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Simple Summary: Ketosis is a serious metabolic disease in high-yield dairy cows, that affects
productive herds throughout the world. Subclinical ketosis is one of the most dominant metabolic
disorders in dairy herds during early lactation, so early detection and prevention are important for
both economic and animal welfare reasons. Neural networks, which offer a high degree of accuracy
in predicting various phenomena and processes where there is no clear causal correlation or there
are no rules that allow the establishment of a logical cause-and-effect relationship, can be used to
address problems related to prediction, classification, or control. A Multi-Layer perceptron (MLP) is
a feedforward artificial neural network model that takes input data for a set of proper output. This
study investigated the performance of four algorithms used to train MLP networks. The experimental
results demonstrate that the MLP network model improved the accuracy of process recognition of
subclinical ketosis in dairy cows. The received artificial model’s results were saved in the predictive
model markup language (PMML) and can be used to describe the learning set, the algorithm used in
the data mining application and related information.

Abstract: Subclinical ketosis is one of the most dominant metabolic disorders in dairy herds during
lactation. Cows suffering from ketosis experience elevated ketone body levels in blood and milk,
including β-hydroxybutyric acid (BHB), acetone (ACE) and acetoacetic acid. Ketosis causes serious
financial losses to dairy cattle breeders and milk producers due to the costs of diagnosis and man-
agement as well as animal welfare reasons. Recent years have seen a growing interest in the use
of artificial neural networks (ANNs) in various fields of science. ANNs offer a modeling method
that enables the mapping of highly complex functional relationships. The purpose of this study
was to determine the relationship between milk composition and blood BHB levels associated with
subclinical ketosis in dairy cows, using feedforward multilayer perceptron (MLP) artificial neural
networks. The results were verified based on the estimated sensitivity and specificity of selected
network models, an optimum cut-off point was identified for the receiver operating characteristic
(ROC) curve and the area under the ROC curve (AUC). The study demonstrated that BHB, ACE and
lactose (LAC) levels, as well as the fat-to-protein ratio in milk, were important input variables in
the network training process. For the identification of cows at risk of subclinical ketosis, variables
such as BHB and ACE levels in milk were of particular relevance, with a sensitivity and specificity of
0.84 and 0.61, respectively. It was found that the back propagation algorithm offers opportunities to
integrate artificial intelligence and dairy cattle welfare within a computerized decision support tool.

Keywords: dairy cattle; ketosis; multi-layer perceptron; practical application

1. Introduction

Ketosis is one of the most common medical conditions in dairy cattle [1,2]. Intensive
selection combined with new feeding systems have resulted in a significant increase in
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the performance of dairy cows [3], but high-yield milk production may be associated with
negative energy balance (NEB) and ketosis, which is one of the most serious metabolic
diseases affecting dairy cow herds across the world [2,4,5]. Ketosis causes major economic
losses attributable to reduced milk yield, reduced health status, impaired reproductive
performance, and high rates of culling of affected cows [6–8]. The diseases that have
been reported are milk fever, displaced abomasum, mastitis, and metritis [1,6–8]. In early
lactation, dairy cows typically have an NEB, which has been related to metabolic disorders
such as subclinical ketosis [2,4,5,9]. Ketosis is mostly observed during the initial stage of
lactation and can be diagnosed based on elevated levels of ketone bodies (β-hydroxybutyric
acid (BHB), acetone (ACE), and acetoacetic acid) in milk, urine and blood [2,10–12]. Ketosis
is a metabolic disease of heterogeneous etiology, which is usually subclassified into primary
ketosis, observed during the postpartum period, and secondary ketosis, attributable to the
existence of other medical conditions, as well as alimentary ketosis, which is associated
with feeding problems (NEB) during the postpartum period and early lactation [2,11–16].
Primary ketosis attributable to NEB in the postpartum period is further subdivided into
type 1 primary ketosis and type 2 primary ketosis [2,7,9,10]. The recent years have seen
a growing interest in the prediction of biological processes characterized by high complexity
and non-linearity based on the use of artificial neural networks (ANNs). These networks
provide tools that have been used successfully for the identification and modeling of
processes observed in a range of scientific disciplines [17–22]. The high efficiency of ANNs
and the high operating speed of neuron-based models imply a wide variety of applications
oriented towards modeling and gaining insight into processes studied as part of animal
husbandry [17–21]. The most popular and widely used type of unidirectional network is a
multilayer perceptron (MLP) network combined with an error backpropagation algorithm.
The error backpropagation method is based on the generalization of the so-called DELTA
rule, designed for the purpose of multilayer neural networks [17,18,20]. MLP ANNs use
“global approximation”, where each neuron has an impact on the results of mapping over
the entire data space [17,23,24]. In MLP networks, any non-linear function can be modeled
using a single hidden layer [25,26]. This eliminates the need for defining the network
topology and the number of hidden layers. Another distinctive feature of MLP networks
is their uncomplicated and straightforward network structure, and the network training
process uses the method of unsupervised or supervised training [26], including the delta
rule that provides the basis for a majority of supervised training methods [25–28]. The
supervised training of unidirectional multilayer networks means that the form of an output
vector (desired result) is precisely known for a given input vector. The purpose of the
training process is to identify weighting factors that enable the achievement of network
output values that are identical (or very similar) to the actual output values [17,23,26]. As a
result, the network training process aims at minimizing the network error, defined as an
aggregate measure of differences between the actual output values and those calculated by
a network. The error is most commonly calculated as a sum of squared differences between
the respective values [23], using the following formula:

E = ∑N
i=1(d1 – y1)

2, (1)

d1—actual input value
y1—value determined by network
N—size of training dataset
The training of neural networks is a multistage process where successive approximate

values of parameters are determined during each stage of the process. The consecutive
stages are referred to as training epochs [23,25]. An epoch is defined as a single cycle of an
algorithm through the entire training dataset, and it includes a one-off presentation of all
training cases and modifications of network parameters (weighting factors and threshold
levels) implemented on that basis [23,25]. The input variables that are of immediate
relevance to the network training process are selected based on a sensitivity analysis.
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The purpose of the analysis is to investigate the effects of the elimination of individual
explanatory variables on the total network error [23,26,29]. Additionally, a Pearson’s
correlation between the actual and the predicted value was calculated for each network
as well as the error, defined as the sum of squared deviations between the input and the
output values.

2. Materials and Methods
2.1. Selection and Sampling of Dairy Herds

The study material included information on dairy cows of the Polish black-and-white
Holstein-Friesian breed. Cows included in the study originated from production farms
located in South Poland (n = 3000) and had a calving date between 2016 and 2019. All cows
were fed the same diet during the dry period and early lactation. Milk yield was recorded
routinely by an automatic device installed in the milking parlor and lactation information
came from a herd management program, Afimilk (Afifarm version 3.0, Afikim, Germania
Dairy Automation, Waunakee, WI, USA). The animals were from different age groups
and at different stages of lactation when milk samples were collected, which was between
5 and 60 days into the post-calving period. The data used for the calculations included
milk composition as determined based on samples collected during test milkings and as
received from the Polish Federation of Cattle Breeders and Milk Producers (PFHBiPM).
Calculations were performed based on data for 1520 dairy cows, including daily milk yield
(kg), percentage of fat (FP), protein (PP) and lactose (LAC), the content of urea (mg/L)
(UR), acetone (mmol/L) (ACE) and β-hydroxybutyric acid (mmol/L) (BHB), and somatic
cell count (thousand cells/mL) (SCC). All these parameters were used as input variables
for all MLP network models. Table 1 shows the descriptive statistics of the initial dataset.

Table 1. Number of animals tested (n = 1520), mean and standard deviation of milk variables and
β-hydroxybutyrate concentration (bBHB) in blood and milk (mBHB) according to lactation number.

Item Lactation 1 Lactation 2 Lactation 3 Lactation ≥ 4

Number of cows 402 426 397 295
bBHB (mmol/L) 0.23 ± 0.33 0.65 ± 0.45 0.56 ± 0.39 0.85 ± 0.36

Milk variables
Milk (kg) 26.89 ± 6.38 35.0 ± 0.69 32.80 ± 9.26 34.2 ± 10.1
Fat (%) 4.54 ± 1.00 4.5 ± 1.02 4.92 ± 1.03 4.68 ± 1.01

Protein (%) 3.24 ± 0.33 3.4 ± 0.38 3.30 ± 0.40 3.27 ± 0.34
Lactose (%) 4.85 ± 0.23 4.8 ± 0.20 4.76 ± 0.27 4.70 ± 0.24

Urea (mg/L) 197.56 ± 70.05 207 ± 77.14 203.12 ± 74.34 179.42 ± 73.66
SCC (1000/mL) 561.4 ± 1081.9 591.1 ± 1252.06 725.42 ± 1188.15 834.31 ± 1401.07

Acetone
(mmol/L) 0.15 ± 0.18 0.1 ± 0.12 0.15 ± 0.17 0.13 ± 0.13

mBHB
(mmol/L) 0.09 ± 0.13 0.1 ± 0.10 0.11 ± 0.11 0.86 ± 0.61

Number of cows, mean and standard deviation of blood β-hydroxybutyrate concentration (bBHB), milk yield, fat
percentage, protein percentage, lactose percent, urea concentration, somatic cell score (SCC), acetone and milk
β-hydroxybutyrate concentrations (mBHB).

2.2. Laboratory Analysis

Blood samples were collected at approximately 20 min post-milking by puncture
of the median caudal vein or artery or from the tail vein, using disposable evacuated
blood collection tubes containing an anticoagulant (EDTA). Blood BHB levels from serum
samples were measured using a spectrophotometer (model: UV-5100). The quantitative
analysis of BHB by diphenyl carbazide absorptiometry was introduced. All cells were
measured for the auto-zero values. As a result of the analysis, a calibration curve with a
high coefficient (R2 = 0.9999) was obtained. The standard quartz cuvette (15 mm) was used,
with a measurement wavelength of 540 nm. The reagent used was a Water quality test kit
(Cr6+) with a range of quantitative analyses from 0.02 to 1.0 mh/L. The output variable
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value to be used for ANNs was determined based on a blood BHB level ≥ 1.2 mmol/L
which is typical of subclinical ketosis [3,30]. A total of 168 cows had a blood BHB level
in this range. The input variable was defined as the cow’s health status, i.e., a zero-one
parameter: healthy cow = 0 and ketosis-affected cow = 1.

2.3. Approach

The study was conducted using an MLP ANN simulator as implemented in the
STATISTICA12 statistical package (StatSoft). An MLP is formed by elementary processing
units, the so-called neurons, and falls under the category of feedforward algorithms. The
main components of the MLP model are the Summation function and the Activation
function. The network training process was carried out using a training dataset and
different numbers of neurons in the hidden layer (from 8 to 15) [16,24] as well as various
activation functions in the hidden and output layers. A linear activation function was
used for the network. The hidden layer was comprised of linear neurons, for which
the aggregate input value was the sum of weight-ranked inputs, i.e., a scalar product
of an input vector and a vector of weighting factors, i.e., a vector of neuron parameters
(Table 1). In each repetition, after the weighted sums are forwarded through all layers, the
gradient of the Mean Squared Error is computed across all input and output pairs. Then,
to propagate it back, the weights of the hidden layer are updated with the value of the
gradient. The activation functions used for the hidden and output layers are specified and
characterized in Table 1. The perceptron training process was carried out using the error
backpropagation method and an algorithm designed for supervised ANN training [23,26].
The Backpropagation process is a learning mechanism that allows the MLP to iteratively
adjust the weights in the network, with the goal of minimizing the cost function.

2.3.1. Data Preprocessing for Multi-Layer Perceptron

For the best performance of the feedforward, back propagation architecture process
four combinations of activation functions for hidden and output layers were used (Table 2).
The dataset was divided at random into three subsets: a training dataset (modification of
weighting factors) containing 70% of the data, as well as a testing dataset (monitoring of the
network training process) and a validation dataset (evaluation of networks following the
training process), each containing 15% of the data. Back-propagation is only used during
learning and training sets [28].

Table 2. The activation functions of the hidden and output layer used to train MLP network.

Type of Network Type of Function Function Model

MLP

Linear y = ax + b
Hyperbolic tangent y = tgh

(
βx
2

)
= 1−e−βx

1+e−βx

Exponential f (x) = ax , a > 0
Logistic f (x) = 1

1+e−βx

Sinus f(x) = sin(x)
MLP—multi-layer perceptron.

2.3.2. Feature Selection

During the first stage of the network training process, the training and validation
datasets were used, which made it possible to check the network training level. During the
training of each network model, parameters of neurons, that is, the vector of weighting fac-
tors, were modified so as to obtain a model that described the relationship between output
variables and the input variable as accurately as possible [Figure 1]. The modification of
weighting factors was continued until the minimum approximation error was achieved.
Neuron-based models also enabled ranking the pre-defined explanatory variables accord-
ing to their importance based on the coefficient determined during the network sensitivity
analysis. Variables were considered significant if the coefficient was greater than or equal
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to 1.0 [23,26]. The network training level was determined based on the validation dataset.
The last stage of the network model training process involved network testing using the
testing dataset composed of input variables that had not been used for the network training
process up to that point. The error values were calculated as the sum of squared deviations
between the pre-defined input value for a network model and the respective output value.

Animals 2022, 12, x  5 of 11 
 

2.3.2. Feature Selection 
During the first stage of the network training process, the training and validation 

datasets were used, which made it possible to check the network training level. During 
the training of each network model, parameters of neurons, that is, the vector of weighting 
factors, were modified so as to obtain a model that described the relationship between 
output variables and the input variable as accurately as possible [Figure 1]. The modifica-
tion of weighting factors was continued until the minimum approximation error was 
achieved. Neuron-based models also enabled ranking the pre-defined explanatory varia-
bles according to their importance based on the coefficient determined during the network 
sensitivity analysis. Variables were considered significant if the coefficient was greater 
than or equal to 1.0 [23,26]. The network training level was determined based on the vali-
dation dataset. The last stage of the network model training process involved network 
testing using the testing dataset composed of input variables that had not been used for 
the network training process up to that point. The error values were calculated as the sum 
of squared deviations between the pre-defined input value for a network model and the 
respective output value. 

 
Figure 1. The Multilayer Perceptron structure. 

During the final stage of the network development process, sensitivity and specificity 
were calculated for the resulting network model. Sensitivity is the ratio of the number of 
true positive results to the total number of true positive (TP) and false negative (FN) re-
sults [31]. Sensitivity equal to 1.0 (or 100%) means that all ketosis-affected cows were cor-
rectly diagnosed. Specificity is the ratio of the number of true negative results to the total 
number of true negative (TN) and false positive (FP) results. Specificity equal to 1.0 (or 
100%) means that all healthy cows were identified as such by the network. Results of sen-
sitivity and specificity tests provided the basis for plotting receiver operating characteris-
tic (ROC) curves that are useful for data analysis [31]. The optimum cut-off point was 
determined based on the ROC curve, which reflects the relationship between the percent-
age of true positive test results (sensitivity) and the percentage of false positive results 
(1—specificity). An optimum cut-off point is a point located on a ROC curve that is closest 
to the point having coordinates (0.1). This makes it possible to choose a threshold level for 
a diagnostic test that offers the optimum sensitivity and specificity of a network model. 
The generation of networks was initiated using eight input variables (milk components) 
and one output—binary variable (blood BHB level). For network models with different 
configurations of hidden and output activation functions and a different number of neu-
rons in the hidden layer, the training process was run 100 times, resulting in a total of 
168,000 network models. Out of the generated models, only those models showing the 
highest linear correlation coefficients were chosen for use during network training, testing 

Figure 1. The Multilayer Perceptron structure.

During the final stage of the network development process, sensitivity and specificity
were calculated for the resulting network model. Sensitivity is the ratio of the number
of true positive results to the total number of true positive (TP) and false negative (FN)
results [31]. Sensitivity equal to 1.0 (or 100%) means that all ketosis-affected cows were
correctly diagnosed. Specificity is the ratio of the number of true negative results to
the total number of true negative (TN) and false positive (FP) results. Specificity equal
to 1.0 (or 100%) means that all healthy cows were identified as such by the network.
Results of sensitivity and specificity tests provided the basis for plotting receiver operating
characteristic (ROC) curves that are useful for data analysis [31]. The optimum cut-off
point was determined based on the ROC curve, which reflects the relationship between
the percentage of true positive test results (sensitivity) and the percentage of false positive
results (1—specificity). An optimum cut-off point is a point located on a ROC curve
that is closest to the point having coordinates (0.1). This makes it possible to choose a
threshold level for a diagnostic test that offers the optimum sensitivity and specificity of a
network model. The generation of networks was initiated using eight input variables (milk
components) and one output—binary variable (blood BHB level). For network models with
different configurations of hidden and output activation functions and a different number
of neurons in the hidden layer, the training process was run 100 times, resulting in a total
of 168,000 network models. Out of the generated models, only those models showing the
highest linear correlation coefficients were chosen for use during network training, testing
and validation cycles. Based on sensitivity analysis, the input variables were selected that
were the most relevant to the training of respective network models.

2.3.3. Archiving Models

The network models were recorded using the Predictive Modeling Mark-up Language
(PMML) that allows the use of a predictive model outside the related generation and testing
environment. Therefore, it would be possible to effectively initiate and use the programmed
network models in breeding and production practice regardless of the dataset used for
their generation [32].

3. Results

A number of different activation functions were used in the hidden and output layers
for the generated network models (Table 3). For a network model with 8 neurons in
the hidden layer, the best network training results were achieved when a linear function
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was used in the hidden and output layers. A linear function was also used as an output
activation function in models with 12, 13, 14 and 15 neurons in the hidden layer. Another
function—an exponential function—was used as a hidden activation function in models
with 9 and 14 neurons in the hidden layer. The hyperbolic tangent was used as a hidden
activation function in models with 10, 12 and 13 neurons and as an output activation
function in a model with 9 neurons. A sinusoidal function was used as a hidden activation
function in a model with 15 neurons in the hidden layer and as an output activation
function in models with 10 and 11 neurons in the hidden layer. Linear functions were
used five times for the output activation and once for the hidden activation. Exponential
functions were used for the hidden activation in two network models only. The hyperbolic
tangent was used in three network models for the hidden activation and once as an output
activation function. Sinus functions were used only once for the hidden activation and
twice for the output activation of a network.

Table 3. Activation function for chosen MLP networks.

ID
MLP

Activation Functions

Hidden Output

2-8-1 linear linear
2-9-1 exponential tangens
2-10-1 hyperbolic tangent sinus
2-11-1 linear sinus
2-12-1 hyperbolic tangent linear
2-13-1 hyperbolic tangent linear
5-14-1 exponential linear
3-15-1 sinus linear

MLP—identity models: 3; 5; 3—input variables, 10–15—hidden neurons, 1—output variable.

Table 4 shows network models characterized by the highest Pearson’s coefficients of
linear correlation between the actual data (presence or absence of ketosis) and the value
predicted by a network, and the lowest error value for a given model. The coefficients of
correlation between the actual and the network predicted values in the training dataset
ranged between 0.95 for a model with 11 neurons and 0.96 for models with 9, 12 and
15 neurons in the hidden layer. The capacity of a network to generalize relationships
learned based on the training dataset can be measured using correlation coefficients in
the validation and testing datasets. These coefficients in the validation dataset ranged
between 0.64 for a network with 8 neurons and 0.66 for a network with 11 neurons in the
hidden layer, and in the testing dataset, they ranged between 0.72 for networks with 13
and 14 neurons and 0.77 for a network with 11 neurons in the hidden layer. The training
errors in the training dataset ranged between 0.50 for a network with 15 neurons and 0.96
for a network with 9 neurons in the hidden layer, in the validation dataset—between 0.56
(11 neurons) and 0.65 (8 neurons), and in the testing dataset—between 0.44 (13 neurons)
and 0.49 (9 neurons in the hidden layer). Based on sensitivity analysis, the input variables
were selected that had a significant impact on the effectiveness of a trained network. If the
sensitivity coefficient for a variable was less than 1.0, the respective variable was removed
from the input dataset prior to generating subsequent network models.
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Table 4. Pearson’s coefficients of linear correlation for learning, testing and validation sampling and
errors for learning, network testing and validation sampling.

ID
MLP

Coefficient Correlation Error Function (SOS)

Training Testing Validation Training
Error

Testing
Error

Validation
Error

2-8-1 0.96 0.75 0.64 0.95 0.489 0.65
2-9-1 0.96 0.73 0.64 0.96 0.49 0.63

2-10-1 0.97 0.73 0.65 0.88 0.46 0.56
2-11-1 0.95 0.77 0.66 0.81 0.45 0.56
2-12-1 0.96 0.74 0.64 0.89 0.46 0.59
2-13-1 0.95 0.72 0.65 0.77 0.44 0.57
5-14-1 0.96 0.72 0.65 0.52 0.46 0.60
3-15-1 0.96 0.72 0.64 0.50 0.45 0.59

ID MLP—identity models.

Table 5 shows the results of the sensitivity analysis of input variables according to the
number of neurons in the hidden layer of the network. Out of the eight input variables,
BHB and ACE levels were indicated as variables relevant to the training of all networks,
regardless of the number of neurons. Additionally, for networks with 15 neurons in the
hidden layer, the sensitivity analysis showed that FP was a significant variable in the
training process while for networks with 14 neurons in the hidden layer, of relevance to the
training process were such variables as FP, LAC and PP. Results of the analysis of sensitivity
and specificity of the generated networks are shown in Table 6. The areas under the curve
(AUCs) were similar and ranged between 0.82 for a network with 12 neurons and 0.89 for
a network with 14 neurons in the hidden layer. The best sensitivity (0.84) was observed
for a network with two input variables and 9 neurons in the hidden layer, however, the
specificity of the network (0.61) was lowest among all compared networks. On the other
hand, the greatest specificity (0.86) was determined for a network with five input variables
and 14 neurons in the hidden layer. The network with 12 neurons in the hidden layer
was characterized by a relatively low AUC, however, it showed a good combination of
sensitivity (0.75) and specificity (0.82) for the optimum cut-off point at 0.52.

Table 5. Network sensitivity analysis for ketosis.

ID MLP
Input Variable

BHB ACE LAC FP PP

2-8-1 7.332 2.842 - - -
2-9-1 7.520 3.616 - - -
2-10-1 8.533 3.110 - - -
2-11-1 5.637 2.169 - - -
2-12-1 6.216 3.289 - - -
2-13-1 6.509 4.120 - - -
5-14-1 2.989 2.710 1.822 1.292 1.023
3-15-1 1.568 1.122 - 1.239 -

MLP identity model: 2; 5; 3—input variables, 8–15—neurons, 1—output variable; BHB—β-hydroxybutyric acid
(mmol/L); ACE—acetone (mmol/L); LAC—lactose (%); FP—fat (%); PP—protein (%).
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Table 6. Diagnostic criteria of AUC under the ROC curve, sensitivity and specificity.

ID MLP AUC ± SE Cutoff Sensitivity Specificity

2-8-1 0.87 ± 0.01 0.46 0.63 0.83
2-9-1 0.86 ± 0.01 0.52 0.84 0.61
2-10-1 0.85 ± 0.01 0.49 0.72 0.81
2-11-1 0.84 ± 0.01 0.50 0.67 0.85
2-12-1 0.82 ± 0.01 0.52 0.75 0.82
2-13-1 0.85 ± 0.01 0.53 0.66 0.82
5-14-1 0.89 ± 0.01 0.54 0.67 0.86
3-15-1 0.85 ± 0.01 0.51 0.65 0.85

MLP identity: 2; 5; 3—input variables, 8–15—neurons, 1—output variable. AUC (Are Under Curve), ROC
(Receiver Operating Characteristics), SE—standard error.

4. Discussion

There have been several reports of attempts to develop a simple and cost-effective
method for the early identification of ketosis in cows [2,33–35]. These studies were
mostly focused on monitoring changes in the composition of milk from cows diagnosed
with ketosis on the basis of changes in ketone body levels in milk, such as BHB and
ACE [14,33,34]. So far, artificial neural networks have not been used for this purpose,
although a number of studies have involved attempts at using other statistical and mathe-
matical tools in association with ROC curve analysis to define the incidence of ketosis in
cows [17,33,35,36]. In Poland, the PFHBiPM has implemented a SYMLEK system procedure
with a K! method, [37], that has been used since 2015 for the identification of cows at risk
of ketosis. This method estimates the risk of subclinical ketosis in a cow using logistic re-
gression with independent variables such as the content of BHB and ACE in milk from test
milkings. The method enables the identification of cows at risk of ketosis with a sensitivity
of 67–70% and relatively high specificity (85%). However, the K! method cannot be used
for the real-time identification of cows at risk of ketosis. The current study involved the
generation and training of an MLP artificial neural network designed for the identification
of cows at risk of subclinical ketosis. Network models generated were characterized by sim-
ilar or higher sensitivity and slightly lower specificity than the K! method. Networks with
9 neurons in the hidden layer were found to be the most effective and were characterized
by a good combination of sensitivity (0.84) and specificity (0.61), and the AUC under the
ROC curve (0.86). The MLP network model with 9 hidden neurons was the one for which
the sensitivity analysis showed that BHB and ACE levels in milk were significant input
variables in the network training process. However, a significant feature of the resulting
network algorithm generated and tested as part of this study is the possibility of recording
it using the predictive model markup language (PMML) which enables using the model for
new data and continuous monitoring of animals in production farms in terms of the risk of
subclinical ketosis. Carrier et al. (2004) achieved higher sensitivity (0.88) and specificity
(0.90) in predicting the incidence of ketosis based on BHB levels in milk as determined
using the Keto-Test milk strip, and the result was read according to the color scale. van
Knegsel et al. (2010) reported low specificity (0.70) and sensitivity (0.80), comparable to
those reported in this study, as determined using logistic regression based on the content of
BHB and ACE in milk and blood, and evaluated using transform infrared spectrometry. It
should be noted that in the latter study, cows were diagnosed with ketosis based on BHB
and ACE levels, and the fat-to-protein ratio. On the other hand, Jorritsma et al. (1998) used
the Ketolac milk test involving sticks that show a color change (formazan formation). Their
prediction of the incidence of ketosis in cows, based on BHB levels in milk, achieved a
relatively low sensitivity (0.40 and 0.62) and very high specificity (0.94 and 1.00), taking
0.2 mmol/L and 0.1 mmol/L as cut-off points for BHB levels in milk. Nielen et al. (1994)
predicted the presence of ketosis in cows, based on the content of BHB in milk and urine
(e.g., Acetest, bridgent test) and using Cohen’s kappa coefficient. The sensitivity resulting
from their study, based on defining the threshold BHB level in milk in the range of 0.7 to
1.5 mmol/L, ranged widely between 0.22 and 0.90 while the specificity was between 0.96
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and 0.99. Our considerations concerned the selection of a neural network model optimized
with respect to the identification of individual cows with subclinical ketosis, i.e., a network
characterized by both high sensitivity and high specificity. Taking into account all cows
in a herd, their welfare and the production profitability, a method that provides the best
possible sensitivity could be more useful, even at the expense of lower specificity. In such a
case, the number of errors (identification of a smaller number of ketosis-affected cows as
healthy and a greater number of healthy cows as ketosis-affected) will be less risky and
costly for a breeder as compared to a situation when specificity is significantly higher than
sensitivity [38]. If the sensitivity is higher than the specificity, a breeder may have to incur
higher costs associated with the testing of the herd for ketosis, however, these costs would
be nowhere near the costs of management of ketosis-affected cows that would otherwise
be identified as healthy by an assessment with lower sensitivity [39].

The determination of sensitivity and specificity makes it easier to choose the final
neural network models that are suitable for use in practical applications as a tool for the
identification of cows at risk of ketosis in a herd. Both these parameters are important
indicators of a method’s accuracy, and they can only adequately characterize a method’s
efficiency when they are used in parallel.

5. Conclusions

Lately, farm labor has been identified as one of the major limitations to the further
growth of the dairy industry. However, many dairy industries globally will have to face
this challenge previously and so modern and precision technologies might also become
essential tools in the dairy industry. The accessibility of advanced tools and innovative
solutions for agricultural and stockbreeding operators will rely on the use of the high
versatility of ANNs. In conclusion, predictions generated using MLP neural networks
about the incidence of subclinical ketosis in cows based on milk parameters, that is: BHB,
ACE, LAC and SCC, indicate how effective a specific model is, in comparison to results from
other studies. Neural networks can help improve a model by modifying network design
parameters in response to new data. Moreover, following the final selection of a specific
neural network model, it is possible to immediately implement the resulting algorithm as
a source code. The new precise IT tool is characterized by similar sensitivity and specificity
to tools that are already in use, but with the advantage of offering continuous monitoring
of cattle in the barn, e.g., as a complementary tool to animal breeding software, to help
breeders identify cows at risk of subclinical ketosis.
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19. Jędruś, A.; Niżewski, P.; Lipiński, M.; Boniecki, P. Neuronowa analiza wpływu sposobu doju i wybranych cech zootechnicznych
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