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During the 1918 influenza pandemic, healthy young adults unusually succumbed to
infection and were considered more vulnerable than young children and the elderly. The
pathogenesis of this pandemic in the young adult population remains poorly understood.
As this population is normally the least likely to die during seasonal influenza outbreaks,
thought to be due to their appropriate pre-existing and robust immune responses
protecting them from infection, we sought to review existing literature for immunological
reasons for excessive mortality during the 1918 pandemic. We propose the novelty
of the H1N1 pandemic virus to an H1N1 naïve immune system, the virulence of this
virus, and dysfunctional host inflammatory and immunological responses, shaped by
past influenza infections could have each contributed to their overall susceptibility.
Additionally, in the young adult population, pre-exposure to past influenza infection
of different subtypes, such as a H3N8 virus, during their infancy in 1889–1892, may
have shaped immunological responses and enhanced vulnerability via humoral immunity
effects with cross-reactive or non-neutralizing antibodies; excessive and/or ineffective
cellular immunity from memory T lymphocytes; and innate dysfunctional inflammation.
Multiple mechanisms likely contributed to the increased young adult mortality in 1918
and are the focus of this review.
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Introduction

The 1918–1919 influenza pandemic caused an estimated 50 million deaths (1). In three distinct
waves, the pandemic infected a third of the world’s population, with the majority of the deaths
occurring during the second wave in late 1918 (2, 3). Disease was characterized by unique, and
to date poorly understood, epidemiological and clinical aspects. Victims died either from direct
viral infection of the lung (4, 5), or most commonly from secondary bacterial pneumonia (6–8).
Unusually, healthy young adults were more likely to die than young children and the elderly, two
populations normally most vulnerable during influenza A virus (IAV) outbreaks (9). Fatal cases in
the 1918 pandemic peaked in the 1889–92 birth cohorts, corresponding to approximately 28-year-
olds (2, 10, 11), a pattern that was observed across the world (9, 12). The extraordinary mortality of
young adults during the 1918 influenza pandemic is not currently understood.

Similar to the 1918 pandemic, the 2009 IAV pandemic caused more severe and fatal cases in 30-
to 50-year-olds, which constituted up to one-third of patients in hospitals (13–15). Young adults had
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two to four times the risk of severe outcomes from infection
with this virus (H1N1pdm09) than those infected with circulating
seasonal influenza (16). The majority of H1N1pdm09 infections
caused a self-limited disease and the pandemic was considered the
mildest on record. Until we understand the causes of enhanced
illness of the young adult population during the 1918 and 2009
IAV pandemics, we are unlikely to be able to realistically estimate
the impact of future pandemics. While no single explanation will
be relevant to every mortality event in the young adults, we need
to understand how their innate and acquired immune status may
have combined with viral virulence to enhance mortality.

Excessive Innate Host Responses
Contribute to Influenza Immunopathology

Initial leukocyte infiltration into the lung parenchyma is essential
for resolution of virus infection, yet dysregulation of the infiltrat-
ing effector cells be a major factor in disease (17, 18). A hallmark
of highly pathogenic influenza infections is the ability for the virus
to dysregulate innate inflammatory responses, leading to excessive
recruitment of effector cells into the lung parenchyma causing
severe pulmonary injury and diffuse alveolar damage (19, 20). To
elicit cellular infiltrate into the infection site, host pattern recogni-
tion receptors (PRRs) must first recognize “danger” signals direct
toward the invading IAV, causing release of pyogenic cytokines
and chemokines. Excessive or dysregulated secretion can lead to a
“storm” of events linked with high-mortality rates (19, 20). Young
adults, with robust immune systems, may have been unusually
vulnerable to the 1918 IAV due over-exuberant inflammatory
responses to infection. As the elderly have less potent inflamma-
tory responses to influenza infection compared to young adults,
theymayhave been somewhat spared fromexcessive reactions and
thus were less likely to succumb to infection.

The recovery of genetic fragments of the 1918 H1N1 pandemic
virus and subsequent reverse engineering has enabled a complete
reconstruction of the original virus (21). The 1918 pandemic virus
was highly pathogenic as infection of monkeys and mice with
the reconstructed 1918 H1N1 IAV resulted in acute respiratory
distress and death with a pathology that matched lung tissues
from victims in 1918 (21–23). Similar features occur with highly
pathogenic avian H5N1 and H7N9 IAV infections (20, 24).

Virus infection followed by an extensive influx of macrophages
and neutrophils can release large quantities of reactive oxygen
species (ROS) contributing to the pathogenesis of lung disease.
Mice infected with IAV expressing the virulence protein PB1-F2
matching that of the 1918 pandemic strain had enhanced pul-
monary ROS (25), increased cellular infiltrate in alveolar spaces,
and were more likely to die from secondary bacterial infections
(26) compared to those infected with viruses expressing PB1-
F2 proteins from seasonal IAV strains. The type-1 interferons
(IFN-α and IFN-β) are the major cytokines that limit influenza
replication, with TNFα, IL-1β, and IL-6 recruiting immune cells
to the sites of infection andproducing inflammation. Studies using
mice genetically deficient in inflammatory modulators including
tumor necrosis factor receptor (TNFR) and nitric oxide synthase
(NOS2) exhibited reduced morbidity and mortality as well as
diminished cytokine production in lung tissue following H5N1

and 1918-virus challenge compared to infected wild-type mice
(27, 28). The type-1 interferons act on INF-α/β receptors to
activate the antiviral signaling cascade, resulting in the produc-
tion of antiviral proteins, such as MxA (Mx1 in mice). Mice
genetically deficient in Mx1, interleukin-1 receptor (IL-1R), or
IFNα receptor (IFNAR) exhibited increased viral load and pul-
monary inflammation compared to wild-type mice (28–30). The
molecular signatures ofmice surviving 1918-virus infection reveal
that the action of interferon via upregulation of genes involved
with apoptosis, ROS production, and cell migration, together
with downregulation of genes encoding cytokine and chemokine
production associated with viral pathology, such as IL-6 and TNF,
is critical to survival (29). As such, type-I IFNs contribute to
both resolution of viral load and suppression of immunopathol-
ogy caused by IAV infections. Inflammatory responses in ani-
mal infection models otherwise immunologically naïve toward
IAV show that enhancement of inflammation in young adults
could have been a major contributor to mortality during the 1918
influenza pandemic.

Humoral Immunity Enhancing
Susceptibility of the Young Adult
Population in 1918

Influenza A virus infections during childhood typically induce
B-cell memory responses that can adapt to produce antibody
protecting against future infection by divergent drift strains of
IAVs (31) (Figure 1). Such virus neutralizing antibody responses
are typically directed toward epitopes on the globular head of the
virus surface glycoprotein hemagglutinin (HA) and can be long-
lived. This longevity was particularly evidenced by protection of
the elderly against H1N1pdm09 infection, which was attributed
to antibodies raised during pre-1960s exposure to a virus of the
pandemic lineage (31). The elderly may have survived better than
young adults during the 1918 pandemic as they may have been
previously exposed to other H1 IAVs (32).

In the absence of specific-neutralizing antibodies, other anti-
bodies that are normally immuno-subdominant can be induced
and may be cross-reactive against different IAV subtypes. One
such target of subdominant cross-reactive antibody is the viral
ion channel protein, M2. The M2 protein is expressed on the
virion surface but does not protrude to the level of other gly-
coproteins, making it a poor viral neutralization target. M2 is
more accessible on the surface of infected cells and is thought to
enable direct killing of infected cells by antibody-dependent cellu-
lar cytotoxicity (ADCC) mechanisms (33–35). Whether anti-M2
antibodies were important during the 1918 pandemic is unknown.
Another target of subdominant cross-reactive antibodies are those
directed toward the HA stalk (36). Antibodies to the HA-stalk
employ various mechanisms of direct and indirect neutraliza-
tion. By binding to the stalk domain of the HA, the antibody
inhibits conformational changes of the HA in the endosome
and prevents entry of IAV genomic material into the cytosol,
as fusion of the endosomal and viral membranes cannot occur
(37). Similar to the cross-reactive anti-M2 antibody, HA-stalk
antibodies can induce ADCC (38) and complement-mediated
cytotoxicity (39).
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FIGURE 1 | Humoral influence on vulnerability of young adults to 1918
IAV. (A) Around 1889–92 infants were infected with the H3N8 IAV or other
circulating IAV (grey) and generated either (i) neutralizing antibodies (red), or (ii)
cross-reactive antibodies (black), or both. The infants from (A) that were young
adults during the 1918 pandemic and were subsequently infected with H1N1
IAV (blue) may have produced (B) specific-neutralizing and/or cross-reactive

antibodies enabling effective viral clearance and survival from infection. Or,
(C) specific-neutralizing antibodies that were ineffective against the
heterologous H1N1 IAV strain, and virus was unable to be cleared, resulting in
death. Alternatively, the production of cross-reactive antibodies may have also
caused ADCC, resulting in cellular damage and inflammatory illness, ultimately
contributing to mortality.

In many animal studies, it has been shown that anti-M2 and
HA-stalk antibodies induced by vaccination or passive transfer
result in viral clearance and protection (35, 38, 40–45). In
macaques, weakly immunogenic vaccines did not lead to robust
ADCC responses and as such did not contribute to vaccination
efficacy (46). Human studies have now revealed cross-reactive
HA-stalk antibodies that are broadly neutralizing against diver-
gent IAV strains (e.g., H1N1, H3N2, H5N1, and H7N9) and
may protect from infection (41, 45, 47). However, it is important
to note that not all individuals are capable of producing HA-
stalk antibodies (48). Plasmablasts capable of secreting HA-stalk-
specific antibodies have been isolated from healthy adults after
H1N1pdm09 vaccination. These cells were produced from already
existing memory B cells, which were presumably primed by pre-
vious IAV infections (41, 49), a scenario recapitulated by mice in
sequential infections (50).

During the 1918 IAV pandemic, prior exposure to previously
circulating influenzas would have shaped the memory B cell pop-
ulation to produce a landscape of both direct and cross-protective
antibody responses (51) that may have resulted in protection from
infection (Figure 1B). Young adults devoid of sufficient memory
B cells capable of producing direct and cross-reactive antibodies,
due to either their inability to mount such responses or from
lack of prior IAV infections, may have fared much worse in 1918
(Figure 1C).

The above assumes that cross-reactive antibodies to HA-stalk
or M2 would be beneficial, but evidence also exists that such

antibodies may enhance disease. Enhanced respiratory disease
can occur when individuals are challenged with a heterologous
virus while producing cross-reactive antibodies (52). Pigs vacci-
nated with an inactivated swine influenza virus showed enhanced
pneumonia upon challenge with H1N1pdm09. The vaccine was
shown to induce high-titer cross-reactive antibodies against the
more conserved HA2 stalk domain but no neutralizing antibodies
to the globular head of the HA (53). The pathology associated
with non-neutralizing antibodies cross-reacting with heterolo-
gous virus was characterized by severe bronchointerstitial pneu-
monia with necrotizing bronchiolitis and peribronchiolar lym-
phocytic cuffing (54), which may have resulted from excessive
ADCC (Figure 1C).

The phenomenon of vaccine-associated enhanced respira-
tory disease is reminiscent of that seen in children vaccinated
with inactivated RSV or measles virus following exposure to
a heterotypic virus, who subsequently suffered enhanced res-
piratory disease or atypical measles with severe disease (55–
57). Reasons for dire outcome include the quality of the anti-
body elicited toward the virus, the presence of large amounts of
non-neutralizing antibody at the time of viral replication, and
antibody-mediated activation of the classic complement cascade
(56). The young adult population of the 1918 pandemic may have
had prior exposure to a double-heterogenic H3N8 IAV during
their childhood (32), and may have developed a cross-reactive
humoral immunity. It is possible that in some young adults, the
cross-reactive antibody responses produced after infection with
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the 1918 virus actually enhanced subsequent pulmonary disease,
for reasons similar to those observed for RSV and measles (55–
57). Thismay bewhy, compared to children, the young adults were
more vulnerable to the 1918 IAV infection.

Whether infection during the initial wave of the pandemic
in early 1918 protected one from illness in subsequent waves of
the pandemic during late 1918–1919 is not clear despite exten-
sive study (12, 58–61). Young adults infected with the pandemic
virus in early 1918 may have had a recall of the memory B cell
population boosting the production of both direct and cross-
protective antibody responses (51). Subsequent infection during
the second or third wave of the pandemic may have resulted in
further cross-reactive responses that may have induced ADCC
and/or inflammatory disease. In Australian soldiers who could
be followed individually, infection in early 1918 appeared to pro-
tect against death, but not illness during the subsequent wave
occurring later during the 1918 pandemic (12). Additionally,
recent Canadian studies showing that seasonal influenza vaccine
apparently enhanced illness rates during the 2009 pandemic (62).

A recent study (32) proposes that individuals born earlier than
∼1890–1900 would have had neutralizing antibodies against the
1918 pandemic virus, induced by an emerging H1N1 virus in
1830, or an H1N8 virus in 1847 (32). Those born at the time of
the 1889–92 H3N8 pandemic, or shortly thereafter, would not
have such neutralizing antibodies and would be highly susceptible
to 1918-virus infection. It is further postulated that an H1N8
virus re-emerged in 1900 and may have allowed the children
in 1918 some degree of protection. If this did indeed occur, it
would account for the troughs in the mortality curves in the
young (5–15 years) and older (50–80 years) populations during
the 1918 pandemic (32). Similarly, during the 2009 pandemic,
about one-third of people born before 1950 had some immunity
to the H1N1pdm09 virus, perhaps due to childhood exposure to
an antigenically similar IAV (62, 63).

Cross-Reactive CD8+++ T Cell Immunity:
Implications for Disease

Pre-existing memory CD8+ T cells established via previous IAV
infections can cross-react with common epitopes presented by
class I human leukocyte antigen (HLA) complexes on antigen
presenting cells and promote rapid viral clearance. Animal (64,
65) and human studies (64, 66–68) have shown that CD8+ T cell-
mediated immunity can be directed against highly conserved anti-
gens among different IAV subtypes.More recently, non-conserved
peptide epitopes that vary at residues other than those that anchor
the peptide within the binding cleft of the HLA can still induce
cross-reactive T cells (69). Memory CD8+ T cells can ameliorate
infection by heterologous IAVs; however, substantial mutation
in IAV peptide epitopes may lead to ineffective recruitment of
cytotoxic CD8+ T cells crucial for viral clearance. Alternatively,
a lack of capacity to mount any CD8+ T cell response could
be equally problematic. The recruitment of cross-reactive CD8+
T cells against IAV varies across different ethnicities and has
shown to be dependent upon the capability of expressing the
HLA class I alleles that present conserved IAV peptides to elicit
cross-protective CD8+ T cells (64).

Young adults who had survived infection by an IAV in 1890
should have had robust priming of memory CD8+ T cells
that conferred some protection from lethal disease during the
1918 pandemic, provided these cells were periodically boosted
by intra-pandemic IAV infection (32). Upon infection with the
1918 H1N1 IAV cross-reactive T cell responses would have
been rapidly recalled in these individuals and may have pro-
tected against their death (70) (Figure 2). Recent studies have
shown cross-reactive CD8+ T cell memory pools, generated by
previous infection (s) with IAVs could provide some protec-
tion against H7N9 IAV infection (64). During 2009, the elderly
population had a low infection rate compared to children and
young adults, which was thought to be due to T cell immu-
nity and neutralizing antibodies against the extremely conserved
immune-dominant epitopes on viral proteins in the 2009 and
1918 H1N1 pandemic strains. Partial cross-reactivity with sea-
sonal H1N1 IAVs that circulated in the 1930s when the elderly
population would have been children may have also contributed
(69, 71).

Caveats exist for the protective role described for cross-reactive
CD8+ T cells. Cross-reactive CD8+ T cells cannot protect the
host from initial infection; their target is an infected cell and
they must be recruited to the site of infection after recall stimu-
lation. If the heterologous IAV infecting the host presents a strong
stimulus via PRRs that trigger excessive inflammatory responses
and recruits an overwhelming number of cross-reactive CD8+ T
cells, the resulting immunopathology may overwhelm any ben-
eficial effects (10, 72) (Figure 2Bii). In addition, dysfunctional
priming of CD8+ T cells may explain why the second wave of
the 1918 pandemic appeared more virulent than the first. It has
been postulated that the second wave of the 1918 pandemic was
caused by a virus that had evolved toward a more pathogenic
phenotype than the initially emerging H1N1 IAV (73). However,
CD8+ T cells reactive for the immunodominant IAV nucleopro-
tein (NP) and matrix-1 (M1) produced during first wave of the
1918 pandemic and subsequently recalled upon infection during
the second wave in late 1918 may have contributed to an over-
exuberant inflammatory response enhancing disease severity (17,
58, 64, 74). As the ability tomount CD8+T cell responses is linked
to highly polymorphic HLA expression, healthy young adults
infected in 1918 may have induced highly variable responses
that could have been to their detriment due to recruitment of
a plethora of non-cross-reactive CD8+ T cells (Figure 2Biii).
Additionally, the robustness of the immune system in the young
adult population as well as their pre-existing memory CD8+ T
cell repertoire may have contributed to the vulnerability of this
population over children, who may mounted a smaller repertoire
of more specific CD8+ T cells toward the pandemic virus. Given
a larger number of previous IAV exposures, the elderly may have
mounted a more diverse cross-reactive CD8+ T cell response,
but may have achieved clearance of infection without excessive
cellular recruitment due to a decreased ability to recruit cells
compared to the young adult population. Compared to young
adults, the infected elderly CD8+ T cell response to the 1918
H1N1 virus may not have enhanced the pathophysiology of the
disease and as such, may have beenmore effective toward clearing
the viral infection.
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FIGURE 2 | Memory CD8+++ T cell influence on increased mortality of
young adults to 1918 IAV. (A) Infants were infected with the H3N8 IAV
(gray) and generated either memory CD8+ T cells reactive toward (i)
antigenically conserved regions of IAV (black/gray cells), or (ii) non-conserved
antigenic regions of IAV (red/pink cells). (B) Young adults previously infected
with IAV in their infancy and produced CD8+ T cells to conserved antigenic
regions of the 1918 H1N1 IAV (blue) (i) survived infection as the CD8+ T cells

aided viral clearance, or (ii) suffered illness due to the triggering of excessive
inflammatory cellular responses to infection and recruitment of an
overwhelming number of cross-reactive CD8+ T cells, which may have
contributed to death. (iii) Young adults previously infected with H3N8 IAV and
produced non-cross-reactive CD8+ T cells in response to heterologous
1918 H1N1 IAV (blue) were unable to control infection and may have
become moribund.

Concluding Remarks

The causes of extreme mortality in the young adult population
during the 1918 pandemic are still uncertain. Childhood expo-
sure to heterotypic IAV may have shaped humoral and adaptive
immunological responses that contributed to the young adult pop-
ulation’s enhanced disease outcomes. Ethnicity resulting in lack
of appropriate immunological responses to conserved antigenic
sites in the 1918 pandemic IAV may have also contributed to the
mortality. PRRs may have induced over-exuberant inflammatory
responses enhancing lung pathology and disease. Such mecha-
nisms may collectively explain the increased mortality of young
adults during the 1918 influenza pandemic. The enhanced illness
inH1N1pdm2009H1N1-infected young adults demonstrates that
we still do not completely understand factors that enhance human
vulnerability. We must continue to explore transmission models,

virulence factors, and host responses to infection to better under-
stand the pathophysiology of influenza if we are to diminish the
impact of any new, highly pathogenic pandemic virus.
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