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Background: The current scoring systems could not predict prognosis after

endovascular therapy for peripheral artery disease. Machine learning could make

predictions for future events by learning a specific pattern from existing data. This study

aimed to demonstrate machine learning could make an accurate prediction for 2-year

major adverse limb event-free survival (MFS) after percutaneous transluminal angioplasty

(PTA) and stenting for lower limb atherosclerosis obliterans (ASO).

Methods: A lower limb ASO cohort of 392 patients who received PTA and stenting

was split to the training set and test set by 4:1 in chronological order. Demographic,

medical, and imaging data were used to build machine learning models to predict 2-year

MFS. The discrimination and calibration of artificial neural network (ANN) and random

forest models were compared with the logistic regression model, using the area under

the receiver operating curve (ROCAUC) with DeLong test, and the calibration curve with

Hosmer–Lemeshow goodness-of-fit test, respectively.

Results: The ANN model (ROCAUC = 0.80, 95% CI: 0.68–0.89) but not the random

forest model (ROCAUC = 0.78, 95% CI: 0.66–0.87) significantly outperformed the

logistic regression model (ROCAUC = 0.73, 95% CI: 0.60–0.83, P = 0.01 and P =

0.24). The ANN model the logistic regression model demonstrated good calibration

performance (P = 0.73 and P = 0.28), while the random forest model showed poor

calibration (P < 0.01). The calibration curve of the ANN model was visually the closest

to the perfectly calibrated line.

Conclusion: Machine learning models could accurately predict 2-year MFS after PTA

and stenting for lower limb ASO, in which the ANN model had better discrimination

and calibration. Machine learning-derived prediction tools might be clinically useful to

automatically identify candidates for PTA and stenting.

Keywords: machine learning, lower limb atherosclerosis obliterans, endovascular therapy, prognosis prediction,

major adverse limb events
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INTRODUCTION

Peripheral arterial disease (PAD), frequently caused by
atherosclerosis, could progress to arterial stenosis or occlusion
and lead to chronic or acute limb ischemia. Lower limb
arteriosclerosis obliterans (ASO) is the main subtype of PAD,
characterized by claudication in the early stage, and rest pain and
non-healing wound in the end stage, which is called critical limb
ischemia (CLI). As the population ages, the morbidity of ASO
is increasing and the incidence rate of CLI was estimated to be
500–1,000 per year per million in a European or North American
population (1). Currently, open bypass surgery and endovascular
intervention are the main treatment options for ASO-related CLI
or severe claudication. With the advantage of minimally invasive
and rapid recovery, endovascular intervention is considered the
first choice for patients with a high risk of complications (2).

The Rutherford and Fontaine scoring systems were firstly
established in the 20th century to assess the severity of limb
ischemia before the age of “endovascular.” These scoring systems,
though still widely used, could afford limited information about
prognosis after revascularization. In 2014, the Society of Vascular
Surgery proposed the wound, ischemia, foot infection (WIFI)
scoring system to evaluate 1-year limb amputation risk and
revascularization benefit (3). TheWIFI system is widely accepted
and has expanded to predict the prognosis of revascularization
(4, 5). The Trans-Atlantic Inter-Society Consensus committee
(TASC) and the recent Global Limb anatomic Staging System
(GLASS) grading systems, on the other hand, focused on the
anatomic characteristics and could suggest option and technical
success rate of a certain type of intervention (2). Nowadays,
endovascular intervention techniques are quickly developing and
are increasingly applied for the treatment of lower limb ASO,
even in TASC C and D subgroups. Healthcare providers of
PAD have a growing need for an easily interpretable tool that
could comprehensively consider factors of demography, limb
ischemia, anatomy, and intervention to predict prognosis and
further identify candidate patients for endovascular intervention.
In clinical practice, percutaneous transluminal angioplasty (PTA)
with selective stenting is the main strategy of endovascular
intervention iliac, superficial femoral, popliteal and infrapopliteal
stenotic, and occlusive lesions. Stenting is generally considered
inevitable for those with severe residual stenosis, obvious
dissection after balloon angioplasty, and thrombosis. The
prognoses after stenting vary between patients and might be
influenced by systemic factors, the severity of ischemia, lesion
characteristics (like chronic total occlusion and calcification), and
stent parameters (diameter and total length). Unfortunately, the
current scoring systems could hardly afford a comprehensive
consideration of the overall effect of these factors. A practitioner

could also hardly make an accurate prediction of prognosis after

stenting even though he or she had a wealth of experience in
vascular surgery. Here, we aimed to use machine learning to

automatically create an algorithm to calculate the probability
of prognosis after receiving lower limb PTA with stenting.
This might help identify candidates for PTA and stenting, and
discriminate patients unsuitable for endovascular intervention
and avoid inappropriate stent placement.

Machine learning technology could make predictions for
future events by learning a specific relationship pattern between
multiple variables from existing data. It has been demonstrated
that machine learning could create algorithms for accurate
prediction for PAD or cardiovascular events based on clinical
data ofmultiple dimensions (6, 7). In this study, we decided to use
two different modern supervised learning algorithms to train and
validate models for prediction of 2-year major adverse limb event
(MALE)-free survival (MFS) after PTA with stenting for lower
limb ASO. One of the methods is called Random forest, a popular
ensemble learning method that could significantly reinforce
the predictive ability of classic decision tree-based algorithm.
Another method is called artificial neural network (ANN), which
could train an optimized prediction mode by automatically
learning weights of interconnecting neurons.We compared these
two models with the standard multivariate logistic regression
model to find out whether machine learning could bring a
significant improvement of predictive ability for prognosis.

MATERIALS AND METHODS

Study Population
This study was performed based on a retrospectively enrolled
cohort of patients who were diagnosed with lower limb ASO and
received primary successful treatment of PTA with stenting from
January 1st, 2016 to December 30th, 2017 in our center. The
patients finally included in the study met the following criteria:
(1) diagnosed as lower limb ischemia due to arterial stenosis
or occlusion and the etiology was atherosclerosis obliterans;
(2) Rutherford’s grade of 2–6; (3) receiving PTA and stenting
successfully for the first time; (4) target lesion for stenting
located in common iliac artery, external iliac artery, superficial
femoral artery, or popliteal artery; and (5) complete baseline
data and known status of survival and lower limb at 2 years
postsurgery. Exclusion criteria included: (1) any serious health
events which might mislead the assessment of lower limb
function including, but not limited to heart failure, symptomatic
cerebral apoplexy, and lower limb fracture before admission;
(2) lower limb ischemia due to other etiologies including, but
not limited to arterial embolism, angiitis, and arterial aneurysm
before admission; (3) diagnosed with malignancy at baseline; and
(4) any surgery or endovascular intervention for the target lower
limb artery performed before.

This study was approved by the Ethical Committee of
Zhongshan Hospital, Fudan University, China. The informed
consent was waived due to the retrospective nature of this study.
It was performed in agreement with the ethical principles of the
Declaration of Helsinki.

Baseline Information and Endpoint
Data collected from the medical records involved demographic
data, risk factors of peripheral artery disease, cardiovascular and
cerebrovascular disease history, blood examination, namely,
creatinine, fibrinogen, neutrophil-lymphocyte ratio, and platelet-
lymphocyte ratio. The features of the treated limb included
ischemia status, ankle-brachial index (ABI), and targeted
lesion properties, namely, location, type, length, calcification,
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and infrapopliteal runoff based on computed tomography
angiography (CTA) and intraoperative angiography. The
peripheral arterial calcium scoring system (PACSS) was applied
to access calcification (8). The endpoint was MALE or death
in 2 years after intervention. Determination of MALE should
meet one of the following criteria: (1) re-intervention for the
target lesion, (2) above-ankle amputation (major amputation)
in the treated limb, and (3) recurrence of claudication, rest
pain or tissue loss in the treated limb with ABI decreased >0.2.
Two groups of clinical staff collected baseline information and
endpoints, respectively, and independently.

Treatment Protocol
Ankle-brachial index (ABI) test and lower limb CTA were
performed regularly to determine the target lesion location
and the access route. During the endovascular therapy, an
arteriogram was performed to evaluate the target lesion type
and calcification grade. Guidewire and catheter were used to get
through the lesion using antegrade or/and retrograde approach.
Once the true lumen of the distal runoff was confirmed, balloon
dilation and stenting were performed to reconstruct the target
lesion with or without debulking. The indication of selective
stenting included residual stenosis after balloon dilation >30%,
obvious or flow-limiting dissection, and thrombosis. The length
of the target lesion for stenting was measured. Arteriogram was
then performed to confirm the vascular patency and ensure no
thrombosis, distal embolism or flow-limited dissection existed. It
should be noted the patients who received only balloon dilation
or debulking without stenting were not included in this study.
After the intervention, dual-antiplatelet was regularly used, and
anticoagulation was selectively used in patients with thrombosis
lesions. The compliance of dual-antiplatelet was recorded for
each patient during the follow-up, and poor compliance was
defined as forgetting to take medicine >2 in 2 weeks or
unwillingness to insist on taking medicine.

Machine Learning
Machine learning refers to computational methods that could
make explanations and predictions for future events by learning
a specific pattern from existing data. In this study, two popular
supervised machine learning algorithm methods called random
forest and ANN were used to train models to predict 2-year
MFS after PTA and stenting for lower limb ASO. A traditional
multivariate logistic regression was used as a standard method.
The development of machine learning models was briefly shown
in Figure 1.

The whole cohort that met the inclusion and exclusion
criteria was split into the training set and the test set by 4:1
in chronological order. The machine learning models were
trained and cross-validated validated (for the ANN model) on
the training set, and the test set was used to evaluate the
discrimination and calibration of these trained models.

Model Training
The variables for model training were screened through the
univariate logistic regression analysis in the training set. Those
with an odds ratio P-value <0.1 were considered as candidate

variables for the training of the machine learning models. Any
variable which was considered clinically important to prognosis
was also chosen for model training even though the odds ratio
P-value was >0.1.

The ANN model used in this study was also called multilayer
perceptrons. The structure of the model consists of an input layer
that receives and transfers variable values, one or more hidden
layers of neurons processing the signals from the previous layers
through weights in a non-linear pattern, and an output layer
receiving signals from the hidden layers to calculate a probability
value. The error between the probability value and the true value
calculated by the loss function is backpropagated through the
neural network and update weights of neurons in the hidden
layers during each epoch. Finally, the optimal ANN model was
trained. In our study, the loss function was binary cross-entropy
and the optimizer was Adam. Besides, L2 regularization and
dropout methods were added to reduce overfitting. A ten-fold
cross-validation was applied in the pretraining phase of the
model to monitor the overfitting and help to determine the
proper number of the epoch, layer, and neuron for the final
training. The final ANN model was trained using the whole
training set with optimized parameters.

Random forest is a popular ensemble learning model
introduced by Leo Breiman and Adele Cutler (9). This model
adds “random” into the bagging method to reinforce the
classification and generalization ability of the decision tree-based
classifier algorithm. The random forest grows many decision tree
classifiers to which samples and variables are randomly assorted
and there is no pruning during the growth. Each tree votes for
a classification, and the forest finally chooses the classification
having the most votes. Furthermore, the random forest model
could give importance to each variable after model training.
The importance value of each variable is calculated according to
error comparison between specific variable values in “out of bag”
data before and after random rearrangement. It is noteworthy
that cross-validation is not needed in the training phase due to
the nature of the random forest algorithm. In our study, the
parameters were set as following: number of trees (n_estimators)
= 100, criterion = gini, max feature = square root of variable
number, max depth = not limited, min samples split = 2, min
sample leaf= 1, and max-leaf nodes= not limited.

The traditional multivariate logistic regression model was set
as a standard method to test the performance of the ANN and
random forest model. It was trained on the training set using
the same variables as the other models and then applied for
prediction in the test set.

Model Testing
The discrimination of the models was assessed using the area
under the receiver operating curve (ROCAUC) as metrics and
the ROCAUC was compared using the DeLong test. Sensitivity
and specificity at a cutoff value of 0.5 were also used as metrics.
The calibration was visually assessed by depicting the curve of
the predicted and the observed probabilities and assessed for
significance using Hosmer–Lemeshow test.

The algorithms of training, validation, and test of machine
learning models were written using Python language (Version
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FIGURE 1 | A brief summary of study design and machine learning model development. MALE, major adverse limb event.
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FIGURE 2 | Study flow diagram. PTA, percutaneous transluminal angioplasty.
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TABLE 1 | Baseline characteristics of the training set.

Baseline characteristics Total, n = 327 MOD, n = 132 MFS, n = 195 P-value

Age (years) (mean ± SD) 71.6 ± 9.7 73.4 ± 9.5 70.4 ± 9.6 0.005

≤80, n (%) 260 (79.5%) 96 (72.7%) 164 (84.1%) 0.012

>80, n (%) 67 (20.5%) 36 (27.3%) 31 (15.9%) 0.012

Gender (male), n (%) 271 (82.9%) 104 (78.8%) 167 (85.6%) 0.107

Risk factors

Hypertension, n (%) 244 (74.6%) 93 (70.5%) 151 (77.4%) 0.155

Diabetes mellitus, n (%) 132 (40.4%) 58 (43.9%) 121 (37.9%) 0.279

Hyperlipidemia, n (%) 91 (27.8%) 39 (29.5%) 52 (26.7%) 0.569

Myocardial infarction, n (%) 77 (23.5%) 29 (22.0%) 48 (24.6%) 0.580

Stroke, n (%) 55 (16.8%) 22 (16.7%) 33 (16.9%) 0.952

Current smoker, n (%) 77 (23.5%) 34 (25.8%) 43 (22.1%) 0.438

Blood examination

Fibrinogen (mg/dl) [median (IQR)] 309.0 (263.5–387.0) 312.0(261.0–404.0) 307.0 (265.0–379.5) 0.439

Creatinine (µmol/L) [median (IQR)] 86.0 (72.0–107.5) 86.0 (71.0–110.0) 85.0 (73.0–104.0) 0.813

NLR [median (IQR)] 3.8 (2.5–5.6) 3.8 (2.3–5.6) 3.8 (2.5–5.5) 0.881

PLR [median (IQR)] 135.1 (100.6–201.1) 127.4 (92.9–204.9) 136.3 (103.6–190.0) 0.537

Target limb

Rest pain or wound 149 (45.6%) 70 (53.0%) 79 (40.5%) 0.026

ABI 0.48 ± 0.20 0.43 ± 0.18 0.52 ± 0.21 <0.001

Target lesion location

Iliac 109 (33.3%) 37 (28.0%) 72(36.9%) 0.078

Femoral-popliteal 181 (55.4%) 83 (62.9%) 98 (50.3%) 0.078

Mixed 37 (11.3%) 12 (9.1%) 25 (12.8%) 0.078

Target lesion length 10.0 (6.0–20.0) 12.5 (8.0–24.5) 8.5 (5.0–16.0) <0.001

Target lesion type

Chronic total occlusion 226 (69.1%) 98 (74.2%) 128 (65.6%) 0.251

Stenosis 90 (27.5%) 30 (22.7%) 60 (30.8%) 0.251

Thrombosis 11 (3.4%) 4 (3.0%) 7 (3.6%) 0.251

PACSS

0–3 275 (84.1%) 88 (66.7%) 187 (95.9%) <0.001

4 52 (15.9%) 44 (33.3%) 8 (4.1%) <0.001

Infra-popliteal runoff

No patent tibial artery 11 (3.4%) 6 (4.5%) 5 (2.6%) 0.008

1 patent tibial artery 84 (25.7%) 43 (32.6%) 41 (21.0%) 0.008

2 patient tibial arteries 84 (25.7%) 38 (28.8%) 46 (23.6%) 0.008

3 patent tibial arteries 148 (45.2%) 45 (34.1%) 103 (52.8%) 0.008

Intervention

Total stent length [median (IQR)] 12.0 (8.0–25.0) 15.0 (10.0–28.0) 12.0 (8.0–23.0) 0.021

Minimal stent diameter 6.3 ± 1.4 6.0 ± 1.4 6.6 ± 1.3 <0.001

Debulking 21 (6.4%) 11 (8.3%) 10 (5.1%) 0.246

Retrograde puncture 70 (21.4%) 31 (23.5%) 39 (20.0%) 0.451

Medication

Dual anti-platelet 327 (100%) 132 (100%) 195 (100%) 1.000

Anti-coagulant 11 (3.4%) 4 (3.0%) 7 (3.6%) 0.783

Statin 99 (30.3%) 37 (28.0%) 62 (31.8%) 0.467

Poor compliance of anti-platelet 80 (24.5%) 36 (27.3%) 44 (22.6%) 0.331

MOD, major adverse limb event or death; MFS, major adverse limb event-free survival; SD, standard deviation; IQR, interquartile range; ABI, ankle-brachial index; PACSS, peripheral

artery calcification scoring system; NLR, neutrophil-lymphocyte ratio; PLR, platelet-lymphocyte ratio.
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3.6.8, https://www.python.org) with Keras frame (Tensorflow
backend, Google Incorporation, USA) and the scikit-learn
package of machine learning.

Statistical Analysis
The baseline characteristics between the patients with and
without endpoints in the training set were compared. Continuous
variables were presented as means ± SDs or medians ±

interquartile ranges (IQRs) according to the data distribution.
The independent Student’s t-test or Mann–Whitney U test was
used to analyze the significance of the differences. Categorical
variables were presented as numbers with percentages, and
Pearson’s chi-squared test or Fisher’s test was used to analyzing
the significance of the differences. A two-tailed P-value < 0.05
was considered as statistically significant. The statistical analyses
were performed with SPSS (version 19.0, Chicago, Illinois, USA)
and R (version 4.1.0, https://www.r-project.org).

RESULTS

Baseline Information
A total of 730 patients were screened and 392 patients were finally
included in this study according to the inclusion and exclusion
criteria (Figure 2). A total of 327 patients (80%) were allocated to
the training set, of which 271 were male (82.9 %) and the average
age was 71.6 ± 9.7 years. In the training set, the 2-year MFS
rate was 59.6%, while 104 patients experienced MALE and 28
were dead. A comparison of the baseline characteristics between
the two groups of patients with and without the endpoint in the
training set was summarized in Table 1.

Candidate Variables
The univariate logistic regression analysis identified 8 variables
were associated significantly with the endpoint (P < 0.05)
(Table 2). Those variables included age > 80 years [odds ratio
(OR) =1.984, 95% CI: 1.153–3.412, P = 0.013], rest pain or
wound (OR = 1.658, 95% CI: 1.062–2.589, P = 0.026), ABI
< 0.4 (OR = 2.599, 95% CI: 1.633–4.137, P < 0.001), lesion
location (OR= 1.648, 95%CI: 1.007–2.697), patent infrapopliteal
arteries< 3 (OR= 2.164, 95% CI: 1.371–3.417, P= 0.001), target
lesion length > 20 cm (OR = 3.143, 95% CI: 1.857–5.320, P <

0.001), PACSS = 4 (OR = 11.687, 95% CI: 5.279–25.876, P <

0.001), and minimum diameter of stent < 6mm (OR = 2.047,
95% CI: 1.285–3.259, P = 0.003) (Table 2). These variables were
included in the model fitting (Table 3). Besides, lesion type was
also empirically considered strongly related to the poor outcome
and was included in the machine learning models, although the
P value of the OR is not statistically significant (OR= 0.653, 95%
CI: 0.392–1.089, P = 0.102) (Table 2).

Machine Learning Model Training and
Testing
In the final ANN model, the structure was set as 1 input
layer consisting of 9 variables, 1 hidden layer consisting of
12 neurons, and 1 output layer for binary classification, with
dropout = 0.4 and 200 epochs according to the ten-fold
validation process. Using this final ANN model, the ROCAUC

TABLE 2 | Univariate logistic regression screening for candidate variables.

Candidate variable Univariate logistic analysis

OR (95% CI) P-value

Age > 80 years 1.984 (1.153–3.412) 0.013

Hypertension 0.695 (0.420–1.149) 0.156

Diabetes mellitus 1.282 (0.818–2.008) 0.279

Hyperlipidemia 1.153 (0.706–1.883) 0.569

Myocardial infarction 0.862 (0.510–1.458) 0.580

Stroke 0.982 (0.544–1.774) 0.952

Current smoking 1.231 (0.734–2.064) 0.431

Rest pain or wound 1.658 (1.062–2.589) 0.026

ABI < 0.4 2.599 (1.633–4.137) <0.001

Lesion type 0.653 (0.392–1.089) 0.102

Lesion location 1.648 (1.007–2.697) 0.047

Infra-popliteal runoff < 3 2.164 (1.371–3.417) 0.001

Target lesion length > 20 cm 3.143 (1.857–5.320) <0.001

PACSS = 4 11.687 (5.279–25.876) <0.001

Minimum diameter of stent < 6mm 2.047 (1.285–3.259) 0.003

OR, odds ratio; CI, confidential interval; ABI, ankle-brachial index; PACSS, peripheral artery

calcification scoring system.

TABLE 3 | Variables for machine learning models.

Variables Index

Age 1: >80 0: ≤ 80

Rest pain or

wound

1: yes 0: no

Ankle-brachial

index

1: <0.4 0: ≥0.4

Lesion type 1: CTO 2: stenosis 3: thrombosis

Lesion location 1: Iliac artery 2: femoropopliteal artery 3: mixed

Infra-popliteal

runoff

1: ≤2 patent

tibial arteries

0: 3 patent tibial arteries

Target lesion

length

1: >20 cm 0: ≤20 cm

PACCS 1: grade 4 0: grade 0–3

Minimum diameter

of stent

1:<6mm 0: ≥6mm

PACSS, peripheral artery calcification scoring system; CTO, chronic total occlusion.

was 0.80 (95% CI: 0.68–0.89) in the test set (Figure 3A),
and the sensitivity and specificity at a cutoff value of 0.50
in the test set were 0.62 and 0.90, respectively (Table 4).
Using the random forest model, The ROCAUC was 0.78
(95% CI: 0.66–0.87) (Figure 3B), and the sensitivity and
specificity at a cutoff value of 0.50 were 0.73 and 0.72,
respectively (Table 4). As a contrast, using the multivariate
logistic regression, the ROCAUC was 0.73 (95% CI: 0.60–
0.83) (Figure 3C), and the sensitivity and specificity at a cutoff
value of 0.50 were 0.58 and 0.79, respectively (Table 4). The
difference between the ROCAUC of the ANN model and the
multivariate logistic regression model was 0.072 (95% CI: 0.017–
0.127, P = 0.01). The difference between the ROCAUC of
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FIGURE 3 | The receiver operating characteristic (ROC) curves (area under the curve) for artificial neural network model (A), random forest model (B), multivariate

logistic regression (C), and calibration curves for these models in the test set (D–F). ANN, artificial neural network.

TABLE 4 | Comparison of performance between different models.

Model ROCAUC P-value* Sensitivity** Specificity**

Artificial neural network 0.80 (0.68–0.89) 0.01a 0.62 0.90

Random forest 0.78 (0.66–0.87) 0.24b 0.73 0.72

Multivariate logistic regression 0.73 (0.60–0.83) – 0.58 0.79

ROCAUC, area under receiver operating curve.
*DeLong test for significance of ROCAUC difference between two models.
**The sensitivity and specificity were calculated at probability cutoff value of 0.5.
aComparison between artificial neural network and multivariate logistic regression.
bComparison between random forest and multivariate logistic regression.

the random forest model and multivariate logistic regression
model was 0.052 (95% CI: −0.036 to 0.140, P = 0.24). The
ANN model and the multivariate logistic regression had good
calibration performance, while the random forest model had
poor performance (Hosmer–Lemeshow test, P = 0.73, P =

0.28, and P < 0.01, respectively, Table 4). The calibration
curve of the ANN model depicting the observed and predicted
probabilities was visually the closest to the perfectly calibrated
line (Figures 3D–F).

The random forest model illustrated the importance ranking
of the variables (Figure 4), indicating that the top three
important variables were serious calcification (PACSS= 4), lesion
location, and patent infrapopliteal runoff <3. The importance
value of PACSS= 4 seemed much higher than any other variable
and was considered as the key factor for prognosis.

DISCUSSION

General Findings

In this study, we demonstrated both the ANN model and the
random forest model outperformed the traditional multivariate
logistic regression model to predict 2-year MFS after receiving
PTA and stenting for lower limb ASO. Specifically, the
ANN model showed significantly better discrimination than
the multivariate logistic regression. Besides, the ANN model
demonstrated good performance in terms of calibration rather
than the random forest model. Accordingly, the modernmachine
learning models might make an accurate and stable prediction
of prognosis in the treatment of lower limb ASO. Furthermore,
machine learning could provide important ranking information
of variables from the medical record, image, and intervention.
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FIGURE 4 | Importance ranking of variables used in the random forest model for prediction of 2-year major adverse limb event-free survival. PACSS, peripheral arterial

calcium scoring system; ABI, ankle-brachial index.

The classical risk stratification scoring systems, such as
Fontaine or Rutherford grading system, mainly focus on the
risk of limb amputation when receiving conservative therapy.
The SVS WIFI scoring system extends the application range
to evaluate the likelihood of benefit of revascularization. The
TASC grading system classifies the anatomic factors of lesions
into four grades and accordingly recommends the option of
bypass or endovascular therapy (10). Recently, the GLASS has
been proposed to evaluate the technical success and outcome of
endovascular intervention for chronic limb-threatening ischemia
(2, 11, 12). However, there were several limitations of the current
scoring systems. First, one cannot calculate an exact probability
of a certain prognosis for a single patient with these systems, and
thus cannot make a precise prediction. Second, the correlation
between the prognosis and a certain type of intervention such as
PTA and stenting could not be assessed, since the intervention
approach is not involved in these systems. Medical personnel
such as vascular surgeon tends to evaluate the probability of
a certain prognosis after a certain intervention and make the
clinical decision in a more precise and personalized way. There

is a demand for a prediction tool that could correlate prognosis
with specific intervention patterns.

Nowadays, machine learning methods are increasingly
applied in screening, identification, risk stratification, and
prognosis prediction of circulatory system disease. Regression
models, namely, penalized linear regression and logistic
regression, and ensemble learning models, namely, bagging
and boosting were reported to identify PAD and predict
cardiovascular events or mortality. The random forest model, as
a typical ensemble learning model, was proved to outperform
other models in terms of identification of PAD with good
discrimination and calibration in most pieces of literature
(6, 7, 13, 14). However, there has been no report whether the
random forest model could have a good predictive ability in the
prognosis prediction after the intervention of PAD. The ANN
model was characterized by strong non-linear classification and
has been proved to have good sensitivity and specificity in the
prediction of survival after repair for aortic disease, although
the data size was not very big (15, 16). We supposed that the
ANNmodel might also perform well in the field of PAD with the
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proper dataset. Thus, we decided to choose and compare these
two typical models in this work.

Trained with the accumulation of complete clinical data,
our machine learning-based models comprehensively considered
systematic risk factors, lesion anatomic factors, and limb
ischemia factors and make the precise prediction possible.
Overall, both the ANN model and the random forest model
had better performance than the traditional multivariate logistic
regression. Considering the discrimination, the ANN model,
but not the random forest model, prove a significantly higher
ROCAUC than the multivariate logistic regression in the test,
which meant the ANN model might have the better predictive
ability in an unknown cohort. On the other hand, the ANNmodel
showed lower sensitivity (0.62 vs. 0.73) and higher specificity
(0.90 vs. 0.72) than the random forest model in the test set.
We suppose that a higher specificity might contribute more to
identifying MALE or death after PTA and stenting because these
patients with a poor prognosis account for a minority. Besides,
the ANN model also had good calibration performance, which
meant that the calculated probability of the ANN model would
be more reliable, and the real risk of a patient was less likely to
be underestimated or overestimated. We supposed a well-trained
ANN model might be clinically useful and help the vascular
surgeon identify the candidate for PTA and stenting.

The variable importance ranking evaluation based onmachine
learning might also bring insights to clinical practice. The
random forest model illustrated that serious calcification (PACSS
= 4) of target lesion was the most critical prognostic factor.
Several researchers have also indicated that PACSS was associated
with primary patency loss, MALE, and even survival after
endovascular therapy (17–19). With the result of machine
learning, we figured out that serious calcification (PACSS = 4)
seemed to be even far more important than any other variable.
Some researchers indicated that the long bilateral calcification
of lesions might restrict stent expansion and lead to negative
remodeling of vessel lumen (13). Since all of the patients in
our cohort received stenting treatment, we speculated that the
factor of calcification might play a leading role in the in-stent
patency loss and result in MALE. The random forest model
also showed that factors of infrapopliteal runoff, target lesion
location, and lesion-type ranked forefront. The age of the patient,
the severity of limb ischemia, target lesion length, and minimal
stent diameter seemed to have less impact on prognosis. These
observations of variable importance ranking based on machine
learning might help vascular surgeons consider priority and
sequence of factors related to prognosis when making decisions
of endovascular intervention.

LIMITATIONS AND IMPLEMENTATIONS

This study had several limitations. First, this study was based on a
retrospective single-centered cohort andmight generate selection
bias and information bias. To reduce the biases, we utilized strict
inclusion/exclusion criteria and organized two sophisticated staff
groups to independently collect baseline information and follow-
up data. Second, the machine learning-based models might

still be underfitting, especially for the ANN model, because
the sample size of the cohort was relatively small and some
potential meaningful variables, such as the mechanical property
of different stent types, have not been observed. Noteworthy, the
predictive ability of the ANN model could not be improved by
increasing layers in the pretraining phase (data not shown). The
model training in the future should be performed on a larger
cohort database. Third, the study focused on the patients who
received stenting. However, a fair number of patients received
PTA with or without debulking. A future machine learning
model might involve this subpopulation and make the prediction
more generalized.

CONCLUSION

Machine learning could be applied to make an accurate
prediction of 2-year MFS after PTA and stenting for lower
limb ASO. The ANN and random forest models outperformed
traditional multivariate logistic regression, in which the ANN
model had better performance in discrimination and calibration.
Machine learning-derived prediction tools might be clinically
useful to automatically identify candidates for PTA and
stenting and discriminate patients unsuitable for endovascular
intervention and avoid inappropriate stent placement.
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