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Abstract: Viral respiratory tract infections are associated with asthma development and exacerbation
in children and adults. In the course of immune responses to viruses, airway epithelial cells are
the initial platform of innate immunity against viral invasion. Patients with severe asthma are
more vulnerable than those with mild to moderate asthma to viral infections. Furthermore, in most
cases, asthmatic patients tend to produce lower levels of antiviral cytokines than healthy subjects,
such as interferons produced from immune effector cells and airway epithelial cells. The epithelial
inflammasome appears to contribute to asthma exacerbation through overactivation, leading to
self-damage, despite its naturally protective role against infectious pathogens. Given the mixed and
complex immune responses in viral-infection-induced asthma exacerbation, this review examines the
diverse roles of airway epithelial immunity and related potential therapeutic targets and discusses
the mechanisms underlying the heterogeneous manifestations of asthma exacerbations.
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1. Introduction

In general, people with asthma are particularly susceptible to viral respiratory in-
fections, which are a major cause of asthma exacerbation. Extensive basic and clinical
studies in recent decades have contributed important insights about the role of viruses
in asthma development and exacerbation and mediating factors related to those patho-
physiologic processes. In addition, the severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) pandemic has highlighted the need for more effective preventive and
therapeutic approaches to viral infections in patients with asthma, which require a deeper
understanding of the interactions between asthma and viral infections.

The respiratory viruses mainly involved in asthma inception and exacerbation include
rhinovirus (RV), respiratory syncytial virus (RSV), influenza virus, parainfluenza virus,
adenovirus, and coronavirus [1–3]. Considerable epidemiological evidence supports the
associations among RV infection, exposure, and sensitization to allergens with asthma
onset and exacerbation [4,5]. Viral infections can cause asthma exacerbation via multiple
mechanisms [2,3]: increased serum IgE levels, epithelial damage or activation, decreased
antiviral responses (including the production of interferon (IFN)), alteration of host immune
responses, promotion of inflammation in the respiratory tract, and direct infection of the
lower respiratory tract.

In addition to their structural barrier function against allergens, infectious agents, and
inhaled particulates, airway epithelial cells respond to various host and environmental
stimuli by participating in diverse immune and inflammatory processes. In asthma, alter-
ations in the airway epithelium are known to play critical roles in viral-infection-induced
exacerbations, although contradictory results have been reported depending on the viral
strain, cell type, experimental system (i.e., animal models vs. human subjects, in vivo vs.
in vitro), and various host factors.

This review addresses the role of respiratory viral infection in asthma development
and exacerbation, with a focus on airway epithelial immunity, including its structural
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barrier functions such as its integrity and repair, and its innate immune barrier function,
including type 2 inflammation and inflammasomes.

2. Role of Respiratory Viral Infection in Asthma Pathogenesis
2.1. Role of Viral Infection in the Development of Asthma

Although the hygiene hypothesis suggests that early childhood infections are protec-
tive against allergic diseases later in life, including asthma [6], respiratory viral infections
associated with wheezing illness are known to contribute to the development of asthma.
Viral-infection–related pathology is influenced by host factors such as age, previous infec-
tion or immunization, pre-existing respiratory or systemic disease, and immunosuppression
or compromise [7]. Viral respiratory disease can be caused by a localized respiratory tract
infection, such as RSV infant bronchiolitis, or can be part of a generalized systemic illness,
such as measles [7]. Viral respiratory infections are a major cause of wheezing in infants and
adult patients with asthma. In particular, RSV and RV are important causes of wheezing in
early life, and wheezing illnesses with these viruses have been associated with increased
asthma risk later in childhood. Each year, RSV is the leading contributor to hospitalization
in children younger than 1 year of age, whereas RVs are the most frequently detected
viruses in wheezing children older than 1 year and in children and adults with acute
exacerbations of asthma [8,9]. Sigurs et al. explored the association between severe RSV
bronchitis and the eventual development of asthma [10]. They assessed disease progression
in infants hospitalized for RSV bronchitis until they were 13 years old. At 7.5 years of
age, children with RSV bronchitis and a family history of asthma were found to have
higher asthma morbidity than healthy controls with a family history of asthma, suggesting
that severe RSV infection with a family history of asthma increased the risk of develop-
ing asthma. In addition, some cohort studies have demonstrated an association between
RSV-infection–induced wheezing illnesses in early life and the subsequent expression of
persistent wheezing and asthma when a child begins school; the odds ratio (OR) for an
asthma diagnosis in these studies was 2.6 (95% CI 1.0–6.3) [11,12]. In one of these studies,
RV infection also turned out to be an important factor in the development of asthma in
6-year-old children who had experienced a related wheezing illness at age 3, with an OR for
asthma of 9.8 (95% CI 4.3–22.0) [11]. These findings suggest that RV-induced bronchiolitis
could be more strongly associated with the risk of developing wheeze and childhood
asthma, which is also supported by a very recent meta-analysis [13]. The systemic review
included 38 studies in the meta-analysis that directly compared between virus differences
in the magnitude of virus-recurrent wheeze and virus–childhood asthma outcome. The
analysis of the overall impact of RSV bronchiolitis on the development of recurrent wheez-
ing or asthma in comparison to RV bronchiolitis showed that the RV bronchiolitis group
was more likely to develop recurrent wheezing (OR 4.11; 95% CI 2.24–7.56) and asthma (OR
2.72; 95% CI 1.48–4.99) than the RSV group. More interestingly, an RV-infection–induced
wheezing illness in infancy had a greater correlation with childhood asthma development
than aeroallergen sensitization in infancy. Kusel et al. reported that the risk of asthma
nearly doubled in children sensitized to common aeroallergens and increased by four
times if more than two respiratory viral infections with wheezing were recorded during
childhood. When the effects of allergic sensitization and a respiratory viral infection were
evaluated together, their combination produced an approximately nine-fold increase in the
risk of asthma, implying not only that atopy and viral infection are independent risk factors
for developing asthma, but also that their combined effect seems to be synergistic [1,12].
Allergic sensitization and inflammation, particularly type 2 immune responses to allergens,
are known to impair antiviral responses; however, the question of which comes first, type 2
inflammation or respiratory viral infections such as RSV- or RV-induced wheezing illness
remains unanswered.

RV infections are very frequent at all ages in the general population, which begs the
question of why only some of those infected with RV are at risk of developing asthma.
In recent decades, many researchers have tried to answer that question by examining
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host genetic factors, viral strains, and environmental exposures. In terms of host genetics,
polymorphisms in several antiviral and innate immune genes, including STAT4, JAK2,
MX1, VDR, DDX58, and EIF2AK2, were linked to susceptibility to respiratory viruses,
infection severity, and virus-induced asthma exacerbations [14]. In particular, variants
in the 17q21 locus, including ORMDL3 and GSDMB, were reportedly associated with an
increased risk of RV-infection-induced wheezing in early life [15]. In children with an
RV-infection-induced wheezing illness in the first 3 years of life, these variants were also
associated with an increased risk of subsequent asthma. However, RSV-infection–induced
wheezing was not linked to 17q21 variants in the same cohorts. Some environmental
exposures, such as pets and farm materials, reduced the risk of asthma associated with
the 17q21 genotype in children [16,17]. Meanwhile, RV-A and RV-C are more likely to
show stronger virulence than RV-B, and thus, they are more likely to cause wheezing
illnesses and lower respiratory infections [18]. A genome-wide association study of asth-
matic children defined an association between asthma and a functional polymorphism in
cadherin-related family member 3 (CDHR3) [19]. Considering that CDHR3 is a receptor
that enables the binding and replication of RV-C, the link between CDHR3 and asthma
risk might be mediated by RV-C infection [20]. In terms of the viral genome, the RSV A2,
line 19, and Long strains have been used in experiments to define how the viral genome
influences host immune responses to infections. The RSV A2 and Long strains produced
similar immune responses in mice: predominant IFN-γ production, no production of IL-13
or airway mucus, and no airway hyperresponsiveness. However, RSV line 19 infection
induced the production of IL-13 and airway mucus, reduced the production of IFN-γ,
and produced exaggerated airway hyperresponsiveness [21,22]. When these strains were
sequenced, differences were found in five amino acids in the fusion protein. Subsequently,
a reverse genetic approach indicated that the fusion protein genes of the RSV line 19 strain
were responsible for the lung production of IL-13 and airway mucus and airway hyper-
responsiveness [22]. Throughout life, people are exposed to a variety of environmental
factors, including respiratory pathogens, allergens, physicochemical irritants, and microbes.
The influences of these exposures on human health, specifically in the development of
asthma, remain the focus of research to define underlying pathogenic mechanisms and find
new preventive and therapeutic interventions. From this point of view, epigenetics could
be a promising approach to explaining the development of asthma associated with viral
infection. Recent findings have shown that RV-induced alterations in DNA methylation
are involved in the development and persistence of asthma [23,24]. In addition, several
viral infections have been reported to contribute to the pathogenesis of asthma through
the epigenetic expression of various non-coding RNAs (miRNAs). RV-infected asthmatic
alveolar macrophages showed decreased TLR7 expression levels due to miR-150, miR-152,
and miR-375 [25]. Mucus secretion was increased by a reduction in miR-34b/c-5p in RSV-
infected human bronchial epithelial cells [26]. In epithelial cells from severe asthmatic
patients, miR-22 was dysregulated by influenza A (IAV) infection, which could be one of
the possible mechanisms of IAV-induced airway remodeling [27]. The microbiome, which
is considered an endogenous environmental factor, may also contribute to respiratory viral
infection. Teo et al. reported that the nasopharyngeal microbiome composition affected
the infection severity and pathogen spread to lower airways, as well as the risk for future
asthma development. Among the genera of bacteria in the nasopharyngeal microbiome,
Streptococcus was a strong predictor, and antibiotic usage could disrupt the colonization
patterns [28]. In a subsequent study, they revealed that viral-infection-associated respi-
ratory illnesses were accompanied by a shift in the nasopharyngeal microbiome toward
dominance by a small range of pathogenic bacteria genera. In addition, in conjunction
with early allergic sensitization, the dominating presence of Streptococcus, Haemophilus,
and Moraxella in the microbiome profiles of upper airways was a significant risk factor
for persistent wheezing illness in school-age children, while these bacteria genera were
associated with a transient wheeze that resolved in non-sensitized children [29].
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2.2. Pathophysiological Effects of Viral Infection on Asthma Exacerbations

Respiratory viruses infect not only asthma patients but also healthy people. However,
it is known that the pathological effects of respiratory viral infection in asthma patients
are much more serious than those in healthy people. The clinical manifestations of viral
infectious diseases are the results of both direct damage caused by the virus itself and
damage caused by the host immune response to the virus. In an asthmatic patient, exac-
erbation can occur because of the functional interaction between the pathogenic effects
of the virus and asthmatic inflammation [7]. Asthma exacerbation is characterized by
an increase in fatal asthmatic symptoms, worse response to therapeutic controllers such
as inhaled corticosteroids (ICS), and increased airway remodeling, which together can
cause decreased lung function [30,31]. Viral respiratory infections are detected in about
85% of asthma exacerbations. Because asthma exacerbations are a major cause of mor-
bidity in asthma patients of all ages, significant research efforts have been devoted to
understanding the interaction between viral infection and asthmatic inflammation, par-
ticularly exacerbation [1]. Actually, the detailed immunological mechanisms associated
with asthma exacerbation are currently unclear, although major advances in the research
have improved our understanding of many aspects of the interaction between respiratory
viral infection and underlying allergic asthmatic inflammation. The effect that coronavirus
disease 19 (COVID-19), which is caused by SARS-CoV-2, has on acute exacerbations of
asthma appears to be complex [32]. Indeed, some studies have reported that, unlike other
respiratory viruses, SARS-CoV-2 rarely induces asthma exacerbations during hospitaliza-
tion for COVID-19, that COVID-19-related asthma exacerbations have been relatively rare
during the outbreak, and that SARS-CoV-2 pneumonia does not induce severe asthma
exacerbation [33–35]. A recently updated report demonstrated that COVID-19 could lead to
the worsening of asthma symptoms and prolonged exacerbation in some asthma patients,
but not in all of them, and that allergic asthma patients had a significantly lower asthma
exacerbation rate than non-allergic asthma patients [36]. These findings seem to be com-
pletely opposite to the effect of previous respiratory viral infection on asthma exacerbation,
implying that the relationship between SARS-CoV-2 infection and asthma is complex and
possibly unique among the known pathologic effects of previous viral infection. Some
interesting studies have provided mechanistic insights into these observations [37,38]. It is
known that the host cell entry of SARS-CoV-2 depends on angiotensin-converting enzyme
2 (ACE2), and the cellular serine protease transmembrane protease serine 2 (TMPRSS2) is
used by SARS-CoV-2 for S protein priming [39]. Type 2 inflammation, or type 2 cytokine
IL-13, suppressed the expression of ACE2 and increased the expression of TMPRSS2 in
airway epithelial cells [37,38]. In addition to the strong negative influence of T2 inflamma-
tion on ACE2 expression in the airway, Sajithi et al. revealed an equally strong positive
influence of respiratory virus infections on ACE2 levels [38]. They suggest T2 inflammation
and virus-induced IFN inflammation as the strongest determinants of ACE2 and TMPRSS2
expression in asthmatic airway epithelium, which could contribute to the complex mani-
festations and various severities of COVID-19 in patients with asthma. Therefore, more
work and data on the interaction between SARS-CoV-2 and asthma are needed to fully
understand these intriguing findings.

Among the respiratory viruses, RV is the major and most frequent determinant of
asthma exacerbation [40–42], although until recently, RV infection was known to occur
primarily in the upper respiratory tract. However, several experimental infection models
have directly implicated RV in lower airway infections involved in the pathogenesis of
asthma exacerbation [43–47]. The proposed mechanisms for RV-induced asthma exacerba-
tion include the activation of the airway epithelium, which produces an innate immune
response and antigen-specific Th2 pathways that combine with allergic inflammation to
enhance the overall type 2 inflammatory response [42,48–50]. In addition, RV infection
could induce asthma exacerbation through a non-Th2 immune response, increased airway
hyperresponsiveness, mucus hypersecretion, airway remodeling, or respiratory failure [51].
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Asthmatic patients have increased susceptibility to viral respiratory infections, partly
because they have deficient and delayed innate antiviral immune responses [52]. Many
asthmatic patients tend to produce lower-than-average levels of type I IFN (i.e., IFN-α and
IFN-β) and other cytokines in plasmacytoid dendritic cells (pDCs) and epithelial cells dur-
ing viral respiratory infections [53–56]. This impaired antiviral immunity means that viral
infections are associated with more severe airway damage in patients with asthma than in
patients without asthma. Conversely, viral infection can increase the sensitivity of asthmatic
airways to other triggers, such as allergens [7]. In addition, asthma is usually associated
with pulmonary and extrapulmonary comorbidities, and these comorbidities are more com-
mon in severe asthma patients than in patients with mild to moderate asthma or those in the
general population [57,58]. Pulmonary comorbidities include allergic rhinitis, obstructive
sleep apnea, chronic rhinosinusitis (CRS), nasal polyps, chronic obstructive pulmonary
disease, and bronchiectasis [58,59]. In particular, the mean prevalence of bronchiectasis
in asthma patients is 36.6%, and patients with severe asthma with bronchiectasis show
a higher rate of infection [60,61]. Bronchiectasis is frequently considered to be a conse-
quence of long-lasting, severe, uncontrolled asthma, while asthma could be overlapped
in patients with bronchiectasis [62]. Considering the structural and functional changes
of bronchiectasis, such as mucociliary defects and biofilm formation, bronchiectasis is
one of the comorbidities associated with the recurrent infectious exacerbation of asthma.
Moreover, a recent study reported that respiratory viruses contributed to about 25% of
the acute exacerbation of bronchiectasis and that IAV and RV made up over 50% of the
viruses [63].

Recent interesting studies have reported that the diverse and distinct airway micro-
biomes of asthmatic patients can also influence viral respiratory infection, which is linked
to acute exacerbation. McCauley et al. demonstrated that RV infection was more likely
to occur in asthmatic children with Streoptococcus-species-dominated nasal airway mi-
crobiomes and that nasal microbiomes dominated by Moraxella species were associated
with increased exacerbation risk and eosinophil activation [64]. In addition, a recent study
indicated that specific networks of upper airway microbes (those possessing Streptococcus,
Haemophilus, Neisseria, Prevotella, and other genera or those lacking Staphylococcus) that
interacted with host transcriptional responses significantly increased the risk of subsequent
exacerbation and that this relationship was also strongly dependent on season [65].

Taken together, it appears that virus-induced asthma exacerbation is the final con-
sequence of a complex interaction among a variety of pathogenic mechanisms in pre-
existing asthmatic inflammation: epithelial disruption and dysfunction, impaired antiviral
immunity, inflammatory mediator overproduction, the induction of inflammation, IgE
dysregulation, airway remodeling, alterations in neural responses, airway microbiomes,
and differences in asthma endotypes and phenotypes.

3. Alteration of Airway Epithelial Cells in Viral-Infection-Induced
Asthma Exacerbation

The airway epithelium is a pseudostratified columnar structure that protects against
a variety of external stimuli by means of structural integrity, mucociliary clearance, and
innate immunological barriers. These multifaceted barriers act cooperatively to maintain
epithelial homeostasis and provide a dynamic response to pathogens, allergens, and en-
vironmental exposures [66]. The fundamental role and alterations of airway epithelium
in asthma exacerbation have been well-documented. In addition, the recently introduced
“epithelial barrier hypothesis” proposed mechanisms for the development of many chronic
noncommunicable diseases, including asthma, through inflammation and tissue damage
in the mucosal surfaces (i.e., epithelial barrier) of an affected organ or distant organs [67],
which suggests that the airway epithelium could be a crucial preventive and therapeutic
target for asthma and its exacerbation.

An initial target of virus-induced asthma exacerbation is the epithelium of the conduct-
ing airways. Once respiratory viruses enter airway epithelial cells and replicate within them,
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invasion depends on interactions with specific receptors, such as intracellular adhesion
molecule 1 (ICAM-1), low-density lipoprotein receptors, CDHR3, sialic acids, nucleolin,
cell surface integrin, dipeptidyl peptidase 4, and ACE2 [7,68]. It is important to recognize
that the airway epithelium of an asthmatic differs significantly from a normal epithelium
in ways that make it more susceptible to viral infection. This enhanced susceptibility to
viral infection is known to originate from the destruction of the epithelium; the loss of
ciliated cells; goblet cell hyperplasia; the upregulation of growth factors, cytokines, and
chemokines; and impaired antiviral responses, such as the production of type I IFN.

In asthmatic pathology, the direct structural interruption of the airway epithelium pro-
voked by injured tight junctions (TJs) and enhanced epithelial apoptosis results in epithelial
leakiness [69]. Such a defective epithelium allows the entrance of respiratory pathogens,
such as viruses and allergens, into subepithelial and deeper tissues, leading to antigen
capture and presentation by the DCs [67,69]. In fact, RV infection dissociated TJ proteins,
such as zonula occludens 1, from the TJ complex, and the protein levels of claudin-1 and
occludin were significantly lower than normal in asthmatic children [70]. Additionally,
RVs can dysregulate epithelial barrier function and integrity in several ways, including
the disruption of homeostatic and dynamic cytokine production and TJ complexes and
the dysregulation of wound repair [70–73]. In RV infection, defective repair was reported
in asthmatic airway epithelium, which delayed wound repair and inhibited the normal
apoptotic process [71]. In addition, RV-infected airway epithelial cells showed increased
release of basic fibroblast growth factor and matrix metalloproteinase (MMP), leading to
fibroblastic repair rather than normal epithelial repair, including abnormal cell death and
extracellular matrix deposition [74]. A previous study also reported that asthmatic patients
treated in an emergency room for acute exacerbation exhibited a significant increase in
sputum MMP-9 levels compared with stable asthma patients and healthy subjects [75].
Supporting these data, a recent study examining cellular transcriptome networks revealed
that the sequential upregulation of SMAD3, epidermal growth factor, and extracellular
matrix after viral infection caused acute exacerbation in asthmatic patients [76]. Further-
more, a recent study using primary airway epithelial cells from pediatric asthma patients
demonstrated an aberrant wound migration pattern associated with decreased integrin
α5β1 expression, which is regulated by the PI3K/Akt pathway, suggesting that RV infection
could disrupt the PI3K/Akt pathway, particularly in children susceptible to asthma [77].
These few mechanisms associated with deficient or dysregulated wound repair of the
epithelium likely leave the epithelium susceptible to further infection or damage from
exogenous insults. Virus-provoked immune responses are likely to amplify the overall
inflammatory loads in subepithelial tissues, and the resulting deep tissue inflammation
further disrupts the epithelial barrier. This vicious cycle potentiates the dysregulated subep-
ithelial immune responses, inflammation, and remodeling that are aggravating factors for
asthma exacerbation (Figure 1).

In terms of an innate immunological barrier, epithelial cell activation and the release
of epithelial cell cytokines, such as the alarmins, IL-25, IL-33, and thymic stromal lym-
phopoietin (TSLP), play a significant role in causing and exacerbating allergic diseases such
as asthma [78]. The alarmins act on subepithelial DCs, mast cells, and innate lymphoid
cells (ILCs) to recruit both innate and adaptive immune cells and initiate the release of
Th2 cytokines [79–83]. Indeed, a transcriptome network analysis showed that the IL-33
gene was upregulated in patients with virus-induced exacerbations compared with those
with nonviral exacerbations [76]. RV infection induced IL-33 and Th2 cytokine responses
in the airways of asthma patients, with IL-33 levels correlating with IL-5 and IL-13 levels.
Blockage of the IL-33 receptor abolished RV-induced Th2 cytokine production by human
T cells and type 2 ILCs [84]. Le Goffic et al. reported that, in both in vitro and in vivo ex-
perimental systems, influenza infection resulted in the expression and release of IL-33 [85].
Kaiko and colleagues also showed that primary pneumovirus infection in mice induced
the expression and release of IL-33 [86]. Another study demonstrated that IL-33 could
aggravate airway hyperresponsiveness and asthmatic inflammation through an innate
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immune response without Th2 cell involvement [87]. Supporting those observations, a
recent study using a murine model showed that IL-33 suppressed innate antiviral responses
and adaptive Th1 responses in influenza-induced exacerbations, which enhanced asthmatic
airway inflammation [88]. Interestingly, it has been suggested that the cellular immune
response to IL-33 following RV infection differs between people with and without asthma.
Peripheral blood mononuclear cells (PBMCs) costimulated with IL-33 and RV showed that,
although IL-33 augmented RV-induced IL-5 and IL-13 production in PBMCs from asthma
patients, it had no effect on those from healthy controls. Additionally, IL-33 promoted
the ILC production of IL-13 in asthma patients, whereas it promoted the natural killer
cell production of IFN-γ in control subjects [89]. IL-25, a well-known contributor to the
pathogenesis of asthma, was studied regarding its role in RV-induced asthma exacerbation;
the RV infection of airway epithelial cells from asthma patients resulted in significantly
higher IL-25 mRNA and protein expression than was found in cells from healthy con-
trols [90]. Recently, an analysis of an immune transcriptome of RV-infected asthmatic
airway epithelial cells treated with an anti-IL-25 monoclonal antibody revealed increased
type I and III IFN levels and reduced expression of type 2 immune genes and the IL-25
receptor. The blockage of IL-25 also increased type I and III IFN expressions by airway
epithelial cells infected with coronavirus. Exogenous IL-25 treatment increased the viral
load and suppressed innate immunity, suggesting that IL-25 directly inhibited the innate
antiviral immunity in airway epithelial cells [91]. TSLP was more greatly expressed in
airway epithelial cells isolated from asthmatic subjects after RSV infection than in those
from healthy controls, and a role for TSLP was defined using an RSV-infected TSLP-knock
out mouse model in driving RSV-induced Th2 cells and their associated pathology [92].
An in vivo study using a mouse model with allergic asthmatic inflammation showed that
pulmonary TSLP was induced exclusively during exacerbations evoked by RV infection or
poly I:C [93]. In addition, TSLP production was increased by RV infection in a primary cul-
ture of bronchial epithelial cells [94]. Epithelial cytokines known as alarmins resulted in the
production of IL-4, IL-5, and IL-13, which play key roles in asthma pathogenesis. Given the
reciprocal negative regulation between the IFN and Th2 pathways, the overproduction of
airway-epithelial-cell-derived cytokines is an attractive target for controlling virus-induced
asthma exacerbation. Several anti-Th2 biologics have already shown impressive efficacy in
reducing the rate of asthma exacerbations, particularly an anti-TSLP monoclonal antibody
that, remarkably, lowered the annualized rates of exacerbations in patients with severe
asthma, independent of their baseline blood eosinophil counts [95].

In addition to alarmins, the responses of airway epithelial cells to viral infection
encompass a wide range of pro-inflammatory cytokines and chemokines, including eo-
taxins, RANTES, IL-17, TNF-α, IL-6, IL-8, and IL-1β [44,46,72,96–100]. Subauste and
colleagues [46] demonstrated that RV infection induced TNF-α, IL-6, and IL-8 release in
human bronchial epithelial cells and that prior exposure to TNF-α increased susceptibility
to RV infection, suggesting that the cytokines could potentiate future RV infections. Asth-
matic patients with an RV-C-induced wheezing illness showed increased levels of IL-17
and IL-1β, as well as enhanced Th2 cytokine release, in their nasal cytokine profiles [101].

In terms of IFN production by airway epithelial cells, a considerable number of
studies have demonstrated that the host IFN response to viral infection is deficient in
asthma patients [54,102–107], although deficient RV-induced epithelial IFN production
in asthma has not always been observed. When airway epithelial cells from asthmatic
patients and healthy controls were infected with RV, the IFN-β mRNA expression and
protein production in cells from asthmatic patients were impaired compared with those
from controls, resulting in increased viral replication in the cells of asthmatic patients.
Conversely, the administration of exogenous IFN-β reduced viral replication in these
epithelial cells [54]. Airway epithelial cells from asthmatic patients had a significant
deficiency in the induction of type III IFNs, such as IFN-λ1 and IFN-λ2/3, following RV
infection [104,105]. This IFN deficiency was also seen in children with severe asthma
whose airway epithelial cells exhibited a high viral load that negatively correlated with
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IFN-β and IFN-λ mRNA levels [107]. Additionally, Holt et al. showed that the type I
and III IFN response capacity appeared strongly constrained at birth. The risks for severe
lower respiratory infections during infancy and the subsequent development of persistent
wheeze were associated with a reduced capacity to respond to virus-related stimuli through
the activation of type I and III IFN genes [108]. A recent study demonstrated that lower
levels of epithelial IFN-α and IFN-β expressions correlated with more severe respiratory
symptoms following RV infection, including decreased lung function and worse airway
hyperresponsiveness [106]. However, a study assessing the kinetics of innate antiviral
gene expression revealed that the RV-induced innate immune responses, including IFN
production, of airway epithelial cells from asthmatic patients were delayed rather than
deficient [96].
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Double-stranded RNA (dsRNA)-activated serine/threonine kinase R (PKR) is well-
characterized as an essential component of the innate antiviral response (i.e., it is down-
stream of the type-I-IFN-dependent signaling pathway). A recent study demonstrated
that airway epithelial cells in bronchial smooth muscle from patients with severe asthma
had enhanced susceptibility to RV infection, and viral replication within these epithelial
cells occurred through the inhibition of the PKR pathway, which was associated with
the increased secretion of CCL20, a novel mechanism for viral-infection-induced asthma
exacerbation [109]. Interestingly, my previous report revealed somewhat opposite data:
the phosphorylation of PKR in primary-cultured airway epithelial cells was enhanced in
a mouse model of steroid-resistant severe asthma treated with poly I:C compared with
control mice that did not receive the poly I:C treatment [110], and this aggravated asthmatic
manifestations, including the production of epithelial alarmins, IL-25, IL-33, TSLP, and
Th2 cytokines (unpublished data). In that study, a PKR inhibitor attenuated the features
of severe asthma exacerbation, suggesting its therapeutic potential. Of course, a direct
comparison of the results of these two experimental systems is limited considering that
stimulation by Poly I:C and RV infection are completely different situations. Specifically,
Poly I:C induces a TLR3 response, whereas RV induces a broad spectrum of PRRs. Thus, the
conflicting results may have been due to differences in immune stimulation and response.

In this respect, to define the role of the airway epithelium in viral asthma exacerbation,
more clear, well-designed experiments or trials of host factors (such as phenotypes) and
viral factors are needed to understand these processes.

4. Role of the Epithelial Inflammasome in Viral Immunity in Asthma

The host innate immune response is characterized by critical mechanisms for promptly
detecting, binding, and eliminating invading pathogens, such as viruses. Airway epithelial
cells express various pattern recognition receptors (PRRs) for the rapid recognition of
pathogens and pathogen-associated molecular patterns. Several families of innate PRRs,
including Toll-like receptors (TLRs), C-type lectin receptors (CLRs), retinoic-acid-inducible
gene I (RIG-I)-like receptors (RLRs), and nucleotide-binding oligomerization-domain-like
receptors (NLRs), work cooperatively for host immunity [31,111]. PRRs are divided into
membrane-bound and cytoplasmic PRRs: the membrane-bound forms include TLRs and
CLRs, and NLRs and RLRs reside in the cytoplasm. The host response to respiratory viral
infection begins with the recognition of viral RNA that enters the cytoplasm by endosomal
TLR3, TLR7/8, RIG-I, and melanoma-differentiation-associated gene 5 (MDA5) [111,112].
TLR3 and TLR7 sense viral dsRNA and single-stranded RNA (ssRNA), respectively, within
the endosome. RIG-I recognizes cytosolic ssRNA or viral RNA containing 5′-triphosphate
and, by interacting with mitochondrial antiviral signaling (MAVS), induces type I and III
IFN responses through nuclear factor-κB (NF-κB) and the IFN regulatory factor.

Inflammasomes are multimeric protein complexes composed of a sensor protein,
such as NLRs, RIG-I, or MDA5; an adaptor protein, such as apoptosis-associated speck-
like protein containing a CARD (ASC); and cysteine protease caspase-1, which leads to
the maturation and secretion of pro-inflammatory cytokine IL-1β [113–115]. Five major
inflammasomes have been well-identified so far: NLR family pyrin domain containing 1
(NLRP1), NLR family CARD domain containing 4, RIG-I absent in melanoma 2 (AIM2),
and NLRP3 [116]. RIG-I signaling is important for activating the inflammasome via the
MAVS-CARD9-NF-κB signaling pathway. In addition, RIG-I can directly activate the
inflammasome complex by binding the adaptor ASC [115,117]. Among several NLR family
members, NLRP3 is one of the most important intracellular PRRs and senses a diverse
series of exogenous and endogenous danger signals, including infectious pathogens and
sterile environmental stimuli [118–120]. In addition, NLRP3 inflammasome activation is
crucial in the pathogenesis of several pulmonary inflammatory diseases, including asthma.
Previous studies have revealed the pathogenic role of the NLRP3 inflammasome in airway
epithelial cells, as well as in inflammatory and immune cells, from asthmatic murine
models [121–125].
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In terms of respiratory viral infection, four main inflammasomes are known to be
involved in innate antiviral immunity against RNA viruses—NLRP3 and RIG-I, and in some
cases, MDA5 and AIM2 inflammasomes [115,126–128]. Activation of the RIG-I and NLRP3
inflammasomes has been demonstrated in macrophages and DCs after infection with some
respiratory RNA viruses, including RV [122,129], IAV [126,129,130], SARS-CoV-1 [131,132],
and most recently SARS-CoV-2 [133,134]. However, data on the activation of epithelial
inflammasomes by these viruses in airways, particularly in human airways, and their
involvement in the pathology of asthma remain very poor.

Allen et al. showed that, when human airway epithelial cells were infected with IAV,
they expressed NLRP3 and secreted IL-1β. In that study, mice lacking NLRP3 exhibited
reduced innate immune responses; however, most of the NLRP3 response was derived
from immune cells, not airway epithelial cells [126]. In addition, an in vitro study revealed
that RV could activate the NLRP3 inflammasome in airway epithelial cells and mediate
IL-1β [135]. The prevalence of asthma is increased in patients with CRS, and this strong
association between asthma and CRS has been widely noted [136]. Using human primary
nasal epithelial cells from patients with CRS, including asthma patients and healthy controls,
a recent study showed that RV-induced epithelial NLPR3 inflammasome activation could
mediate IL-1β secretion, cell pyroptosis, and mucin production in airway epithelium
through the DDX33/DDX58-NLRP3-caspase-1-GSDMD-IL-1β signaling axis, and these
pathologic changes were relevant to virus-induced acute exacerbation [137]. Reovirus, a
dsRNA virus infection, induced a greater activation of the NLRP3 inflammasome in airway
epithelial cells from EphA2-knockout mice than that in wild-type mice, which resulted in
the production of IL-1β. Although reovirus is not a major viral pathogen in patients with
acute asthma exacerbation, the study also showed that EphA2 suppressed the asthmatic
inflammatory response in an ovalbumin-induced asthma murine model, suggesting that
EphA2 functioned as a negative regulator of inflammasome activation upon reovirus
infection by targeting epithelial NLRP3 and, thereby, guarding against an excessive, self-
destructive immune response [138]. In addition to the NLRP3 inflammasome, a very recent
study evaluated the role of the RIG-I inflammasome in respiratory viral infection, including
RV and SARS-CoV-2, in asthma [139]. That study used controlled experimental in vivo
RV infection in healthy controls and patients with asthma, as well as in vitro models of
house dust mite (HDM) exposure and RV/SARS-CoV-2 coinfection, in primary airway
epithelial cells from both groups and found that RV infection in patients with asthma led to
the overactivation of RIG-I inflammasomes, which diminished RIG-I accessibility for type
I and III IFN responses in airway epithelial cells, leading to their functional impairment,
prolonged viral clearance, and unresolved inflammation in vivo and in vitro. Interestingly,
prior infection with RV restricted SARS-CoV-2 replication, but coinfection with RV and
SARS-CoV-2 augmented RIG-I inflammasome activation and epithelial inflammation in
patients with asthma, especially in the presence of HDMs.

Given that the activation of inflammasomes is critical for protecting the host from
invading viruses, such as RV, RSV, and IAV [140,141], the question arises as to which
factors could overactivate the inflammasome, leading to unwanted tissue damage and
the severe exacerbation of diseases such as asthma. To date, there is no definitive answer
to this question. However, considering that the majority of research data on the role of
the inflammasome is gathered from myeloid and immune cells, the cellular source of the
inflammasome might be one of the keys. In particular, airway epithelial cells are composed
of various cell types that each have a unique function; each cell could represent a different
pattern of immunological response, and the role of the epithelial inflammasome could
influence the fate of the overall inflammasome (protective vs. pathological) at the position
in viral infections where the pathogens are initially recognized (Figure 2).
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compared to healthy airway epithelium. Asthmatic epithelial cells overactivate the inflammasome,
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5. Current and Potential Therapeutics for Viral Infection in Asthma

Exacerbations occur across the spectrum of asthma severity and place a great burden
on healthcare systems and patients [142]. Viral infections are among the most frequent
causes of asthma exacerbation [1]. However, the prevention and treatment of viral-infection-
induced asthma exacerbations remain unmet medical needs. Maintenance on ICS, the
mainstay of asthma treatment, is effective in reducing the risk of asthma exacerbation, and
the risk is further reduced by the use of inhaled, long-acting β-agonists. Indeed, guidelines
emphasize the importance of using preventive therapies to reduce asthma exacerbation
and suggest increasing the ICS dose when symptoms begin to indicate a loss in asthma
control [143]. However, those interventions have shown mixed and equivocal results. A
Cochrane Database review concluded that current evidence did not support increasing the
ICS dose in patients with mild to moderate asthma as part of a self-management plan to
treat exacerbation [144]. Moreover, given that exacerbations are more frequent in severe
asthma with steroid resistance, simply increasing the ICS dose or using systemic steroids
appears to be a limited approach to preventing and treating asthma exacerbations.

The new generation of anti-type 2 biologics has shown impressive efficacy in reducing
the rate of acute asthma exacerbations [145–149]. They might also be efficacious during viral
infections by improving the antiviral response. In a pediatric allergic asthma population,
the use of omalizumab as a treatment adjunct for virus-induced exacerbations was shown
to reduce the duration of RV infections, peak viral shedding, and the frequency of RV
infections [150]. In another study, omalizumab significantly decreased the severity of RV-
induced asthma exacerbations, even among patients who started with poor baseline disease
activity [151]. IgE receptor activation increases host susceptibility to viral infection, and
the use of omalizumab could help improve antiviral responses in asthmatics [152]. In fact,
IgE receptor activation on pDCs from asthmatics reduced type I IFN secretion in response
to IAV [153] and the type I and III IFN releases in response to RV compared with pDCs
from nonasthmatics [55]. Furthermore, IgE cross-linking on PBMCs exposed to RV from
asthmatics treated with omalizumab presented increased IFN-α secretion compared with a
placebo group [145]. The efficacy of omalizumab was confirmed in a further prospective,



Int. J. Mol. Sci. 2022, 23, 9914 12 of 22

observational cohort study of patients with allergic asthma from whom RV-positive nasal
samples were collected. In that study, treatment with omalizumab resulted in a greater
reduction in the severity of RV-induced exacerbations than treatment with ICS, even though
the patients in the omalizumab group had greater disease activity than the ICS group at
baseline [151]. Dupilumab might also improve antiviral immune responses in patients
with T2-high asthma because IL-4 and IL-13 impaired viral-induced IFN production and
TLR3 expression [154]. Biologicals targeting the IL-5 pathways—mepolizumab, reslizumab,
and benralizumab—significantly decrease eosinophilic inflammation and the frequency of
exacerbations, suggesting a potential role of eosinophils in virus-induced exacerbations.
However, in a recent experimental RV challenge study in patients with mild asthma,
mepolizumab showed no significant effect on decreased lung function or loss in asthma
control after viral infection. Instead, the mepolizumab-treated group had higher viral loads
in nasal swabs than the placebo group, suggesting that the type 2 immune response had a
protective role against viral infection [155]. To define the precise role of the type 2 immune
response in viral infection, further basic and clinical research is needed; however, to date, no
specific clinical reports have indicated that anti-type 2 biologics could be harmful to asthma
patients with viral infections. Moreover, several guidelines have recommended continuing
biologic therapy in patients with severe asthma during the COVID-19 pandemic [143].
Although a recent report demonstrated that patients with severe asthma using biologic
therapy were shown to have a more severe course of COVID-19 compared to the general
population, it was not clear why the patients progressed to more severe COVID-19 because
of the small number of cases analyzed. Out of a total of 634 severe asthmatic patients
using biologics, only 9 patients contracted COVID-19 [156]. In addition, the incidence of
COVID-19 and the risk of having COVID-19 were higher in severe asthmatic patients who
interrupted their biological treatments, while the patients who continued biologic therapy
showed good asthma control during the COVID-19 pandemic [157].

Given the evidence for IFN deficiency in the pathogenesis of virus-induced asthma
exacerbations, the restoration of IFN seems to be a potential preventive and therapeutic
approach to controlling viral infections in patients with asthma. A randomized, controlled
trial with a 14-day regimen of inhaled IFN-β therapy following the onset of cold symptoms
in asthma patients suggested that inhaled IFN-β could be beneficial in controlling virus-
induced asthma exacerbations in severe asthmatics, although the trial did not meet its
primary endpoint [158]. Fortunately, a recent phase-2 pilot trial was performed to assess
the efficacy and safety of inhaled, nebulized IFN- β for the treatment of patients admitted
to hospital with COVID-19 [159]. The treatment with inhaled, nebulized IFN- β seemed to
be well-tolerated in patients with COVID-19, with a range of clinical outcomes displaying
a beneficial pattern of response to the treatment. TLR3 monoclonal antibody, which targets
PRRs as a TLR antagonist, was evaluated in patients with asthma. However, it was
found to be ineffective at protecting against symptoms or decreases in lung function
following RV infection, and it was associated with a greater number of moderate and
severe exacerbations than the placebo group [160]. As a direct antiviral agent, palivizumab,
a monoclonal antibody against RSV fusion protein, was reported to reduce subsequent
recurrent wheezing in premature infants [161]. In addition, because ICAM-1 serves as
a receptor for RV, an ICAM-1 blocker was studied for its ability to reduce RV-infection-
induced acute asthma exacerbations. In humans, tremacamra, a recombinant soluble ICAM-
1, reduced the severity of RV infection symptoms compared with the placebo group [162],
but the high frequency of dosing it required prevented further clinical development. Several
drugs targeting the RV capsid have been also studied. In patients with asthma, vapendavir
had an antiviral effect, but it did not improve lung function or reduce exacerbation during
RV infection [163]. To date, there is no official recommendation for the use of antiviral
agents to reduce or prevent asthma exacerbations.

Data are lacking to show how effective respiratory virus vaccination is in reducing
the rate of viral exacerbations in patients with asthma. In terms of influenza vaccination, a
systematic review and meta-analysis demonstrated that the vaccine was safe and effective
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in asthmatics and could reduce the risk of asthma exacerbation, healthcare use, respiratory
illness, and medications for asthma [164], but Cochrane data showed that the influenza vac-
cine did not reduce influenza-induced asthma exacerbations [165]. Nonetheless, an annual
influenza vaccination is recommended for all individuals who do not have contraindica-
tions, especially persons at a high risk of infection, such as patients with asthma [166].
To date, no vaccinations against RV have been approved for use in humans. At present,
COVID-19 vaccination is internationally recommended for asthmatics [143,167]. It is also
advised that patients who are on biologics for asthma receive a COVID-19 vaccine. Recent
reports have revealed that severe asthma patients on biologic treatment showed optimal
safety and tolerability profiles of mRNA SARS-CoV-2/COVID-19 vaccines and that the
biological treatment did not compromise the effectiveness and durability of the COVID-19-
vaccine-induced immunity [168,169]. However, the long-term effects of COVID-19 vaccines
on asthmatics are still unclear and warrant further investigation.

Recently, several studies have demonstrated the efficacy of bacterial immunotherapy
using oral or mucosal formulations of polybacterial lysates (i.e., MV130 and OM85) for the
prevention of viral wheezing illnesses or SARS-CoV2 infection [170–173]. Interestingly, in a
clinical trial in children with wheezing attacks, sublingual treatment with MV130 showed
safety and clinical efficacy against recurrent wheezing attacks [170]. In addition, using
PMBCs from infants at high risk for asthma development, OM85 treatment primarily mod-
ulated gene networks triggered during innate immune responses to bacterial pathogens
that typically accompany viral pathogens during severe lower respiratory infection [171].
As for SARS-CoV2 infection, OM-85 inhibited SARS-CoV-2 epithelial cell infection in vitro
by downregulating the SARS-CoV-2 receptor, ACE2 expression, and TMPRSS2 transcrip-
tion [172]. The prophylactic intranasal administration of MV130 conferred heterologous
protection against SARS-CoV-2 infection in susceptible K18-hACE2 mice and improved
the immunogenicity of two different COVID-19 vaccine formulations targeting the SARS-
CoV-2 spike (S) protein when inoculated either intramuscularly or intranasally in C57BL/6
mice [173].

As potential therapeutics that could obtain an antiviral effect by targeting the epithelial
barrier, celecoxib, a cyclooxygenase-inhibiting, nonsteroidal, anti-inflammatory drug, and
azithromycin, a macrolide-class antibiotic, have been suggested [77,174]. Macrolides are
the antibiotics most extensively studied for their therapeutic potential for asthma due
to their antimicrobial, immunomodulatory, and possibly antiviral activities [175]. Some
clinical studies have suggested that macrolides such as azithromycin and telithromycin
can reduce asthma exacerbations in adults [174,176–178]. Azithromycin was shown to
augment RV-induced IFN production in human bronchial epithelial cells and decrease RV
replication in vitro [179]. The development of novel macrolides is also under investigation
for their potential effects on IFN responses in airway epithelial cells and antiviral activity
in cells from patients with asthma [180]. Defective airway epithelial cell repair following
insults such as viral infection has been associated with asthma exacerbation. Celecoxib
stimulated the PI3K/Akt-integrin α5β1 axis and restored airway epithelial repair in cells
from children with wheeze [77]. Despite the shortage in supporting data, it has been
postulated that these two drugs are useful for treating asthma exacerbations through their
ability to restore epithelial barrier function. In addition, a TSLP monoclonal antibody, which
targets epithelial-cell-derived cytokines, tezepelumab, could help attenuate exacerbations
of asthma [70], but more evidence for this is needed. These potential therapeutics for viral
infection in asthma are summarized in Figure 3.
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6. Conclusions

People with asthma are more susceptible to viral infections than the general population,
and this susceptibility appears to worsen with the increasing severity of asthma. Many
studies—albeit primarily studies related to RV infection and RSV infection—have reported
that viral infection is closely associated with the onset, progression, and exacerbation of
asthma. The airway epithelial barrier is specifically positioned and wired to respond to
viral infections. Recently, the epithelial cell barrier has attracted attention not only for
its role as a structural barrier but also for its immunological role in the pathogenesis of
asthma and viral-infection-induced exacerbation. Because the epithelial cell barrier is
composed of various types of cells and there are differences in the directions and extents of
immune responses affected by various factors, the related research has shown conflicting
results. However, based on the data so far, asthmatic epithelial cell immunity seems to react
differently from normal epithelial cells under viral infectious conditions, which appears
to play a role in aggravating the disease by inducing self-damage through an excessive
immune response rather than the normal protective function (Figure 1). Therefore, novel
preventive and therapeutic drugs that target the epithelial cell barrier could hold promise
for normalizing the immune responses of these cells, and it is helpful to consider how they
can be applied to epithelial cells locally. Further research on and understanding of airway
epithelial cell immunity, including normal antiviral defenses, are needed to suggest a new
paradigm for asthma management in an era of relentless viral epidemics.
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