
 

  

 

 

 

 

 

 

 

Background 
 

Protein engineering comprises a large number of techniques 
applied to evolve or design protein with desired function [1]. The 
primary objective in any protein engineering experiment is to identify 
specific sequence changes and alter the protein for desired functional 
properties [1,2]. Generally, two main approaches are used to design 
the novel proteins or enzymes: rational design and directed evolution. 
The first approach employs the information of protein structure and 
focuses mutagenesis to modify protein scaffolds (e.g. the active site of 
the biocatalyst). For this approach, the knowledge of the target amino 
acid is necessary and can be provided by visual inspection or in-silico 
prescreening [3]. Both cases depend on the nature of the problem and 
show high success rate only for the prediction of single or double site 
mutations. Indeed, multiple mutations involve cooperative effects on 
protein structure and function that are difficult to predict using the 
current computational screening methods as well. 

A more challenging de novo design or redesign of synthetic 
protein or peptide uses solely structural information and folding rules 
of the proteins [4,5]. Although the method offers broadest possibility 
to design novel fold and function, the success for large proteins is 
limited [6,7]. The reasons rely on the limited number of three-
dimensional protein structures (in particular membrane proteins) and 
the lack of unifying theory for protein folding mechanisms. 
Computational approaches based on microseconds to milliseconds 
atomistic [8-10] molecular dynamics (MD) simulations of protein 
folding have recently given some encouraging achievement for ab-
initio folding of peptides and small proteins. In addition, the 
combined approach of quantum mechanics and molecular dynamics 
methods have shown the superior capability of physical based method 
to design new enzymatic reaction [11].  However, the application of  
 

 
 
 
 
 

 
 

 
 
 

these methods is still limited since they are considerably 
computational time demanding [12]. In this review, the approaches 
based on de novo design, quantum mechanics and molecular dynamics 
will not be covered. The reader can refer to different recent papers 
and reviews on these topics [13-16]. 

The second approach is the so-called directed evolution. The 
method is one of the most powerful approaches to improve or create 
new protein function by redesigning the protein structure [17]. It can, 
for example, improve activity or stability of biocatalyst under 
unnatural conditions (e.g. the presence of organic solvent) by 
accumulating multiple mutations [17,18]. Directed evolution involves 
multiple rounds of random mutagenesis or gene shuffling followed by 
screening of the mutant library [19]. The preliminary knowledge of 
protein structure is not required in directed protein evolution. 
However, the structural information can focus and restrict the 
approach to specific subsets of amino acids (e.g. active site residues). 
A common problem of directed evolution methods is the limited 
distribution of generated sequence diversity that reduces the efficient 
sampling of functional sequence space [19,20].  

In summary, rational design via site directed or saturation 
mutagenesis and directed evolution via random mutagenesis are used 
as key tools in protein engineering. In both approaches, the sequence 
diversity is directly generated as point mutation, insertion or deletion 
within a single parental gene. Consequently, the improvement in the 
quality of rationally designed libraries and techniques for sequence 
space exploration and diversity generation is critical for future 
advances.  

The combination of experimental and computational methods 
holds particular promise to tailor the proteins for tasks not yet 
exploited by natural selection [21,22]. In fact, most of the 
computational tools or web servers for directed evolution utilize, 
when it is possible, structural data to assist library generation 
processes. Since it is impossible to test more than a very small fraction 
of vast number of possible protein sequences, it urges to have a 
directed evolution strategy for generating sequence libraries with the 
highest chance to have variants with desired enzymatic properties. 
Such libraries can be designed by applying the current knowledge of 
the protein response towards mutations and sequence-structure-
function relationships.  
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Thermo stability, solvent effects (pH, ionic strength and co-

solvents stability or tolerance) and enzymatic activity (as improvement 
in both binding affinity and catalytic activity) are the properties 
commonly targeted by protein engineering experiments. The first two 
properties are subtle to predict cause they usually involve amino acids 
distributed on the whole protein structure. For the enzymatic activity, 
different mutagenesis studies indicate that mutations, affecting certain 
enzyme properties (as substrate specificity, enantioselectivity and new 
catalytic activities) are mostly located into or near the active site [21]. 
Rational design approach is successful in targeting relevant active site 
residues for site-directed mutagenesis but less effective for important 
residues located in the second coordination sphere of the active site. 
For these cases, the combination of random mutagenesis and 
computer-aided protein directed evolution (CAPDE) approaches can 
provide a winning strategy. The application of computational 
methods in conjunction with directed evolution offers the exciting 
promise to generate libraries having high frequency of active and 
improved variants [23].  

In this review, for sake of clarity, the CAPDE approaches have 
been divided in four major areas, schematically represented in Figure 
1. The first one comprises tools used for characterizing the library 
generated by mutagenesis methods mainly through the statistical 

approaches. The second and third areas are represented by tools that 
consider the evolutionary and structural information of the target 
protein to design the focused library. Multiple sequence or structure 
alignment (MSA) is the key approach used by these tools to identify 
variable or conserved positions in the target protein. The fourth part 
is dedicated to the tools for the prediction of mutational effects on 
protein structure and function. These tools and/or web servers are 
based on machine learning, statistical or empirical approaches and 
predict mutational effect on protein stability and/or activity by 
estimating the relative free energy changes [24].  

This review is divided in four parts following the division of 
CAPDE approaches.  It aims to provide the concise information 
about currently available CAPDE methods to assist and design 
directed evolution experiments with the final goal to enhance the 
probability of identifying mutants with desired properties. In 
particular, the reader will find a short overview and classification to 
the novel database, web server and other computational tools that can 
provide relevant information for the interpretation of experimental 
results and have been developed in the last few years in the field of 
molecular modeling of protein structure. Finally and as previously 
mentioned, we are not going to take in consideration the methods that 
involve physical approach based on QM/MM or MD simulations. 

Figure 1. Schematic representation of four CAPDE approaches (as the quarters of the circle): (1) generated diversity and library size (in red), (2) evolutionary 
conservation based focused library (in green), (3) structure-based focused library (in purple) and (4) mutational effects in protein (in cyan). The servers, tools 
and databases associated with the approaches are shown in boxes.  
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Generated diversity and library size 
 

The unbiased diversity generation followed by the screening of a 
statistically meaningful fraction of generated sequence space are 
fundamental challenges in directed evolution experiments [25]. The 
directed evolution strategy comprises two key steps: 1) generate 
diverse mutant libraries and 2) screen to identify the improved protein 
variants. The success of a directed evolution methods depends upon 
the quality of the mutant library. The challenges and advances to 
generate the functionally diverse libraries have been reviewed in past 
year [20,26]. Computational tools can assist directed evolution in 
these two steps by in-silico analysis and screening of expected protein 
sequence space sampled by generated libraries (summarized in Table 
1). Publicly available web servers, MAP  (Mutagenesis Assistant 
Program) [25,27] and PEDAL-AA [28] were developed to estimate 
the diversity at protein level in the library generated by random 
mutagenesis method.   

MAP [25] takes nucleotide sequence as input and assists to design 
better directed evolution strategy by providing the statistical analysis 
of random mutagenesis methods on protein level. The capabilities of 
MAP was recently extended in MAP2.03D [27] server that predicts 
the residue mutability resulted by the mutational bias of random 
mutagenesis methods and correlates the generated amino acid 
substitution patterns with the structural information of the target 
protein. In this way, the server offers the possibility to analyze at 
sequence and structural level the effects of the limited mutational 
preferences of random mutagenesis methods [25]. The capability of 
the server was illustrated by the in-silico screening of different 
enzymes and the predicted results were in agreement with the 
experimental results [27,29,30]. Figure 2 shows an example of the 
MAP2.03D output for active site residues of N-acetylneuraminic acid 
using epPCR method [27]. 

PEDAL-AA returns statistics, at amino acid level and for libraries 
generated by epPCR method, after providing the nucleotide sequence  

Figure 2. a) The MAP2.03D analysis for the amino acid diversity generated by balanced epPCR (Taq (MnCl2, G=A=C=T) method. Y-axis shows the original amino 
acid species and the X-axis shows the amino acid substitution patterns. The MAP2.03D analysis is restricted to the active site residues (Ala11, Ser47, Thr48, 
Tyr137, Ile139, Lys165, Thr167, Gly189, Tyr190). For this analysis, the amino acids are grouped into four classes according to their chemical nature (charged, 
neutral, aromatic and aliphatic) with stop codon ((structure disrupting) and glycine/proline (helix destabilizing) as separate classes. The probabilities of amino 
acid substitutions were mapped on the protein sequence and structure (PDB Id: 1NAL) of N-acetylneuraminic acid and represented in b and c, respectively. b) 
The Jmol [31]  applet is used for the visualization of amino acid substitution patterns using RWB (Red-white-blue) color gradient scheme and active site 
residues as sticks. Y-axis shows sequence id, PDB id, amino acid name and in c) secondary structure elements (T: hydrogen bonded turn and bend, *: loop or 
irregular structure), d) normalized Cα b-factor to differentiate flexible (F) and rigid (R) residues, and e) relative solvent associability to identify exposed (E) or 
buried (B) residues.  
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with library size, mutation rate, indel rate and nucleotide mutation 
matrix [28]. CodonCalculator and AA-Calculator are two algorithms 
developed by Patrik et al. to select an appropriate randomization 
scheme for library construction [28]. Two servers GLUE-IT and 
GLUE estimate amino acid diversity and completeness in the 
generated library. Finally, the TopLib [32] web server assists to design 
saturation mutagenesis experiment by predicting the size or 
completeness of the generated library with the user-defined codon 
randomization scheme using probabilistic approach.  

 
Evolutionary conservation based focused library 
 

Multiple sequence or structure alignment (MSA) is the most 
common approach to identify functionally significant or evolutionary 
variable regions in protein [34]. In CAPDE, several servers and 
databases use MSA with the physical and structural information of 
protein or protein superfamilies. Table 2 contains a list of the tools 
considered in this review. ConSurf 2010 [35] server provides the 
evolutionary conservation profiles of protein or nucleic acid sequence 
or structure by first identifying the conserved positions using MSA 
and then calculating the evolutionary conservation rate using an 
empirical Bayesian inference. ConSurf-DB [36] database make 
available the evolutionary conservation profiles of the available 
protein structures pre-calculated by ConSurf web server. The 3DM 
[37] server performs structure based multiple sequence alignments 
(MSA) of the members of a protein superfamily and provides the 
consensus data combined with other useful information, like 
interactions and solvent accessibility, about amino acid positions in 
protein with published mutation data.  

For more focused analysis of protein hotspots or amino acid 
patches, three interesting tools are available as standalone programs or 
web servers.  The Joint Evolutionary Tree (JET) method is more 
tuned to identify the conserved amino acids patches on protein 
interface by taking into account the physical-chemical properties and 
evolutionary conservation of the surface residues [38]. The predicted 
protein interaction sites or core residues might be used in site-specific 
mutagenesis experiments. HotSprint [39] database provides 
information of the hotspots in protein interfaces using the sequence 
conservation score (calculated by Rate4Site algorithm [40]) of the 
residues and their solvent accessible surface area. HotSpot Wizard 
predicts the suitability of the mutagenesis of the amino acids in or 
near the active site using their evolutionary conservation information 
[41]. The server takes protein structure as input and provides a 
platform to experimentalists to select target amino acids for site 
directed  mutagenesis to improve enzymatic properties like substrate 
specificities, activity and enantioselectivity [41]. MAP2.03D [27] 

(Table 1, see previous paragraph) also provides the information of 
mutagenic hotspots generated due to the mutational preferences of the 
random mutagenesis methods with sequence and structural 
information of protein. Selecton [42] web server predicts the selective 
forces at each amino acid position in protein. The server performs the 
codon-based alignment on a set of the homologous nucleotide 
sequences and uses the ratio of amino acids altered to silent 
substitutions (Ka/Ks) to estimate both the positive (>1) and 
purifying (<1) selections. These values are then projected on the 
primary sequence or, if available, on the tertiary structure of the 
protein to detect variability in biologically significant sites. These sites 
may be interpreted as being the consequences of molecular 
adaptations, which confers an evolutionary advantage to the organism. 

A series of protein superfamily specific databases (see Table 2), 
containing selected enzymes relevant to protein engineering 
applications, have been introduced by Pleiss et al.. Functionally 
relevant residues are annotated followed by MSA of protein sequences 
or structures of the superfamily with published protein mutation data 
to derive sequence-structure-function relationships [43-47]. PMD 
[48] (Protein Mutation Database), ProTherm [49-51] and 
MuteinDB [52] are literature based databases of protein and its 
mutant information that are integrated with sequence and structure 
information. ProTherm [49-51] database also includes experimental 
thermodynamic and kinetic parameters (e.g. Gibbs free energy changes 
of unfolding, heat capacity changes, and protein activities) of wild-
type and their mutants. MuteinDB [52] stores and provides enzyme 
mutant data with their catalyzed reaction, kinetics (Km and Kcat) and 
experimental conditions. The database has a user-friendly and flexible 
query system to use reaction, substrate, mutation or inhibitor to fetch 
the information. 

 
Structure-based focused library 
 

The structure based approaches assist rational design and random 
mutagenesis by predicting regions in the protein responsible for 
stability and activity [2,58]. The computational tools as 
3DLigandSite [59], ProBiS [60,61] (Protein Binding Site) and 
SiteComp [62] predict ligand binding site in protein [63]. All these 
tools, in the absence of crystal structure, use the homology model of 
the target protein and aid the design and tune ligand binding site by 
identifying key residues for activity and their molecular interactions 
properties. 3DLigandSite [59] performs alignment and clustering of 
the homologous structures to predict ligand binding site. ProBiS 
[60,61] uses MSA to detect structurally similar binding site in protein 
and also perform local structural pairwise alignment to identify 
functionally  relevant  binding  regions.  The pre-calculated results of  
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https://muteindb.genome.tugraz.at/muteindb-web-2.0/faces/init/index.seam
https://muteindb.genome.tugraz.at/muteindb-web-2.0/faces/init/index.seam
https://muteindb.genome.tugraz.at/muteindb-web-2.0/faces/init/index.seam


ProBiS analysis are available via ProBiS-database [64] as a repository 
of structurally similar binding sites. SiteComp [62] characterizes 
protein binding site using molecular interaction fields based 
descriptors. The server evaluates differences in similar binding sites, 
identification of sub-sites and residue contributions in ligand binding. 
TRITON [65,66] provides the single platform to protein engineers 
to model mutants, perform protein-ligand docking and calculate 
reaction pathways. In this way, these methods facilitate to study the 
properties of protein-ligand complexes.  

The knowledge of molecular interactions, contribute to relevant 
free energy barrier, and the design of surface charge distribution, can 
help to understand the molecular basis of kinetic stability and 
efficiently modulates the enhancement of protein stability [58,67]. 
PIC (Protein Interaction Calculator) server [68] calculates inter or 
intra protein interactions using published criteria integrated with 
solvent accessibility and residue depth calculations. The web server, 
COCOMAP (bioCOmplexes COntact MAPs) [69] uses 
intermolecular interactions to analyze interfaces in biological 
complexes. The identification of exposed and buried amino acids also 
helps to gain insight into protein stability and to explore the 
mutational effect on protein. DEPTH [70] employ distance 
information between residues and bulk solvent to predict protein 
stability, conservation or binding cavity based on information about 
residue depth and solvent accessibility. SRide [71] provides residual 
contribution to protein stability using interactions, evolutionary 
conservations and hydrophobicity of their neighboring residues. Patch 
finder plus [72] identifies residues that contribute to positively charge 
patches on protein surface and might interact with DNA, membrane 
or the other protein. ConPlex [73] utilizes protein solvent accessible 
surface area to identify surface or interface residues and assign residue 
specific conservation score on sequence and structure of the protein 
complex. The server also provides the pre-calculated ConPlex results 
of known protein complexes as repository.   

Recent studies have suggested that protein flexibility and protein 
functions are strongly linked [24,74,75]. Protein flexibility plays an 
important role in both catalytic activity and molecular recognition 
processes. The effect of protein flexibility is particularly relevant in 
protein from extremophiles to balance rigidity required for stability 
and flexibility necessary for activity [76-78]. In addition, numerous 
proteins have regions, adopt different conformation under different 
conditions, allowing them to take part in cellular and molecular 
regulation [24,79]. The residue flexibility in protein has been taken in 
account to describe a variety of protein properties including relation 
with thermal stability, catalytic activity, ligand binding (induced fit), 
domain motion, preferential solvation and molecular recognition in 
intrinsically disordered protein system. The Debye–Waller factor, 
reported in crystallographic atomic resolution structures, provides a 
rough estimation of local residue flexibility [80] and different servers 
provide this information as an indicator (for example, in MAP2.03D 
server [27]). If the crystallographic structure is not available then 
different tools can be used to estimate flexibility profiles using 
different approaches. 

The RosettaBackrub [81] server can generate protein backbone 
structural variability as consequence of amino acid variations [82] that 
can be used to design sequence libraries for experimental screening 
and to predict protein or peptide interaction specificity. The server 
generates Rosetta scored modeled structures for variant with single or 
multiple point mutations in monomeric proteins. It also generates 
near-native structural ensembles of protein backbone conformations 
and sequences consistent with those ensembles. Finally, it can predict 
sequences tolerated by proteins or protein interfaces using flexible 
backbone design methods. The tCONCOORD [83] method 

generates conformational ensembles to gain insight in the 
conformational flexibility and conformational space of the protein. 

FlexPred [84] specially predicts residue flexibility using pattern 
recognition approach to identify residue positions in conformations 
switches integrated with their evolutionary conservation and 
normalized solvent accessibility (if structure is available) as the 
Support Vector Machine (SVM) predictors.  

Different simplified methods have been proposed to identify local 
flexibility or large scale motions in protein at coarse-grained level [85-
87] Many of these methods are based on Gaussian network model 
(GNM) [88] or its extension, the anisotropic network model (ANM) 
[89] to study protein dynamics using Normal Mode Analysis (NMA) 
(see the review [90] for a general overview about these topics). Table 
3 shows the tools available to analyze conformational flexibility on 
protein structure (for more details see [91]). ElNemo [92] and 
WEBnb@ [93]  servers are reported here to complete the 
information about NMA based tools. Both the servers perform NMA 
using coarse grain model to analyze the conformational changes in 
protein. FlexServ [94] server estimates protein flexibility using three 
different coarse-grained approaches: 1) discrete molecular dynamics 
(DMD), 2) normal mode analysis (NMA) and 3) Brownian dynamics 
(BD). The server characterizes protein flexibility by analyzing 
different structural and dynamic properties of the protein such as 
structural variations, essential modes, stiffness between the interacting 
residues and dynamic domains and hinge points. Different tools are 
available to identify hinge bending residues on large-scale protein 
motions. HINGEprot [95] server predicts hinge motion in protein 
using coarse grained GNM and ANM model. DynDom [96] use a 
rigorous  approach to describe domain motion. The method 
determines hinge axes and hinge bending residues using two 
conformations of the protein. A recent addition to DynDom is the 
ligand-induced domain movements in enzymes database[97]. 
Furthermore, the Dyndom3D [98] server provides a more advanced 
and generic tool that can be used to study any kind of polymer.  

The reader should be noticed that the connection between protein 
flexibility and function has been investigated theoretically and 
experimentally only in the last few years [87,99-101]. The methods 
based on this approach provide a qualitative estimation of protein 
dynamical properties but they do not take into account many effects 
(such as direct solvent effects) that are important for protein 
functionality. Till now, the atomistic simulation (MD or QM/MD) 
is the best approach to quantitatively study protein flexibility and 
dynamics [8,99,102]. Nevertheless, even to this level of accuracy, the 
connection between flexibility and functionality is still puzzling. In 
addition, the simulation approaches are still time consuming and 
unpractical for high-throughput modeling and analysis of protein 
structural dynamics. 

 
Mutational effects in protein 
 

For biotechnological applications, the enhancement of protein 
thermal stability or tolerance is a common requested task in protein 
engineering [107]. Highly stable structure correlates with well-packed 
highly compact structure and has increased tolerance to mutation 
because mostly the mutations are deleterious i.e. related to instability 
of protein [108]. Generally the effect of the mutation on protein has 
been calculated by the free energy differences between two states of 
protein like thermodynamic stability as change in free energy in folded 

and unfolded state (ΔΔG). The mutational effect has been predicted 
by using different machine learning and selection methods (as SVM, 
Decision Tree (DT) or Random Forest (RE) [109]) for classification 
or  regression  of  data  or  by  using  statistical  or  empirical methods  
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http://www.prc.boun.edu.tr/appserv/prc/hingeprot/
http://fizz.cmp.uea.ac.uk/dyndom/3D/


 
taking into account the atomic interactions or structural properties 
like solvent accessibility. Most of the servers based on these 
approaches use available information of mutational effects (fetched 
from databases like PMD [48], ProTherm [51]) to predict the effect 
of new substitutions. Table 4 summarizes the available tools to 
predict mutational effects on protein stability and activity using 
different methods. I-Mutant2.0 [110] and MUpro [111] are SVM 
based methods to predict stabilizing or destabilizing amino acid 

substitutions based on free energy change (ΔΔG). iPTREE-STAB 
[112] server employ a DT approach to predict the effect of single 
point mutations on protein stability considering physicochemical 
properties and contact information of the substituted amino acid with 
their neighboring amino acids. WET-STAB [113] server performs a 
similar prediction with an additional feature to predict protein 
stability changes upon double mutations from amino acid sequence. 
ProMAYA [114] uses RF machine learning algorithm to predict 
protein stability based on free energy difference. MuD (Mutation 
detector) uses the same algorithm for the classification of amino acid 
substitutions as neutral or deleterious by taking into account 
structure- and sequence-based features as solvent accessibility, binding 
site, sequence identity [115]. SDM (Site Directed Mutator) [116] 
and PopMuSic2.1 [117] are statistical derived force field potential 
based methods for protein stability prediction using relative free 
energy differences. In PopMuSic2.1 [117], however, the parameters 
of statistical derived force field potential depend on protein solvent 
accessibility. FoldX plugin [118] and PEAT-SA [119] program suite 
utilize empirical force field to calculate, from three-dimensional 
protein or peptides structures, the relative free energy difference 
determined by the changes of interactions in the mutated structures. 
CUPSAT [120] estimates the effect of mutations on the protein 
stability using protein environment specific mean force potentials. 

The potentials are derived from statistical analysis of protein structure 
data sets. AUTO-MUTE [121,122] provides either energy based or 
machine learning methods for the prediction of protein stability by 
providing protein structure, mutation and experimental condition. 
SIFT (Sorts Intolerant From Tolerant) [123] server helps to explore 
the effect of mutation on protein function using sequence homology 
approach. The multiple alignment information is used to identify 
tolerated and deleterious substitutions in the query sequence. 

A quantitative in-silico screening of the virtual libraries based on 
the cooperative effect of multiple mutations to the stability and 
functionality is still out of reach. However, the current methods allow 
a qualitative indication of possible mutation sites that can increase the 
chances to get higher population of stable and functionally active 
variants in the library. The available knowledge of mutational effects 
on protein provided by all these CAPDE approaches help to limit 
library size and focus to generate unpredictable substitutions that may 
lead to large effects. These libraries based on in-silico screening 
generally show a higher success rate when the starting protein has 
sufficient stability. 

 
Summary and Outlook 
 

In this review, the recent additions to the CAPDE arsenal of 
computational tools, servers and databases have been briefly reviewed. 
The rapid accumulation of the knowledge on protein structures and 
sequence-structure-function relationships foresees the continuous 
amelioration of these methods. In particular, machine-learning 
approaches, in which the volume of data is the heuristic key to access 
the hidden knowledge, statistical based force fields for coarse-grained 
approaches will surely benefit this trend. These approaches are not 
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http://210.60.98.19/WETr/wet.htm
http://bental.tau.ac.il/ProMaya/
http://mud.tau.ac.il/
http://mordred.bioc.cam.ac.uk/sdm/sdm.php
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http://foldx.crg.es/
http://enzyme.ucd.ie/PEATSA/Pages/FrontPage.php
http://cupsat.tu-bs.de/
http://proteins.gmu.edu/automute/
http://sift.jcvi.org/


only the convenient aids to support lab experiments but also the 
workbench for heuristically blueprinting novel molecules. In addition, 
the availability of the low cost and high performance computers will 
soon transform currently expensive physically based simulations to the 
convenient and very accurate high throughput computational tools. 
This will make possible to predict structural stability and folds of 
small or medium sized proteins and will open a new working style 
paradigm in protein engineering. In addition, physical based 
approaches have recently shown promising results to understand 
enzyme activity [124,125].  
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