represent the mean ± SD of the number of kidneys 

indicated.
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Figure 4. Loss of p47phox improves adriamycin-induced oxidative stress
(A) The levels of urinary F2-isoprostane in the mice indicated were analyzed by ELISA 

before or after adriamycin injection and were expressed F2-isoprostane/urine creatinine 

ratio. Values are the mean ± SD of the number of mice indicated. (*), (**) and (δ) are as in 

Fig. 1. (B) Paraffin sections of kidneys from uninjured (Control) or adriamycin-treated (1w-

ADR and 4w-ADR) WT, α1KO, p47phoxKO, or DKO mice were stained with anti-

nitrotyrosine (N-Tyr) antibodies to evaluate the degree of oxidative stress-induced tyrosine 

nitration (brown staining). Slides were counterstained with toluidine blue (blue staining). 

The high-magnification images on the right show nitrotyrosine staining in infiltrating cells 

(IC), mesangial cells (MC), podocytes (P), and proximal tubules (PT). (C) Equal amount of 

kidney lysates (20 μg/lane) from WT, α1KO, p47phoxKO, and DKO mice (n=3) 1 and 4 

weeks after adriamycin injection were analyzed by Western blot for levels of nitro-tyrosine. 

(D) The nitro-tyrosine and β-actin bands were analyzed by densitometry analysis and the 

levels of tyrosine nitration are expressed as N-Tyr/β-actin ratio. The values represent the 

mean ± SD of 3 kidneys/genotype. (*), (**) and (δ) are as in Fig. 1.
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Figure 5. Analysis of p47phox levels and localization in kidneys from uninjured and adriamycin-
injured mice
(A) Equal amount of kidney lysates (20 μg/lane) from uninjured (Control) or adriamycin-

treated (1w-ADR and 4w-ADR) WT, α1KO, p47phoxKO, and DKO mice (n=3 shown) were 

analyzed by Western blot for levels of p47phox and NOX4. (B) The p47phox, NOX4 and β-

actin bands were analyzed by densitometry and the levels of p47phox and NOX4 are 

expressed as p47phox/β-actin or NOX4/β-actin ratio. Open circles represent values of 

individual kidneys, while the bar represents the mean value. (C) Equal amount of kidney 

lysates (Total) membrane enriched (Membrane) and membrane deprived (Cytosol) fractions 

(40 μg/lane) from uninjured (Control) or adriamycin-treated (4w-ADR) WT and integrin 

α1KO mice (n=3 shown) were analyzed by Western blot for p47phox localization. 

Membranes were re-blotted with anti-ERK, anti-N-cadherin, and anti β-actin antibodies to 

verify the purity of various fractions.
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Figure 6. Loss of p47phox improves adriamycin-induced podocyte loss
(A) WT-1 staining in kidneys from uninjured (Control) or adriamycin-treated (1w-ADR and 

4w-ADR) WT, α1KO, p47phoxKO, and DKO mice. Slides were counterstained with 

toluidine blue (blue staining). (B) The number of WT1 positive cells (arrowhead) was 

evaluated in 20 randomly chosen glomeruli per kidney. The values represent the mean ± SD 

of the kidneys indicated. (*) and (δ) are as in Fig. 1. Note the decreased number of 

podocytes in injured integrin α1KO mice which was reduced in kidneys of p47phoxKO and 

DKO mice.
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Figure 7. Loss of p47phox improves adriamycin-induced macrophage infiltration
(A) F4/80 staining in kidneys from uninjured (Control) or adriamycin-treated (1w-ADR and 

4w-ADR) WT, α1KO, p47phoxKO, and DKO mice. Slides were counterstained with 

toluidine blue (blue staining). (B) The number of macrophages (arrowhead) was evaluated in 

20 randomly chosen field per kidney. The values represent the mean ± SD of the kidneys 

indicated. (*) and (δ) are as in Fig. 1. Note the increased number of macrophages in 4 week 

injured integrin α1KO mice which was reduced in kidneys of p47phoxKO and DKO mice.
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Figure 8. Loss of p47phox improves adriamycin-mediated activation of pro-fibrotic pathways
(A) Equal amount of glomerular lysates (20 μg/lane) from 1 week adriamycin-treated WT, 

α1KO, p47phoxKO, and DKO mice were analyzed by Western blot for levels of 

phosphorylated and total EGF receptor (EGFR). (B) pEGFR and EGFR bands were 

quantified by densitometry analysis and the levels of activated EGFR are expressed as 

pEGFR/EGFR ratio. Values are the mean ± SD of 3-4 mice/genotype. (C) Primary 

mesangial cells isolated from the mice indicated were cultured in serum free medium. 

Twenty-four hours later, cells were incubated with 2 μM dihydro-rhodamine and 2 hours 

later ROS generation was determined by FACS as described in the Methods. The level of 

ROS was expressed as a ratio of fluorescence intensity of cells with dihydro-rhodamine vs. 

that of cells without dihydro-rhodamine. Data represent the mean ± SD of 3 samples/

genotypes. The same experiment was repeated twice with similar result. (D) Equal amount 

of cell lysates (20 μg/lane) from the serum starved cells indicated were analyzed by Western 

blot for the phosphorylated and total EGFR, activated and total Rac, phosphorylated and 

total ERK, as well as collagen IV (CIV) levels. (E) The collagen IV and β-actin bands were 

analyzed and expressed as described in Fig. 3. The values represent the mean ± SD of 3 

independent experiments.
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Figure 9. 
Schematic reorientation of how loss of p47phox ameliorates the fibrotic response in integrin 

α1KO cells or mice. (A) Loss of integrin α1β1 leads to increased activation of EGFR (1) 

which in turn promotes p47phox membrane translocation and the assembly of the NADPH 

oxidase system by activating Rac1 (2) and/or ERK (3). NADPH-generated superoxide (4) 

can then exert a pro-fibrotic action by promoting collagen synthesis (5) and prolonging 

EGFR activation (6). (B) Loss of p47phox reduces this fibrotic response by dampening ROS 

production (4), collagen synthesis (5), and EGFR activation (6).
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