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To investigate the alleviating effects of low-intensity pulsed ultrasound (LIPUS) on
myelosuppression of Sprague–Dawley rats with breast cancer induced by cyclophos-
phamide (CTX). Breast cancer in rats was triggered by intragastric gavage with
7,12-dimethylbenz[a]anthracene (150 mg/kg). Then, the rats with breast cancer were ran-
domly allocated to the LIPUS group (n=50) and the control group (n=50). The LIPUS group
was injected intraperitoneally with CTX (50 mg/kg) for 4 consecutive days and underwent
LIPUS treatment at femoral metaphysis 20 min per day from the first day of injection for 7
consecutive days. The control group was injected with CTX (50 mg/kg) and treated with LI-
PUS without energy output. Blood, enzyme-linked immunosorbent assay (ELISA), real-time
quantitative polymerase chain reaction, Hematoxylin and Eosin (H&E) staining, and scan-
ning electron microscopy were applied to detect the changes. The results indicated that
LIPUS significantly promoted the proliferation of bone marrow nucleated cells, white blood
cells (WBCs), IgA, IgG, and IgM in the peripheral blood (P<0.05) without the damage to liver
and kidney function simultaneously. The mechanisms may result from the LIPUS alleviation
effect on bone marrow hematopoietic function through regulating cytokines such as LIPUS
can increase the expression of granulocyte colony-stimulating factor (G-CSF), stem cell fac-
tor, transforming growth factor-β, and intercellular cell adhesion molecule-1, meanwhile LI-
PUS will decrease the expression of interleukin-6, tumor necrosis factor-α, and vascular cell
adhesion molecule-1. LIPUS has potential to be a new adjuvant therapy method in clinic for
ameliorating chemotherapy-induced myelosuppression.

Introduction
Breast cancer is the most frequently diagnosed cancer in women worldwide and the leading cause of
cancer-related deaths among women in less-developed countries [1,2]. Chemotherapy is one of the main
effective systemic treatments for breast cancer, in which cyclophosphamide (CTX) is widely used in the
early stages [3]. However, during treatment of breast cancer leukopenia, and neutropenia, is the most com-
mon which is triggered by cytotoxic anticancer drugs having dose-limiting toxicity [4,5]. Severe leukope-
nia and neutropenia often result in treatment delay or dose reduction and discontinuation. In addition, pa-
tients with neutrophil have more potential to be infected or have any other adverse case to make the qual-
ity of life and subsequent treatment worse [6]. Granulocyte colony-stimulating factors (G-CSFs) known
as a drug used to treat neutropenia, such as filgrastim, lenograstim, and pegfilgrastim are widely used
in clinical practice to reduce the risk of chemotherapy-induced neutropenia [7–10]. However, G-CSF
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will also cause side effects including mild and transient reactions of headache, bone pain, myalgia, fever, flushing, rash,
and so on. It will even result in some severe but rare side effects including respiratory, hematologic, and cutaneous
reactions [11–17]. Therefore, a new method with safer, more effective, and less harmful to treat leukopenia caused by
chemotherapeutic drugs should be sought.

Low-intensity pulsed ultrasound (LIPUS) is proven to be an inexpensive, safe, and non-invasive treatment method
[18–21]. The latest findings indicated that LIPUS treatment could significantly promote the proliferation of bone
marrow nucleated cells and white blood cells (WBCs). It also promoted the differentiation of hematopoietic stem
cells into granulocytes and lymphocytes [22]. Previous reports about the therapeutic effects of LIPUS on leukopenia
induced by chemotherapy drugs just worked on normal animals which did not have cancer [22,23]. However, it is not
clear whether LIPUS can treat CTX-induced leukopenia in animals bearing cancer. In order to be closer to the actual
situation of clinical application, the present study was designed to explore the effects and mechanisms of LIPUS on
ameliorating CTX-induced myelosuppression in rats with breast cancer. Combined with the previous studies, it will
provide experimental support for the clinical application of LIPUS in future.

Materials and methods
Experimental animals
SD rats (n=150, female, 6–8 weeks, 160–180 g) were provided by the Experimental Animal Center of Chongqing
Medical University (Production License No. SCXK 2017-0023, Chongqing, China). These rats were placed in animal
houses with standard conditions (temperature 23 +− 5◦C, light time 12 h/day, humidity 45 +− 5%) with free access
to standard water and food. All experiments were applied following the Guide for the Care and Use of Laboratory
Animals issued by the Ministry of Science and Technology, China. The protocol of experiment was confirmed by the
Ethics Committee of the Chongqing Medical University. All animal experiments were conducted at the Experimental
Animal Center, Chongqing Medical University, China.

Breast cancer caused by 7,12-dimethylbenz[a]anthracene
The breast cancer of SD rats (n=140) was induced by using 150 mg/kg of 7,12-dimethylbenz[a]anthracene
(Sigma–Aldrich, St. Louis, MO, U.S.A.) for gavage [24]. Normal rats (n=10) were left untreated. The general con-
ditions of rats including weight, eating, drinking, activity, and mental state were observed daily. The diameter of the
tumor was observed and measured every week. The breast tissues were applied to a pathological examination to check
whether the model is successful.

Chemotherapy with CTX
Rats that died in the process of modeling and those with very small tumor volumes were excluded from the group, and
finally the remaining 100 rats were entered into the groups. The rats with breast cancer were randomly divided into
two groups: control group (n=50) and LIPUS group (n=50). The two groups were given an intraperitoneal injection
of CTX (50 mg/kg) (Shanxi Pude Pharmaceutical Co., Ltd., Datong, Shanxi, China) for 4 days.

LIPUS treatment
The LIPUS device was provided from Chongqing Haifu Medical Technology Co., Ltd, Chongqing, China. In the
LIPUS group, 20-min ultrasound treatment was performed at the femoral metaphysis from days 1 to 7. The rats of
LIPUS group (n=50) were intraperitoneally anesthetized with pentobarbital sodium (35 mg/kg body weight) and
then adopted the LIPUS treatment. The right femoral metaphysis of rats was selected and the skin of the femur
parts of the rats was prepared. The ultrasound transducer was applied to the femoral metaphyseal skin of the rats.
An ultrasound coupling agent (Tianjin Chengxin Medical Auxiliary Material Factory, Tianjin, China) was applied
between the transducer and the skin, and the transducer was not moved during the treatment. Ultrasound parameters:
intensity 200 mW/cm2, frequency 0.3 MHz, repetition frequency 1 kHz, duty cycle 20%. The control group received
sham treatment.

Peripheral blood cell counts analysis
To find the change in WBC, neutrophil, lymphocyte in peripheral blood, which were detected using an automatic
blood cell count analyzer (Bowlinman Sunshine Co., Ltd, Beijing, China). The rats of each group (n=10) were in-
traperitoneally anesthetized with pentobarbital sodium (35 mg/kg body weight) and then the blood (0.5 ml) was
collected from retro-orbital venous plexus of each rat using vacuum blood collection tube (Yuli Medical Equipment
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Table 1 Primers used for RT-qPCR

Genes Forward (5′–3′) Reverse (5′–3′)

SCF 5′-TGCAATATGAAGCCCCAAGACAC-3′ 5′-CTCATGGTGCCCTCCTGCTACTT-3′

TGF-β 5′-GCACCGGAGAGCCCTGGATAC-3′ 5′-ATCCACTTCCAACCCAGGTCCT-3′

ICAM-1 5′-CCACCCGGCTCCACCTCAAAG-3′ 5′-CTGCGCTGGGAGGGGTGC-3′

VCAM-1 5′-CCCCTCCACAAACCAAGCTATGC-3′ 5′-TCCGGTCTCTTCAGCAATGGG-3′

Co., Ltd, Jiangsu, China) containing ethylenediaminetetraacetic acid (EDTA) anticoagulant. Peripheral blood sam-
ples were taken on days 0 (before chemotherapy), 4, 7, and 14. Normal rats (n=10) peripheral blood was collected in
the same way.

Function detection of liver and kidney
To evaluate the effect of 7,12-dimethylbenz[a]anthracene, CTX, and LIPUS on liver and kidney, alanine transami-
nase (ALT), total bilirubin (TBIL), blood urea nitrogen (BUN), and creatinine (CRE) were detected by Automatic
Biochemistry Analyzer (Sysmex, Japan). Rats in each group (n=10) were anesthetized in the same way and the blood
(1.5 ml) was collected from retro-orbital venous plexus of each rat using vacuum blood collection tube (Yuli Medical
Equipment Co., Ltd, Jiangsu, China). The blood samples were taken on days 0 and 7.

Enzyme-linked immunosorbent assay
The blood (2 ml) was collected from each group (n=10) by the aforementioned method to assess change of cytokines
on days 0, 4, 7, and 14. Blood was taken from normal rats (n=10) in the same way. The serum was isolated from
blood by centrifugation at 3000 rpm for 15 min. The IgA, IgG, IgM, G-CSF, IL-6, and TNF-α levels were checked
using enzyme-linked immunosorbent assay (ELISA) kits (Hushang, Shanghai, China) according to the manufacturer’s
protocols. The samples were added to the enzymatic standard holes prepackaged with relevant monoclonal antibodies.
After warm incubation, the antibodies labeled with biotin were added and combined with streptomycin–HRP to form
an immune complex, which was then incubated and washed to remove unbound enzymes. The color development
reagents were added to show blue color, which was converted into the final yellow color under the action of acid.

Reverse transcription-quantitative polymerase chain reaction
The bone marrow was taken from the femur of each rat on day 7 to detect the gene expression. Rats in each group
(n=10) were over-anesthetized to be euthanized. Following adequate anesthesia with pentobarbital sodium (170
mg/kg body weight), the femur was separated from the body, temporarily soaked in 75% ethanol, and rinsed three
times in phosphate buffer solution (PBS) under aseptic conditions. The epiphysis of each bone was removed using
the blade. PBS was used to rinse the marrow cavity through the syringe needle several times. Then, the marrow cell
suspension was centrifuged at 1000 rpm for 10 min, and the sediment was stored in the refrigerator at −80◦C for
reverse transcription-quantitative polymerase chain reaction (RT-qPCR) detection and analysis. The total mRNA in
the bone marrow was extracted by the TRIzol method, and the RNA concentration was detected by ultraviolet spec-
trophotometry. The RNA (1 μg) extracted from each sample was reverse-transcribed into cDNA using a ReverTra
Ace-a cDNA kit (TOYOBO Biotechnology Co., Ltd. Tokyo, Japan). The nucleotide sequences of the forward and re-
verse primers used for PCR are shown in Table 1. The experiment was performed using the CFX96 RT-qPCR System
(Bio-Rad, CA, U.S.A.). The results of the gene expression of mRNA in each group were analyzed by the comparative
Ct method.

Hematoxylin and Eosin staining
The tumor, liver, lung, and bone marrow tissues were taken in the same way as above from each group of rats (n=10)
on days 0 and 7 to monitor the morphologic change. The tissues were fixed in 4% paraformaldehyde (Shanghai Yuanye
Biotechnology Co. Ltd, Shanghai, China). Hematoxylin and Eosin (H&E) staining was performed according to the
common method. Briefly, the samples were dehydrated in a graded series of ethanol solutions, cleared in xylene,
embedded in paraffin, cut into sections, stained with H&E, and finally observed under a microscope (BX51, Olympus,
Japan).
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Figure 1. Breast cancer establishment in SD rat

(A,B) Tumor tissue of rats with breast cancer in vivo and in vitro, respectively. (C,D) Breast cancer tissue was stained by H&E

staining (magnification ×200). (C) Papillary adenocarcinoma, the cancer cells are papillary growth with the axis of fibrous vessels.

(D) Invasive ductal carcinoma, heterocyst grows in adenoid and breaks through the basement membrane (the red circles indicate

the location of the tumor, and the black arrows indicate the breast cancer cell).

Figure 2. Comparison of the rates of diarrhea and mortality between LIPUS group and control group in rats with breast

cancer

*indicates P<0.05, which is statistically significant. Diarrhea rate: X2 = 4.000, P<0.05; mortality: X2 = 1.100, P>0.05.
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Figure 3. Peripheral blood cell counts

(A) WBCs, (B) neutrophils, (C) lymphocytes in the LIPUS group and control group on days 0, 4, 7, and 14, respectively. (D) WBCs,

(E) neutrophils, (F) lymphocytes among the normal rats, control group and LIPUS group on days 0 and 14 respectively. *P<0.05,

**P<0.01.

Scanning electron microscope
To observe microstructure, the bone marrow tissues were taken by the aforementioned method from each group of
rats (n=10) on days 0 and 7. The tissues were first fixed with 4% glutaraldehyde (Shanghai Yuanye Biotechnology
Co. Ltd, Shanghai, China) for more than 4 h, then were washed three times with the PBS, post-fixed with 1% potas-
sium phosphate-buffered osmium tetroxide (pH = 7.0, provided by Electron Microscope Testing Lab, Chongqing
Medical University, Chongqing, China) for 1 h, and washed three times with PBS. Then, the tissues were dehydrated
using a graded series of ethanol (30, 50, 70, 80, 90, 95, and 100%) for 15–20 min at each step, transferred to the
mixture of alcohol and isoamyl acetate (provided by Electron Microscope Testing Lab, Chongqing Medical Univer-
sity, Chongqing, China) for approximately 30 min, and then transferred to pure isoamyl acetate for approximately 1
h. Finally, the tissues were dehydrated in a critical point dryer (Hitachi, Japan) with liquid CO2. The dehydrated tis-
sues were coated with gold-palladium (provided by Electron Microscope Testing Lab, Chongqing Medical University,
Chongqing, China) and observed under a scanning electron microscope (SEM; Hitachi, Japan).

Statistical analysis
All the data were expressed as mean +− SD. Data were statistically analyzed by the SPSS 22.0 software (IBM, U.S.A.).
One-way analysis of variance and independent-samples t test were used to analyze the difference in groups. The
Chi-square test was used to analyze the differences in the rates of diarrhea and mortality. The P- value less than 0.05
was considered statistically significant. The P-value less than 0.01 was regarded as highly statistically significant.

Results
Breast cancer establishment in SD rats
After gavage with 7,12-dimethylbenz[a]anthracene, the symptoms of lack of activity, unresponsiveness, and decrease
in food and water intake came under observation in rats. The incidence of breast cancer in 5–7, 8–10, 11–13, and
14–16 weeks after gavage was 0, 82, 88, and 90%, respectively. The tumor was mostly located in the first or second
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pairs of mammary glands (Figure 1A). The tumor tissue was removed for pathological examination (Figure 1B). Ac-
cording to the classification criteria of human breast cancer, the pathological types of breast cancer included papillary
adenocarcinoma and invasive ductal carcinoma (Figure 1C,D). The results declared that breast cancer was established
in rats successfully.

Effectiveness of LIPUS on relieving myelosuppression
Diarrhea rate and mortality
The rats with breast cancer showed adverse reactions after CTX injection, including decrease in food and water intake,
reduction in activities, lying huddled up in the cage without response, and appearance of diarrhea. The diarrhea rate
in LIPUS group and control group was 4 and 16%, respectively, and there was significant difference between the
two groups (P<0.05, Figure 2). The mortality was 6% in LIPUS group and 10% in control group and no significant
difference between the two groups (Figure 2).

Peripheral blood cell counts
As shown in Figure 3A, the WBC count decreased first and then increased in the LIPUS and control groups. A
significant difference was found between the LIPUS and control groups on days 4, 7, and 14 (P<0.05). There was
a difference in the number of leukocytes between the control group on days 0 and 14 (P<0.05, Figure 3D). The
neutrophil and lymphocyte are important immune cells in the body. As shown in Figure 3B, the neutrophil count in
the LIPUS group was significantly higher than that in the control group on days 4, 7, and 14 (P<0.05). There was a
significant difference in the number of neutrophils between the LIPUS group on day 14 and normal rats (P<0.05,
Figure 3E). The number of lymphocytes in the LIPUS group was significantly higher than that in the control group
on days 4 and 14 (P<0.05, Figure 3C). There was a significant difference in lymphocyte count between the LIPUS
group and the control group on days 0 and 14, respectively (P<0.05). The lymphocyte count in the normal rats was
significantly higher than that in the control group on day 14 (P<0.05, Figure 3F).

Serum immunoglobulin levels
The expression of IgA, IgG, and IgM were detected to further explore the effect of LIPUS on lymphocyte secretion
function. The IgA (Figure 4A), IgG (Figure 4B), and IgM (Figure 4C) decreased first and then increased in the LIPUS
and control groups. The IgA and IgM in the LIPUS group were significantly higher than those in the control group
on day 14 (P<0.05). The IgG in the LIPUS group was significantly higher than those in the control group on days
4 and 14 (P<0.05). There was a significant difference in IgA between the normal rats and other groups on day 0
(P<0.05). In the control group, IgA between days 0 and 14 was significantly different (P<0.05). In the LIPUS group
and control group, a significant difference of IgA was shown between the normal rats and those on day 14 (P<0.05,
Figure 4D), respectively. The IgG declared difference between the normal rats and control group on day 14 (P<0.05).
In the control group, there was a significant difference of IgG between days 0 and 14 in (P<0.05, Figure 4E). The IgM
was found different between the normal rats and control group on day 14 (P<0.05). There was a significant difference
in IgM between days 0 and 14 in the control group (P<0.05, Figure 4F).

G-CSF, IL-6, and TNF-α expression
ELISA was performed to analyze the effect of LIPUS on the expression levels of G-CSF, IL-6, and TNF-α. The ex-
pression of G-CSF decreased first and then increased in the LIPUS and control groups. As shown in Figure 5A, the
G-CSF was significantly higher on day 14 in the LIPUS group than in the control group (P<0.05). The IL-6 was sig-
nificantly higher in the control group than in the LIPUS group on days 4 and 14 (P<0.05, Figure 5B). The TNF-α
was significantly higher in the control group than in the LIPUS group on day 14 (P<0.05, Figure 5C). There was a
significant difference in the G-CSF between the normal rats and control group and LIPUS group on day 14, respec-
tively (P<0.05). There was a significant difference in the G-CSF between days 0 and 14 in control group and LIPUS
group, respectively (P<0.05, Figure 5D). There was a significant difference of the IL-6 in normal rats and the LIPUS
group on days 14 and 0 (P<0.05, Figure 5E). There was a significant difference between the TNF-α in normal rats
and the control group on days 14 and 0 (P<0.05, Figure 5F).

Bone marrow tissues
H&E staining and SEM were performed to analyze the effect of LIPUS on the bone marrow. The bone marrow
hematopoietic tissue was rich, and cell proliferation was active in rats with breast cancer (Figure 6A,D). The structure
of bone marrow in rats was destroyed on day 7, with decreased hematopoietic tissues and increased adipose tissues
(Figure 6B,E). After treatment with LIPUS, the bone marrow hematopoietic tissue decreased and was different when
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Figure 4. The expressions of IgA, IgG, and IgM

(A) IgA, (B) IgM, (C) IgG in the LIPUS group and control group on days 0, 4, 7, and 14, respectively. (D) IgA, (E) IgM, (F) IgG among

the normal rats, control group, and LIPUS group on days 0 and 14, respectively. *P<0.05, **P<0.01.

Figure 5. G-CSF, IL-6, and TNF-α expression

(A) G-CSF, (B) IL-6, (C) TNF-α in the LIPUS group and control group on days 0, 4, 7, and 14, respectively. (D) G-CSF, (E) IL-6, (F)

TNF-α among the normal rats, control group, and LIPUS group on days 0 and 14, respectively. *P<0.05, **P<0.01.
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Figure 6. Bone marrow structure detected by SEM (magnification ×1000) and H&E staining (magnification ×200)

(A,D) Bone marrow tissue of rats with breast cancer before CTX chemotherapy. (B,E) Injured bone marrow tissue of the rats after

injecting CTX for 7 days. (C,F) Recovered bone marrow tissue from the LIPUS group after LIPUS treatment for 7 days. (G) Number

of bone marrow nucleated cells in each group before and after treatment. *P<0.05, **P<0.01.

compared with that in the control group (Figure 6C,F). The number of bone marrow nucleated cells in the LIPUS
and control groups decreased on day 7 compared with that on day 0 (P<0.01, Figure 6G); however, the decline in the
LIPUS group was lower than that in the control group (P<0.01).

Bone marrow hematopoiesis-related cytokine levels
The expression of SCF, TGF-β, ICAM-1, and VCAM-1 in the bone marrow was detected to explore the hematopoietic
recovery mechanism of LIPUS. The mRNA expression of SCF, ICAM-1, and TGF-β significantly increased on day
7 in the LIPUS group compared with the control group (P<0.05, Figure 7A,B,D). However, the mRNA of VCAM-1
was significantly higher in the control group than in the LIPUS group (P<0.01, Figure 7C).

Safety of LIPUS in relieving myelosuppression
The skin that received the irradiation by LIPUS was observed on day 7, which was normal without injury in LIPUS
and control group (Figure 8B,C) compared with skin on day 0 (Figure 8A). There was no abnormality in HE staining
of liver (Figure 8E) and lung (Figure 8H) in LIPUS group and liver (Figure 8F) and lung (Figure 8I) in control group
compared with liver (Figure 8D) and lung (Figure 8G) on day 0. The concentration of ALT (Figure 8J), TBIL (Figure
8K), BUN (Figure 8L), and CRE (Figure 8M) in LIPUS group, control group and tissues on day 0 had no significant
difference (P>0.05).

Discussion
Chemotherapy is widely used for treating various types of tumors [25]. However, it can lead to a variety of
side effects, especially bone marrow suppression [26]. Therefore, it is necessary to find a way to alleviate the
chemotherapy-induced bone marrow suppression and promote the recovery of bone marrow hematopoietic func-
tion.

In previous studies, chemotherapeutic drugs were used in normal rabbits without cancer and LIPUS was used after
the injection of chemotherapeutic drugs [22,23]. To be closer to clinical practice, in this study, chemotherapeutic
drugs acted on rats with breast cancer and LIPUS was used with chemotherapeutic drugs at the same time.

The severe secondary infections can be triggered by leukopenia, leading to a failure of chemotherapy in clinic [27].
On day 14 of chemotherapy, leukocyte count in the control group failed to recover to the level before chemotherapy,
while the leukocyte count in the LIPUS group had recovered to the level before chemotherapy. Neutrophil count in
both groups recovered to the level before chemotherapy on day 14, and neutrophil count in the LIPUS group increased
significantly compared with that in the normal rats. Lymphocyte count in the control group was significantly lower
than that before chemotherapy and in normal rats, while lymphocyte count in LIPUS group was significantly lower
than that before chemotherapy on day 14 but returned to the level in normal rats. The results revealed that LIPUS
could also enhance the counts of WBCs, neutrophils and lymphocytes of rats with breast cancer after chemotherapy
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Figure 7. Relative mRNA expression levels

(A) SCF, (B) ICAM-1, (C) VCAM-1, and (D) TGF-β in the bone marrow after injecting CTX for 7 days in the LIPUS and control groups

were detected using RT-qPCR. *P<0.05, **P<0.01.

in the peripheral blood. Our results suggest that LIPUS treatment can reduce the severity of bone marrow suppression
induced by chemotherapy when animals are undergoing cancer.

Under the stimulation of antigen, the B lymphocyte will transform into plasma cells, producing antibodies that
specifically bind to the corresponding antigen, namely immunoglobulin (IG). Studies [22] have shown that LIPUS
can increase the expression levels of IgA, IgM, and IgG in CTX-induced leukopenia animal model. Our research
results displayed that LIPUS could effectively increase the expression levels of IgA, IgG, and IgM in the serum of rats
with breast cancer after chemotherapy and enhance the immunity and anti-infection ability of the rats.

The bone marrow hematopoietic microenvironment includes bone marrow microcirculation, interstitial cells, and
cytokines [28]. Chemotherapy can cause severe damage to the hematopoietic microenvironment [29]. Cytokines
in the bone marrow hematopoietic microenvironment have been reported to support the growth and survival of
hematopoietic stem cells [30]. The expression levels of hematopoietic cytokines were detected to explore the mecha-
nism of LIPUS in alleviating bone marrow depression.
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Figure 8. Safety of LIPUS in relieving myelosuppression

(A) Skin of rats with breast cancer on day 0. (B,C) Skin of rats in the LIPUS group and control group on day 7. (D,G) Liver and lung

tissues of rats with breast cancer on day 0. (E,H) Liver and lung tissues of rats in the LIPUS group on day 7. (F,I) Liver and lung

tissues of rats in control group on day 7. The concentration of (J) ALT, (K) TBIL, (L) BUN, and (M) CRE in LIPUS group, control group

on day 7, and normal rats.

The SCF is the key to the survival, proliferation, and differentiation of early hematopoietic stem cells [31]. The
ICAM-1 and VCAM-1 are two kinds of adhesion molecules expressed on bone marrow stromal cells. ICAM-1 medi-
ates the adhesion and information exchange between hematopoietic and stromal cells [32], enhancing the sensitivity
of hematopoietic cells to cytokines and participating in hematopoietic regulation [33]. In this study, the expression
level of SCF and ICAM-1 increased significantly after the adjuvant therapy of LIPUS, which was beneficial to adhe-
sion between bone marrow hematopoietic and stromal cells, so that bone marrow hematopoietic cells could divide,
proliferate, and release, thereby improving bone marrow suppression. VCAM-1 mediates intercellular adhesion and
intercellular signal transduction, which plays an irreplaceable role in the localization, proliferation, and differentiation
of myeloid cells [34]. rG-CSF can stimulate the myeloid progenitor cell proliferation and promote the development
and maturation of granulocytes [35]. The results showed that the expression of G-CSF increased after LIPUS treat-
ment, G-CSF mediated the mobilization of bone marrow hematopoietic stem cells by down-regulating the expression
level of VCAM-1 [36,37]. In this study, the expression level of G-CSF increased and the expression level of VCAM-1
decreased after the LIPUS treatment, which was consistent with the results of the aforementioned study. TGF-βplays a
critical role in the development of CD4+ CD25+ Foxp3+ regulatory T (Treg) cells, as CD4+ T cells deficient in TGF-β
signaling cannot be converted into Treg cells in vitro or in vivo [38]. Treg defects are implicated in autoimmune
marrow failure [39]. In this study, the expression level of TGF-β increased after the treatment of LIPUS, which was
conducive to the recovery of hematopoietic function. In addition, H&E staining and SEM were performed to analyze
the effect of LIPUS on the bone marrow. The number of bone marrow nucleated cells decreased significantly after
chemotherapy, LIPUS relieved myelosuppression and improved the proliferation of bone marrow.

TNF and IL-6 are known mediators of inflammation in a variety of clinical situations, and a number of therapeutic
strategies have sought to block the actions of these cytokines [40,41]. The high level of TNF-α can lead to the an-
giogenesis of tumor, promote the growth of tumor cells, and be beneficial to the infiltration and metastasis of cancer
cells [42,43]. Studies have shown that high expression levels of IL-6 and TNF-α in breast cancer can lead to a decrease
in survival and a significant increase in mortality, which is beneficial to the progression and dissemination of breast
cancer [44]. In this study, the level of TNF-α and IL-6 decreased significantly after the adjuvant therapy of LIPUS.
This indicated that LIPUS could reduce the metastasis of tumor by decreasing the expression levels of TNF-α and
IL-6.

After LIPUS treatment, skin, liver, and kidney functions were examined. There were no abnormalities in skin, liver,
and kidney function after LIPUS treatment. We can speculate that ultrasound is safe in the treatment of bone marrow
suppression induced by chemotherapy in breast cancer rats.

10 © 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).
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The limitations of this experiment were treatment time only following the previous report and there was no obser-
vation of subsequent effects. Many studies such as the treatment duration and survival time after treatment will be
researched deeply in future.

In conclusion, the present study clearly confirmed that LIPUS could ameliorate chemotherapy-induced myelosup-
pression in rats with breast cancer by regulating the hematopoietic microenvironment. This provided an experimental
basis for the application of LIPUS as an adjuvant therapy for treating tumors.
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