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Infectious meningitis can be caused by viral, bacterial or fungal pathogens. Despite widely available treat-
ments, many types of infectious meningitis are still associated with significant morbidity and mortality.
Delay in diagnosis contributes to poor outcomes. Cerebrospinal fluid cultures have been used tradition-
ally but are time intensive and sensitivity is decreased by empiric treatment prior to culture. More rapid
techniques such as the cryptococcal lateral flow assay (IMMY), GeneXpert MTB/Rif Ultra (Cepheid) and
FilmArray multiplex-PCR (Biofire) are three examples that have drastically changed meningitis diagnos-
tics. This review will discuss a holistic approach to diagnosing bacterial, mycobacterial, viral and fungal
meningitis.
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Infectious meningitis is caused by numerous pathogens and may be life threatening [1–3]. The classic symptoms of
meningitis are fever, neck stiffness and headache, although these features are not present uniformly [2–4]. Broadly,
the most common causes of infectious meningitis are viral, bacterial, mycobacterial and fungal. Parasitic and
non-infectious causes of meningitis also occur but are not the focus of this review.

In the USA, meningitis accounts for more than 72,000 hospitalizations with a total expenditure of 1.2 billion
dollars annually [5]. Many types of infectious meningitis carry high rates of mortality and long-term complications
including neurologic deficits and cognitive impairment [3,6,7]. Mortality due to bacterial meningitis ranges from
10 to 20% in high resource settings and as high as 50% in lower resource settings where bacterial meningitis is
estimated as the fourth leading cause of disability [3,6–9]. In comparison to bacterial meningitis, aseptic (typically viral)
meningitis typically caries a good prognosis (4.5% mortality rate) [3]. Tuberculous meningitis has a higher mortality
rate, up to 50% in HIV-infected subjects and of individuals who survive tuberculosis meningitis, approximately
50% suffer from neurologic disability [6,10]. Like tuberculous meningitis, meningitis due to fungi carries significant
mortality. Cryptococcal meningitis carries an acute in-hospital mortality of 30–50% [11]. World-wide, meningitis
due to Cryptococcus accounts for 15% of AIDS-related deaths [12]. Other forms of fungal meningitis are rarer, but
also deadly. Antinori et al. reported a case fatality rate of 63.5% due to Aspergillus meningitis for immunocompetent
and 83% for immunocompromised patients [13]. Meningitis cause by Coccidioides has mortality of 90% at 1 year
and 100% at 2 years if untreated [14]. CNS infections due to Histoplasma have a 39% case fatality rate [15].

It is not always possible to determine the etiology of meningitis. A study by Sulaiman et al. only identified the
etiology in about 32% of cases, while other studies found similar ranges [16–18]. This is likely related to the lack
of sensitivity of CSF cultures for non-bacterial pathogens as well as the underutilization of viral molecular and
serologic testing [16]. Of course the etiology in any individual case may be influenced by many factors including
test availability, geographic region, host, and many others – the main point is that the exact etiology is not always
uncovered. Due to the high mortality and morbidity of many types of meningitis, it is critical to obtain a diagnosis
or initiate empiric treatment rapidly as soon as possible [1]. Clinician diagnoses must be informed by historical
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information such as duration of symptoms, travel and country of origin, host immune capabilities, vaccination
status, as well as an understanding of the appropriate diagnostic testing based on the probable epidemiology [1]. This
review will focus on the diagnosis of bacterial, mycobacterial, fungal meningitis due to their worse prognosis and
need for accurate diagnosis as well as the various diagnostic tests used in these conditions. Given viral meningitis
typically is generally associated with relatively good outcomes, PCR testing of viral etiologies will not be a major
focus of this review.

This is an extensive narrative review. We searched pubmed for ‘meningitis and diagnosis’, ‘epidemiology and
meningitis’, ‘risk factors and meningitis’, ‘stem cell transplant and meningitis’, ‘organ transplant and meningitis’,
‘bacterial meningitis’, ‘tuberculosis meningitis’, ‘fungal meningitis’, ‘histoplasma meningitis’, ‘coccidioides menin-
gitis’, ‘cryptococcal meningitis’, ‘blastomyces meningitis’ and ‘aspergillus meningitis’ to gather data in addition to
using material cited in some of the sources found via these searches.

Epidemiology
Although an estimated 16 million cases of bacterial meningitis occurred worldwide in 2013, only 4100 cases per
year occur in the USA [2,19]. In Western countries the incidence of bacterial meningitis over the past 10–20 years
has declined by approximately 3–4% per year and currently is approximately 0.8 cases per 100,000 per year [20].
The rates of bacterial meningitis are significantly higher in many African countries with an incidence of 10–40 per
100,000 persons per year [20]. The most common etiologies in order of frequency are Streptococcus pneumoniae,
Neisseria meningitidis, and Listeria monocytogenes [4,20]. Meningitis due to H. influenzae type B and N. meningitidis
has decreased over the past 10–20 years, due to vaccination [3,20,21].

Aseptic meningitis is relatively common with an annual incidence of 7.6 per 100,000 adults in the USA [6].
Enteroviruses, herpes simplex virus, varicella zoster virus and West Nile virus are the most common causes of
infectious aseptic meningitis, other causes include cytomegalovirus and human immunodeficiency virus (HIV),
among others [18,22,23]. Aseptic meningitis can also be caused by non-infectious etiologies such as adverse reaction to
medications, chemotherapy, vaccinations or inflammatory diseases [22,23]. In 30–65% of cases of aseptic meningitis,
the etiology is not definitively identified [22].

Tuberculosis (TB) meningitis incidence is not known, but likely occurs in about 1–5% of TB cases worldwide [24].
In 2017 WHO estimated 10 million incident cases of tuberculosis, which would correlate to 100,000–500,000
cases per year of TB meningitis [25].

Worldwide, fungal meningitis causes substantial mortality, particularly among immunocompromised persons [5].
The primary pathogens implicated are Cryptococcus, Coccidioides, Histoplasma, and Candida. In 2014, Rajasingham
et al. estimated 223,100 incident cases of cryptococcal meningitis with 181,100 annual fatalities [12]. Sub-Saharan
Africa accounted for 73% of the 223,1000 cases [12]. Meningitis due to Cryptococcus neoformans is most commonly
seen in immunocompromised individuals, especially those with HIV [5,26]. However in high-income countries,
30% of cryptococcal meningitis occurs in apparently immunocompetent individuals, particularly if due to C.
gattii [5]. Meningitis due to Coccidioides, Histoplasmosis or Candida typically occurs as a results of dissemination
and so is relatively uncommon in hosts with intact immune systems. Meningeal involvement occurs in 33–50% of
disseminated coccidioidomycosis and 10–20% of disseminated histoplasmosis [5].

Regional variation in frequency and etiology of meningitis occurs as well. For instance, the ‘meningitis belt’
(Senegal to Ethiopia in sub-Saharan Africa) experiences high numbers of bacterial meningitis, prior to the introduc-
tion of the conjugate meningococcal vaccine for serotype A [20,21]. In areas with high rates of HIV such as Malawi,
South Africa, Uganda, Zambia and Zimbabwe, Cryptococcus and TB are the first and second most common causes of
meningitis [26]. In Iran, H. influenza type B meningitis is relatively common due to a lack of routine vaccination [9].
Coccidioides meningitis is a frequent causes of meningitis in Arizona and California whereas Histoplasma meningitis
is more common in the Mississippi and Ohio river valleys of the United States and much of Latin America [27,28].

Host factors
The likelihood of a particular etiology of meningitis is also affected by the host. In general, bacterial meningitis
is more commonly seen in older individuals, possibly due to immune system decline over time [3,4,7]. Adriani
et al. found that almost half of patients with bacterial meningitis had a predisposing condition and a third had an
immunodeficiency (diabetes mellitus, alcoholism, cancer, history of organ transplant, HIV, asplenia, complement
deficiency or anatomical defects) [7]. Common bacterial etiologies of N. meningitidis, H. influenzae and S. pneumoniae
– all are encapsulated organisms that require protection via B lymphocyte production of immunoglobulins,
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Patient with suspected subacute meningitis and advanced HIV

Obtain cryptococcal Ag (CrAg) LFA of serum

CrAg +

Perform LP with opening
pressure

Large volume tap if
opening pressure elevated

Send CSF for CrAg

•

•

•

CrAg +

Obtain lumbar puncture, order glucose (blood and
CSF), total protein, cell count with differential, Gram
stain, GeneXpert ultra, bacterial and fungal culture

Further TBM and fungal meningitis diagnostics

CSF/blood
glucose ratio

<0.5, neutrophil
predominance†

CSF/blood

glucose ratio
>0.5,

lymphocyte
predominance†

Treat CM

CrAg -

CrAg -

Figure 1. Simplified diagnostic algorithm for diagnosis of subacute meningitis in advanced HIV.
†Most likely bacterial meningitis, particularly L. monocytogenes. Institute empiric antibiotics after lumbar puncture
(or before if the patient is unstable).
‡Most likely tuberculous meningitis. If acid-fast bacilli smear unremarkable and duration of symptoms correlate
strongly consider empiric treatment and/or nucleic acid amplification testing, ideally utilizing a large volume (>5 ml)
of centrifuged cerebrospinal fluid. Also consider work up for other fungal meningitis, such as Aspergillus,
Blastomyces, Coccidioides and Histoplasma in the proper setting.
The Delphi method of consensus was used to construct this figure.
CM: Cryptococcal meningitis; CrAg: Cryptococcal antigen; CSF: Cerebrospinal fluid; LFA: Lateral flow
immunochromatographic assay.

immunoglobulin activating the complement cascade, and appropriate splenic function to remove circulating
bacteria [3,7,29]. Disruptions, quantity or function of B cells, immunoglobulin, complement and asplenia increase
risk of meningitis due to encapsulated organisms [29]. Candida meningitis is more common in patients with
ventriculoperitoneal shunts, and cochlear implants have been associated with a higher incidence of pneumococcal
meningitis [5,7,29]. Head trauma and neurosurgery are associated with higher rates of aerobic Gram-negative bacilli
and Staphylococcus aureus [2,3].

Fungal (most notably cryptococcal) meningitis is more common in patients with CD4 T-cell dysfunction, most
notably persons living with HIV/AIDS [5]. Compared with those without HIV co-infection, persons with TB and
HIV are more likely to develop extrapulmonary disease, including tuberculosis meningitis [30]. Finally, HIV-infected
individuals are at higher risk than the general population for meningitis due to typical bacterial pathogens such as S.
pneumoniae as well as less common bacteria such as Salmonella and Listeria species [7,29]. Figure 1 shows a diagnostic
approach to subacute meningitis in persons with advanced HIV, Figure 2 shows a diagnostic approach to subacute
meningitis in persons a presumed normal immune system. The figures are based on the literature cited within
this review, but also our clinical experience. Of note, Figure 2 refers to the CSF to blood glucose ratio. Glucose
is transported across the blood–brain barrier, therefore CSF glucose levels are directly rated to plasma levels [31].
Elevations in the plasma glucose will cause the CSF glucose levels to be elevated but CSF levels are decreased with
certain CSF infections. When interpreting CSF glucose levels they should be compared with plasma levels [31].
CSF/blood glucose level is typically low in bacterial and tuberculous meningitis, but can also be seen with other
causes as well [3,27,32,33].

TNF-α inhibitors are commonly used for a number of auto-immune conditions and have been linked to
numerous infections including histoplasmosis and tuberculosis, including meningitis at a higher rate than the
general population [5,34–36]. Moreover, infliximab in particular causes increased incidence of Listeria meningitis
although other TNF-α inhibitors have been linked as well [34,37,38]. Among solid organ transplant recipients, the
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Patient with suspected subacute meningitis with presumed normal
immune system†

Obtain lumbar puncture, order glucose (blood and CSF), total protein, 
cell count with differential, Gram stain, bacterial culture and 

GeneXpert ultra

CSF/blood
glucose ratio

<0.5,
lymphocyte

predominance‡

CSF/blood
glucose ratio

 >0.5§

Additional TBM diagnostics,
consider fungal meningitis

testing   

Non-infectious evaluation,
consider TBM diagnostics if

suspicious

Figure 2. Algorithm for diagnosis of subacute meningitis in patients with presumed normal immune system.
†If appropriate consider rapid HIV test, if HIV-infected, refer to Figure 1 algorithm.
‡Most likely tuberculosis meningitis. If duration of symptoms are compatible, strongly consider empiric treatment
and/or NAATs, ideally testing a large volume (>5 ml) of centrifuged cerebrospinal fluid. Consider fungal etiologies as
well such as Aspergillus, Blastomyces, Coccidioides and Histoplasma.
§Most likely aseptic meningitis, particularly non-infectious etiologies. Although may be tuberculosis meningitis as
well. If strong clinical suspicion, consider TB NAATs.
The Delphi method of consensus used to construct this figure.
CrAg: Cryptococcal antigen; CSF: Cerebrospinal fluid; TBM: Tuberculosis meningitis.

annual incidence of bacterial meningitis is 5.4-times higher than the general population, Listeria meningitis is
of particular concern (110-fold increased risk) [7,39]. Cryptococcal meningitis risk is also high among solid organ
transplant recipients and those with cirrhosis [40,41]. Patient who have undergone hematopoietic stem cell transplant
(HSCT) are also at increased risk for infectious meningitis, particularly those having undergone allogenic HSCT [42].
S. pneumoniae, N. meningitidis and Aspergillus spp. are of particular concern in the HSCT population [27,42–45].

Duration of symptoms
Meningitis can be broadly categorized as acute (<5 days), subacute (5–30 days), and chronic (>30 days). Bacterial
meningitis typically presents in less than 24 h and though viral meningitis may have an acute presentation,
generally, the onset of symptoms is not as rapid (median 2 days) nor as severe [3,6,16,46]. However, it is important
to note that patients with certain risk factors, such as those with a solid organ transplant, may have a more
protracted clinical course compared with the general population [39]. Another exception is Listeria meningitis with
approximately one third of patients having symptoms for more than four days [1,2]. Subacute or chronic meningitis
is typically due to viruses, fungi or mycobacteria (M. tuberculosis); 24 weeks of symptoms is most typical of latter
two categories [1,16,27,47]. Yet, TB meningitis can occur with as little as 1 week or as long as 1 year of symptoms [33].
Moreover patients with Histoplasma meningitis typically have symptoms for at least 2 months and Blastomyces
meningitis is typically diagnosed after an average of 3 months of symptoms [15,48,49]. Table 1 summarizes typical
durations of symptoms by etiology.

General diagnostic tests
Cerebrospinal fluid (CSF) analysis is key to determining the etiology of meningitis [2,46,50]. Nonspecific, standard
CSF testing includes white blood cell count with differential, glucose, and protein [1,46]. Initial results return within
hours (ideally faster) and can help one differentiate the more likely etiologies. Yet, none of these tests have high
specificity and are to be interpreted in the setting of other relevant clinical information. Table 2 shows the typical
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Table 1. Comparison of the etiologies of meningitis based on duration of symptoms.
Acute (<5 days) Subacute (5–30 days) Chronic (>30 days)

Bacterial† Listeria monocytogenes‡ Cryptococcus

Viral Cryptococcus Tuberculosis

Tuberculosis Histoplasma

Histoplasma Blastomyces

Coccidioides Coccidioides

†Patients with history of SOT can have a more protracted clinical course compared with the general population.
‡One third of patients with Listeria monocytogenes have symptoms for more than 4 days.

Table 2. Comparison of typical findings for common cerebrospinal fluid laboratory tests by etiology of meningitis.
Meningitis etiology Total protein CSF/blood glucose ratio Total WBC Predominant WBC type

Bacterial +++ +++ +++ Neutrophils

Aseptic (viral) ± ± ± Lymphocytes†

Tuberculosis ++ +++ ++ Lymphocytes

Cryptococcal ++ ++ ± Lymphocytes

Coccidioidal ++ + ± Lymphocytes‡

Blastomyces ++ ++ ± Lymphocytes

Histoplasma ++ ++ ± Lymphocytes

Aspergillus ++ + ± Lymphocytes

†May be neutrophil predominant early in the disease course.
‡Eosinophilic predominance occurs less commonly but when seen is highly suggestive.
The number of + signs indicate proportional gradient of increase (total protein or total WBC) or decease (ratio of CSF/blood glucose) of the lab test. To indicate proportionally minimal
or no increase/decrease, ± is used. WBC differential indicates the dominant cell type present although other cells generally are present as well.
CSF: Cerebrospinal fluid; WBC: White blood cell.

patterns of basic CSF tests for by etiology.
Testing the CSF for inflammatory markers, such as C-reactive protein (CRP), procalcitonin, lactic acid and

ferritin may aid in the differentiation of bacterial from viral meningitis but are not commonly used and have
been more frequently studied as blood tests [4,51–53]. It should be noted that CSF lactate, in particular is used in
some settings. However, a CSF lactic acid concentration of 4.2 mmol/l or greater has a sensitivity of 96% and
specificity of 100% for differentiating bacterial from viral meningitis although elevations also occur in cryptococcal
meningitis, TB meningitis and a number of noninfectious conditions such as seizure, ischemia or hemorrhage [52,53].
Other CSF biomarkers to differentiate bacterial from viral meningitis include procalcitonin (cut-off 0.235 pg/ml,
sensitivity 96.4%, specificity 80%), ferritin (cut-off 4.6 ng/ml, sensitivity 92.9%, specificity 68%), and CRP
(cut-off 1.3 mg/l, sensitivity 92%, specificity 84%) [51]. Finally, CT and magnetic resonance imaging (MRI) of the
head can provide additional information in diagnosis of suspected meningitis but in most cases are not helpful in
determining the causative agent [27].

Table 3 summarizes the major, specific tests by etiology of meningitis.

Bacterial meningitis except tuberculous meningitis
Culture & Gram stain
CSF culture is considered the gold standard to diagnosis bacterial meningitis, yet is only positive in 70–85% of
persons with bacterial meningitis who have not received antimicrobial therapy prior to lumbar puncture [19,51,52].
Final results of the culture are often not available for 48 h or more [19,52,54]. Gram stain is more rapid and has good
specificity but sensitivity is poor (10–93% depending on the organism and whether or not antibiotics were given
prior to CSF collection) [19,52]. Gram stain is most useful for S. pneumoniae.

Latex agglutination
Latex agglutination is relatively inexpensive and rapid (∼10 min) [2,6,55–58]. Sensitivity varies by microorganism and
manufacturer – 78–100% for H. influenzae, 59–100% for S. pneumoniae, 69–100% for S. agalactiae and 50–93%
for N. meningitis [4,52]. Kits to detect multiple common bacterial pathogens, have also been developed [8,55]. Latex
agglutination may be particularly useful in patients with a negative Gram stain when the LP is performed after
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Table 3. Comparison of major commercially available or investigational diagnostic tests by meningitis etiology.
Test Description Time to Results Advantages Disadvantages Comm. Avail. Ref.

Bacterial

Gram stain Stain of fluid for bacteria 1 h Cheap, easy to perform sensitivity ∼90% prior to antibiotics
for S. pneumoniae meningitis

yes

Culture Standard bacterial culture 1–3 days May grow quickly, easy to
perform, adaptable to rapid
identification methods

Yield decreased by antibiotic use
prior to culture, may be days to
results, variable sensitivity

yes

Procalcitonin, C
reactive protein

Serum biomarkers 1 h Good differentiation
between bacterial and aseptic
meningitis

Cost, lab requirements, no studies
on TBM or CM

yes

Lactate Biomarker measure in CSF �5–60 min Rapid, sensitive and specific if
obtained prior to antibiotics

Not very sensitive if measured after
antibiotics are given

yes [170]

16s rRNA PCR PCR detection of 16s
ribosomal RNA to elicit
specific pathogens

Hours Rapid, more sensitive than
culture, very specific

Extremely costly, requires lab
expertise and infrastructure

Yes

Nucleic acid
amplification tests

Specific RT-PCR and LAMP
assays have been tested for
particular pathogens

1–2 h Rapid, specific, potentially
quite sensitive

Cost, lab infrastructure, lack of large
studies

In some cases

Rapid diagnostic tests Rapid, usually card or
dipstick-based tests for
specific etiologies

�15 min Rapid, cheap, easy to use, no
significant lab infrastructure
necessary

Variable specificity, sensitivity yes

MALDI-TOF MS Mass spectrometry
identification based on
weight

1–2 h Rapid, relatively inexpensive Requires significant laboratory
infrastructure, not widely used on
CSF at this time

Yes, blood
only

Mycobacteria tuberculosis

Ziehl–Neelsen stain Staining for acid-fast bacilli 1 h Cheap Very insensitive, minimal utility.
Extremely technician dependent

yes

LJ culture Traditional culture, solid
media

3–5 weeks Reliable, somewhat sensitive Very slow growth, still many false
negatives, costly, labor intensive

yes

MGIT culture Liquid-based culture 1–2 weeks As sensitive and quicker than
LJ culture

∼2 weeks to growth, costly yes

Adenosine deaminase
activity (ADA)

Detectable enzyme released
by during T cell activation

�1 h Rapid, low cost Variable sensitivity and specificity,
lab infrastructure

yes

Interferon gamma
release assay (IGRA)

IFN-g secretion by host
memory T cells on exposure
to TB antigens

24–36 hours Good sensitivity Labor intensive, costly, high numbers
of indeterminate results, variable
studied cut-points, rely on T-cell
function

yes

PCR Traditional PCR Hours Fast, nearly as sensitive as
culture, specific

Cost, lab expertise, lab apparatus,
inadequate sensitivity

yes

LAMP DNA amplification different
from typical PCR, detection
by color change

Less lab expertise and
infrastructure required than
PCR, isothermal

No data on performance no

GeneXpert Cartridge-based PCR 2.5 h Quick, similar sensitivity to
culture, specific, ease of use

Cost, requires significant
infrastructure, limited shelf life on
cartridges

Yes

GeneXpert ultra Cartridge-based PCR �2 h Rapid, improved performance
versus any commercially
available test, ease of use

Cost, lab infrastructure, still not
adequate negative predictive value
to ‘rule-out’ TB meningitis

Yes

Cryptococcus

CrAg lateral flow assay Rapid dipstick test detects
cryptococcal antigen

10 min Very sensitive, specific, cheap,
does not require significant
lab capacity

Cannot differentiate active from
past infection

yes

Culture Traditional culture 3–14 days Very accurate, can decide
active from past infection

Slow, labor intensive yes

CrAg latex
agglutination or ELISA

Lab-based detection of
cryptococcal antigen

1 day Sensitive and specific.
Requires lab infrastructure

Costly, lab capacity
requirement, + result lingers for
years

yes

Test is meant to describe test category, not each specific commercial test. The description notes how the test works in principle. ‘Pro’ and ‘Con’ refer to positive and negative aspects of
each tests performance and utility. Assays dealing with M. tuberculosis cells require increased biosafety apparatus.
AFB: Acid-fast bacilli; CF: Complement fixation; Comm. Avail.: Commercially available; CrAg: Cryptococcal antigen; CSF: Cerebrospinal fluid; ID: Immunodiffusion; IFNg: Interferon
gamma; LAMP: Loop mediated isothermal amplification; LJ: Lowenstein Jensen; MALDI TOF MS: Matrix-assisted laser desorption/ionization time of flight mass spectrometry; MGIT:
Mycobacterial growth indicator tube; NAAT: Nucleic acid amplification test; PCR: Polymerase chain reaction; rRNA: Ribosomal ribonucleic acid.
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Table 3. Comparison of major commercially available or investigational diagnostic tests by meningitis etiology (cont.).
Test Description Time to Results Advantages Disadvantages Comm. Avail. Ref.

India ink Staining for C neoformans
capsule

15 min Inexpensive, easy to perform 85% sensitive;
Technician dependent

yes

Histoplasma

Culture Traditional culture Weeks Very accurate, widely
available

Slow, low yield yes

Antibody/ antigen
testing

Immunodiffusion,
complement fixation, EIA

Hours Inexpensive Can be negative early in infections,
can cross react with other fungi

yes

Coddidioides

Culture Traditional culture Weeks Very accurate, widely
available

Slow, low yield yes

Wet mount Direct visualization of
organism

�1 h Inexpensive, easy to perform Very low yield, requires experienced
lab personnel

yes

Antibody/antigen
testing

CF, ID, EIA Hours–days Inexpensive Cannot ‘rule out’, cross reactivity
with other fungi

yes

Blastomyces

Culture Traditional culture Weeks Very accurate, widely
available

Slow, low yield Yes

Antigen testing EIA Days Minimal performance data,
reference lab only

No

Aspergillus

Culture Traditional culture Weeks Widely available Slow, low yield, requires multiple
samples

Yes

Galactomannan Detection of Ag to cell wall
component

Hours Widely available Cross reacts other species and
medications

Yes

Aseptic (viral)

16s rRNA amplification PCR detection of 16s
ribosomal RNA to elicit
specific pathogens

Days Rapid, very specific Extremely costly, requires lab
expertise and infrastructure

Yes

NAATs Specific PCR and RT-PCR
assays for certain pathogens

1–6 h Rapid, specific Cost, lab infrastructure and expertise In some cases

Syndromic or pan-pathogenic

BioFire film array PCR panel that detects 14 h
pathogens

1 h Rapid, specific Limited to pathogens in the panel
costly, lab infrastructure

Yes

Next-generation
sequencing

Nucleic acid detection of
any pathogen

Days Specific, unclear clinical role Only available at one center, costly,
lab infrastructure

Yes

Test is meant to describe test category, not each specific commercial test. The description notes how the test works in principle. ‘Pro’ and ‘Con’ refer to positive and negative aspects of
each tests performance and utility. Assays dealing with M. tuberculosis cells require increased biosafety apparatus.
AFB: Acid-fast bacilli; CF: Complement fixation; Comm. Avail.: Commercially available; CrAg: Cryptococcal antigen; CSF: Cerebrospinal fluid; ID: Immunodiffusion; IFNg: Interferon
gamma; LAMP: Loop mediated isothermal amplification; LJ: Lowenstein Jensen; MALDI TOF MS: Matrix-assisted laser desorption/ionization time of flight mass spectrometry; MGIT:
Mycobacterial growth indicator tube; NAAT: Nucleic acid amplification test; PCR: Polymerase chain reaction; rRNA: Ribosomal ribonucleic acid.

antibiotic administration or among bacteria with fastidious culture growth [6,55,59]. Yet, overall use is limited by
inadequate negative predictive value (e.g., inability to rule out bacterial meningitis), and so latex agglutination is
only sporadically used.

Limulus lysate assay to detect endotoxin
The limulus lysate assay utilizes lysate prepared from the amebocyte of the horseshoe crab, Limulus polyphemus, to
identify endotoxins [52,60,61]. The test was originally used for detection of lipopolysaccharide endotoxin in blood,
urine and pharmaceutical products, but has been adapted to CSF [60,61]. Results are typically available in 20–
30 min and a positive test suggests Gram-negative bacterial meningitis [52,60]. As this assay detects only endotoxin,
its inability to detect Gram-positive bacteria is a major limitation [52,60]. In suspected bacterial meningitis without
an etiology determined by culture, this assay can help identify if etiology is from a Gram-negative organism.

Nucleic acid amplification tests
Nucleic acid amplification tests (NAATs) such as polymerase chain reaction (PCR) testing can provide rapid and
accurate diagnoses for bacterial meningitis [2,62]. Depending on the method used, results can be available in as little
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Table 4. Comparison of target genes for commercially available bacterial meningitis PCR assays.
Species Multipex LightMix real-time PCR assay Speed-oligo bacterial meningitis test Fast track bacterial meningitis kit

Streptococcus pneumoniae lytA lytA lytA

Neisseria meningitidis ctrA ctrA ctrA

Haemophilus influenzae hpd bexA ompP2

Listeria monocytogenes hlyA

Streptococcus agalactiae cfb

as 15 min, and no longer than 3 h for a single sample [63–68]. Of course, if the PCR test is not performed on site,
shipping time increases the time to results significantly.

Further, commercial NAATs have been developed to detect multiple bacterial pathogens (some include viral
and fungal pathogens as well) and while sensitivities and specificities are often >90% for each pathogen, test
performance varies by pathogen and assay [4,52,62,63,65–70]. Table 4 summarizes three of the commercially available
PCR assays for bacterial meningitis that detect multiple pathogens and their gene targets. For example, the BioFire
Film Array meningitis/encephalitis panel (FilmArray ME) is a PCR panel that rapidly (1 h) detects 14 pathogens
including six bacteria, seven bacteria and one fungus directly from CSF [19,71]. Leber et al. found that the FilmArray
ME panel had an overall percentage of agreement with comparative testing of 99.8% and a specificity of 99.2% [19].
However, this panel does not perform equally for all pathogens and is particularly weak for Cryptococcus and herpes
simplex 1 and 2 compared with standard diagnostics for these conditions [19,71]. Further, the FilmArray ME panel
and all NAATs only detect the pathogens they were designed to target and so will miss pathogens that they are not
designed to target.

Further limitations of NAATs include cost, infrastructure requirements, easy contamination of samples, and the
need for additional laboratory personnel training [63,66–68,70]. However, NAATs may be particularly useful for the
diagnosis of bacterial meningitis when patients have received antibiotics prior to LP. Numerous NAATs technologies
are currently being utilized in high-income countries [2]. Future developments in point of care testing (e.g., cartridge
based) may facilitate more wide use of NAATs in smaller hospitals and low-resource settings with less training [70].

Loop-mediated isothermal amplification (LAMP) is a NAAT that can be used to detect bacterial DNA [72,73].
LAMP uses DNA primers and polymerases that bind to target DNA which is subsequently amplified [74]. Impor-
tantly, LAMP is meant to be isothermal and so require much less laboratory infrastructure. Further, its positivity
can be interpreted by the naked eye. Compared with PCR, LAMP is less expensive and requires less extensive
laboratory resources [73]. LAMP assays have been shown to have a sensitivity of up to 90% and specificity of up to
100% with capability of detecting pathogens in 20–60 min and at >100-fold lower detection limits than traditional
PCR [72,73,75]. However, until recently multiplexing via LAMP has not been possible, although a recent LAMP
assay was developed to detect three bacterial pathogens via LAMP integration into a chip [73,75]. This method has
potential applicability as a point of care diagnostic test for bacterial meningitis in low-resource settings.

Recently, new molecular techniques have been developed that can detect a pathogen’s nucleic acid by harnessing
clustered regularly interspaced short palindromic repeats (CRISPER) and CRISPR associated sequences (Cas)
related technology [76–79]. Gootenberg et al. utilized the Cas13a enzyme to develop a platform called Specific
High-Sensitivity Enzymatic Reporter Unlocking (SHERLOCK) that can rapidly detect selected Gram-negative
pathogens and distinguish them from other bacteria [77,78,80,81]. Whether these technologies have clinical utility is
uncertain – to our knowledge they have not been tested on CSF.

Next-generation sequencing (NGS) has the capability to detect a wide variety of pathogens. Two recent studies
used NGS to detect bacterial (S. pneumoniae, H. influenzae, Enterococcus faecium and S. aureus) and viral pathogens
in CSF [82,83]. These reports, combined with literature regarding CSF NGS in subacute meningitis lend themselves
to optimism regarding a potential role for NGS in pathogen detection in difficult to diagnose meningitis, yet, this
field is young and role of NGS in meningitis is unclear [84,85].

Matrix-assisted laser desorption ionization time of flight mass spectrometry
Matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) is routinely being
used in many centers in high-income countries to quickly identify bacteria from blood cultures and recently has been
adapted for use on CSF [2,86,87]. MALDI-TOF MS identifies organisms by comparing the mass spectrum of the test
isolate to the database of reference spectra [86,88]. Hartmeyer et al. described using MALDI-TOF MS to identify S.
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pneumoniae in CSF within 1.5 h from receiving the sample [86,89]. The CSF culture subsequently grew S. pneumoniae,
confirming the diagnosis [86]. Similarly, Segawa et al. described rapid identification of Klebsiella pneumoniae from
CSF by MALDI-TOF MS [89]. The cost of identifying bacteria via MALD-TOF MS is approximately 17–32%
of traditional identification methods although the up-front cost of purchasing the equipment is significant and
performance varies by pathogen [87]. MALDI-TOF MS is limited by the amount of organism present and can be
improved by sample centrifugation [87]. MALDI-TOF MS use for meningitis is experimental at this point but may
hold some promise for future use.

Tuberculosis meningitis
Multiple clinical diagnostic criteria have been developed to identify patients likely to have TBM, however none of
these have proven broadly generalizable, or adequate as the sole tool for diagnosis of TBM [33,90].

Culture & AFB smear
CSF acid-fast bacillus (AFB) smear microscopy and culture are the typical methods of diagnosis of TB meningitis
(TBM) but neither is adequate [91–96]. AFB smear is a microscopic technique that uses Ziehl–Neelsen stain to
visualize organisms under direct microscopy [95]. AFB smear is rapid, affordable and widely available but has
a low sensitivity (10–20%) [27,30,91,93,97,98]. AFB smear can be improved by examination of at least 6 ml of
CSF, examining the sample for at least 30 min or modification of the Ziehl–Neelsen stain using cytospin slides
with Triton processing [30,95,97,99]. Lowenstein–Jensen (LJ) and mycobacterial growth inhibitor tube (MGIT) are
positive in 45–60% of TBM cases but results are too slow for clinical decision making (6 weeks for LJ, 2–4 weeks
for MGIT) [27,91,93,96,98]. Despite sensitivity limitations and biosafety requirements, culture is essential for drug
susceptibility testing [98]. In low-resource settings, biosafety requirements are generally only available at national
reference laboratories, causing diagnostic delay [98].

Host-derived tests
CSF adenosine deaminase has shown sensitivities ranging from 50 to 100% and specificity from 63 to 99%, further,
adenosine deaminase has difficulty distinguishing TBM from bacterial meningitis [47,97,100–102]. CSF adenosine
deaminase cannot be used alone to rule out TBM [97,102,103]. Variable performance, cost and infrastructure
requirements have limited use worldwide [103]. TB IFN-γ release assays measure host T lymphocyte release of
IFN-γ when stimulated by M. tuberculosis specific antigens to diagnose latent and active tuberculosis [91,92]. CSF
IFN-γ release assays show sensitivity of 75–92% and specificity of 90–100% [92,94,99]. IFN-γ release assays are
limited by frequent indeterminate results in those co-infected with HIV, high CSF volume requirement (>2 ml),
laboratory infrastructure and lab personnel training [91,92,94,97,99,103].

Delta-like 1 ligand, fetuin and vitamin D binding protein are other immune biomarkers that have been considered
for TBM, yet have shown limited utility in an African HIV-infected population [104]. Heat shock proteins found at
higher levels in CSF in patients with TBM compared with non-TBM patients and so have been theorized to be a
biomarker for TBM – their role as a potential diagnostic test is not clear [100]. Though no immune markers have
proven to be adequate diagnostic tests for TBM thus far, given the inadequate of performance of any one test to
detect TB bacilli to date in CSF, they may play a role as adjunctive tests in the future [103].

Nucleic acid amplification tests
GeneXpert MTB/Rif (Xpert) is an automated, rapid, cartridge-based PCR assay designed to detect M. tuberculosis
DNA (and rifampin resistance) in clinical samples [26,27,30,47,91,94,105,106]. Xpert has shown variable performance
on CSF in different study populations, but in general has sensitivities similar to culture (50–60%) with a much
more rapid turnaround (∼2 h) [26,27,30,47,94,105,106]. Specificity has generally been excellent, those studies with
possible false-positive results may have been required to label them as such due to the inadequacy of TBM reference
standards – the likelihood of false detection of M. tuberculosis DNA in the CSF in the setting of chronic meningitis
in those without an alternative diagnosis is quite low. The sensitivity of Xpert is higher in HIV-infected individuals,
and when higher volumes (at least 5 ml) of CSF are centrifuged [94,105,107]. This cartridge-based assay is easy to use,
carries low risk for sample cross-contamination, and does not require a specific biological safety environment as does
TB culture [106,108]. However, sensitivity with Xpert is still inadequate, rifampin resistance performance unreliable
and despite lower prices in low-resource settings, the prices of the modules and the cartridges are still relatively
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high. Inadequate negative predictive value makes Xpert unsuitable as a single ‘rule-out’ test for TBM [105,106,109].
Still, this technology has widely adopted in TB endemic countries [94,97].

Subsequently GeneXpert MTB/Rif Ultra (Xpert Ultra) was developed as a new assay using the Xpert platform
to improve sensitivity and performance of rifampin resistance detection and deliver semiquantitative results in
90 min [10,103,110,111]. Xpert showed sensitivity of 95% for microbiologically proven, definitive TBM versus 45%
for Xpert or culture and 70% for probable or definite TBM versus 43% for Xpert or culture [10]. Xpert Ultra has
93–99% negative predictive value versus (90%) for Xpert in TBM depending on the standard used [10,111]. Since
March 2017, the WHO has recommended the use of Xpert Ultra as a replacement for Xpert, however addition
studies are needed to confirm these findings [110].

Amplicor MTB (Cobas, Amplicor) and Amplified M. tuberculosis Direct Test (MTD) are among the commercially
available PCR platforms [112–116]. Amplicor PCR has a sensitivity of ∼40% and specificity of ∼90–100% for TBM,
similar to Xpert [112,114]. Yet, false-positive CSF results with Amplicor have been documents in persons with herpes
encephalitis, staphylococcal spondylitis and cerebral symptoms secondary to drug interactions [113]. Further, these
platforms are generally only located in reference laboratories, require trained laboratory personal, are not fully
contained, and are expensive limiting their broad utility [105,115]. The Gen-Probe amplified M. tuberculosis Direct
test (AMTD) is a transcription-medicated amplification procedure that detects M. tuberculosis complex rNA directly
from specimens [117]. While data on extrapulmonary specimens in general in promising, studies on its use on CSF
specimens are limited [117,118].

LAMP has also been used to diagnose of TBM [94,98,119]. LAMP amplifies DNA in single tube at a constant
temperature in only 60 min, potentially making it more suitable for resource-limited settings [94,98,119]. LAMP
based assays have been compared with conventional PCR and with sensitivities of 88–96% compared with 53%
with conventional in-house PCR [94,99,119]. Despite its advantages, further study is required before widespread
adoption of LAMP. Lastly, as recently noted by Michael Wilson and colleagues, NGS may play a role in detection
of M. tuberculosis in CSF [85].

Other TB meningitis testing
Detection of TB lipoarabinomannan (LAM) in the CSF has been explored as a potential diagnostic technique for
TBM [91,94,98,100,120]. Patel et al. tested CSF for LAM antigen and found a sensitivity of 64% and specificity of
69% for TBM [120]. Cox, et al. found 75% sensitivity and 80% specificity for definite TBM using large volume
postmortem CSF samples, tested with the LAM lateral flow assay (LFA, Alere, MA, USA) [121] Others found zero
positive results among 67 samples (12 with definite TBM) tested with the same LAM LFA on CSF obtained from
LP [122]. Immunocytochemical staining is used to identify antigens within the cytoplasm of macrophages and one
study found a sensitivity of 73% and specificity of up to 100% for TBM in CSF [123]. Although immunocytochemical
staining has been developed into an assay for wider use, it still requires expertise and so its role TBM diagnosis is
uncertain [123].

Diagnostic techniques for multiple types fungal meningitis
1,3-Beta-D-glucan
1,3-Beta-D-glucan (BDG) measurement in CSF has been used to detect a variety of fungi including all fungi
discussed below, yet specificity for any individual fungi is inadequate [14,124,125]. Although it was previously thought
that Cryptococcus did not release sufficient BDG for detection, this was disproven by Rhein and colleagues who
found that among HIV-infected patients with cryptococcal meningitis, BDG showed a sensitivity of 89% and
specificity of 85% compared with cryptococcal antigen detection with higher BDG levels being associated with
mortality [11,125,126]. There remains a FDA-required black-box label incorrectly stating that Cryptococcus does not
produce BDG. CSF BDG has also been studied for Histoplasma meningitis with a sensitivity of 53% and specificity
of 87% [124]. Thus, while BDG may have utility in steering clinicians towards fungal meningitis – BDG is not able
to reliably diagnose any particular fungal pathogen. A positive BDG result should prompt further focused fungal
diagnostics and strong consideration of antifungal therapy.

Next-generation sequencing
NGS is an emerging diagnostic testing platform for subacute and chronic meningitis, including fungal meningitis.
Initial results are promising, however further study is required to fully elucidate the role of NGS in the diagnosis
of fungal meningitis [84,85,127].
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Histoplasma meningitis
CSF culture is the standard for diagnosis of Histoplasma meningitis but is only positive in 19–65% of cases and
growth can take up to 4 weeks [15,27,124,128–131]. Culture can be improved by using at least three samples of at least
10 ml of CSF – impossible in most cases [15,128,131,132].

Antibodies/antigen
Immunodiffusion, complement fixation and enzyme immunoassay (EIA) can be used to detect Histoplasma anti-
bodies in CSF [15,28,124,128–130,133,134]. Moreover, a new IgM and IgG EIA showed sensitivity of 82% (vs 51% for
immunodiffusion or complement fixation) and specificity of 93% to diagnose Histoplasma meningitis [128]. Yet,
antibodies are typically not able to be detected early in infection, and may persist for years after infection [15,135,136].
False-positive CSF results can occur in patients with high levels of serum antibodies due to passive diffusion when
blood–brain barrier is impaired due to inflammation or due to cross-reaction with other fungi [129,137]. Antibody
response may be impaired in immunosuppressed individuals [132].

Histoplasma antigen can be detected in CSF via EIA [15,124,128–130,134]. Multiple generations of EIA have been
designed with the most recent allowing quantification [136]. Antigen sensitivity is as high as 85% when ethy-
lene diamine tetraacetic acid (EDTA) pre-treatment is used [128]. As with antibody testing, false-positive results
can occur due to cross-reactivity with other fungi, passive diffusion across the blood–brain barrier or traumatic
LP [27,128,129,132,136]. Testing for the organism in non-CNS specimens can also be useful when Histoplasma menin-
gitis is secondary to disseminated histoplasmosis [15,27,132,133]. Finally, combined, CSF antigen and antibody testing
have shown synergistic performance in one study [128].

Coccidioides meningitis
Wet mount and cytospin preparation can be used to identify Coccidioides spherules in CSF to confirm diagnosis;
however, the spherules are seen in less than 10% of cases [138–140]. CSF culture is only positive in 15–30% of the cases
of coccidioidal meningitis although using large volumes of CSF can improve yield [27,138,139,141,142]. Eosinophilic
predominance in CSF can be an indicator of coccidioidal meningitis, but is not specific [139,142,143]. Meningeal
biopsy can be used but is invasive and so is rarely used.

CSF anti-coccidioidal antibodies may be detected via immunodiffusion, complement fixation or EIA [27,138–

140,142,144]. Complement fixation has a sensitivity of 59–94% while EIA has sensitivity as high as 85%, both have
excellent specificities [27,138]. Latex agglutination is less sensitive with more false positives [27,145]. Antibodies less
helpful due to limited production early in infection or in immunocompromised persons, and prior (or current)
coccidioidomycosis exposure may lead to antibody leakage from the serum into the CSF leading to false-positive
CSF testing [14,27,138,139,141,142,144,145]. Cross-reaction with may occur with endemic fungi or Cryptococcus [137].

Antigen detection via EIA exhibits 89–93% sensitivity and 100% specificity and as opposed to antibody detection,
may have a role in differentiating immune reconstitution inflammatory syndrome (IRIS) from relapse [138,141].
Limitations include cross-reactivity with other endemic fungi, such as histoplasma [138,141]. Coccidioides antigen
detection is currently available only via reference laboratory, limiting its speed [138]. PCR assays for Coccidioides have
been used but are not routinely available [27]. Testing by more than one modality and specimen type (e.g., urine,
serum, CSF, etc) may increase diagnostic yield [138,145]. For example, one study showed combined antigen and
antibody testing with 98% sensitivity and specificity [138].

Cryptococcal meningitis
The most accurate method to diagnose cryptococcal meningitis is cryptococcal antigen detection although culture
is important in some situations [11]. India ink staining of the CSF for direct identification of Cryptococcus is a
readily available technique however it can be lead to missed diagnosis, sensitivity is as low as 42% when fungal
burden is <1000 colony-forming units/ml, and the best case is 85% sensitivity [11,27,146–148]. Fungal culture
is considered the standard for diagnosis of cryptococcal meningitis, growth can take up to 10 days and false-
negative results can occur with a low fungal burden although using higher CSF volume (100 vs 10 μl) can
improve sensitivity [11,147]. Despite the limitations of quantitative fungal culture, quantitative culture remains
highly clinically useful for monitoring response to treatment and critical for differentiating relapse of cryptococcal
meningitis from IRIS, where cryptococcal antigen detection falls short [26]. The FilmArray ME PCR panel has
the capability of detecting Cryptococcus in CSF but is inadequate compared with antigen testing and it’s exact role
in the diagnosis of cryptococcal meningitis is not well defined [11,149,150]. FilmArray ME has distinct diagnostic
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utility for distinguishing probable culture-positive relapse from culture-negative paradoxical IRIS. NGS can detect
Cryptococcus in CSF samples, but its role is not yet clear [127].

Cryptococcus capsular polysaccharide antigen
Detection of Cryptococcus capsular polysaccharide antigen (CrAg) in CSF, serum, plasma or whole blood is key
to rapid diagnosis of cryptococcal meningitis [11]. This test was previously accomplished via latex agglutination or
EIA; however in 2011 a CrAg lateral flow assay (LFA) was developed [11,146,148,151–153]. CrAg LFA is a point of
care test with results available in 10 min, stability at room temperature (crucial for use in many locations where the
infrastructure for cold-chain storage of tests is not practical), and relatively low cost at US$2 per test [11,26,148,151,152].
CrAg LFA in CSF has sensitivity and specificity as high as 99% with whole blood, serum and plasma, being nearly
as accurate for diagnosis of meningitis [11,27,40,146–148,152,154,155]. This combination of accuracy, rapidity, cost and
heat stability has led to widespread adoption of the CrAg LFA. Yet, lower sensitivity (91%) has been noted with
high fungal burdens due to the pro-zone or hook effect (high cryptococcal load interfering with antigen–antibody
complex of the assay resulting in a false negative) – this issue resolves with dilution (sensitivity 100%) [11,146,156].
In addition, false-positive results have been reported in lower incidence settings at low titers [157]. Importantly,
although a quantitative titer can provide prognostic information, CrAg does not decay at a reliable rate from the
CSF (can remain for years) and so cannot be used to monitor treatment response or differentiate IRIS from fungal
relapse [11,27,146,152].

A recent study identified a group of HIV infected patients with symptomatic meningitis, positive serum CrAg,
but negative CSF testing [158]. Thus, blood CrAg should be obtained in any immunocompromised patient in which
Cryptococcal meningitis is suspected as very low antigen in CSF may be too low to detect while higher levels are
present in the blood while true cryptococcal meningitis exists – this is pathophysiologically plausible given that
Cryptococcus first enters the lungs, then disseminates and eventually seeds the CNS [158]. Because serum CrAg can be
detected in blood 3 weeks prior to the onset of symptoms of meningitis (with typically a median of another 2 weeks
until meningitis diagnosis), targeted serum CrAg screening, can allow detection and treatment of early, subclinical
cryptococcosis and prevention of meningitis [11,151,158,159]. Thus, the World Health Organization (WHO) and
many national HIV guidelines strongly recommend CrAg screening in HIV patients with a CD4 <100 cells/μl
and to consider CrAg screening among CD4 counts 100–200 cells/μl [146,151,158,159].

Blastomyces meningitis
Diagnosis of Blastomyces meningitis is difficult and often delayed [160,161]. CSF culture is the standard diagnostic test
and takes at least 5 days, but may take up to 4 weeks and is only 64% sensitive [27,49,160,162–165]. CSF culture is more
sensitive using fourth ventricle CSF, but this is not practical in most cases [160,162–164]. EIA detection of Blastomyces
antigen in CSF has been reported but diagnostic performance is unclear [160,161]. Given that Blastomyces antigen
testing in other body fluids frequently cross reacts with other fungi (particularly Histoplasma), cross-reaction
in the CSF would be a concern as well [27,160,161]. Serological assays are commercially available for Blastomyces
and can be used on CSF; however, they are of limited utility for diagnosis of meningitis due to low sensitivity
and specificity [27,48,163]. Tissue biopsy or diagnosis of blastomycosis outside of the CNS are other diagnostic
options [49,160,162,163,166].

Aspergillus meningitis
Aspergillus meningitis diagnosis is also difficult and in many cases is not obtained until postmortem examina-
tion [13,45,167]. In a study by Antinori, et al., only 56% of patients were diagnosed prior to death [13]. CSF fungal
culture is only 31% sensitive among all hosts, and 18% in immunocompromised hosts [13,43,44,168,169]. Multiple,
large volume CSF cultures may improve sensitivity [13,167]. Galactomannn antigen is a cell wall polysaccharide
released by Aspergillus that can be detected in body fluids including CSF via ELISA, radioimmunoassay, latex
agglutination or western blot [44]. CSF galactomannan sensitivity is 70–90% and specificity 70–100% [13,27,44,169].
As opposed to cryptococcal antigen, CSF Aspergillus galactomannan antigen declines with treatment and so may
be used to monitor treatment response [167,169]. Cross-reactivity to piperacillin–tazobactam has been reported [44].
Aspergillus antibody detection in CSF is possible but performance is unreliable and although PCR has detected
Aspergillus in CSF, diagnostic performance is unclear [45,167]. Often the diagnosis of Aspergillus meningitis occurs
only after aspergillosis is diagnosed elsewhere [27].
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Viral meningitis
Viral meningitis has significantly less mortality compared with other types of meningitis, and treatment is limited
to supportive measures in most cases [23]. NAATs are often used for diagnosis of specific pathogens. Some argue
that these tests are underutilized, as positive results may allow rapid discontinuation of empiric antibiotics and
decrease length of hospitalization [6,23,52]. Others test only for those viral etiologies with the potential for treatment
(e.g., herpes viruses) or those with the potential for more poor outcomes [23].

Barriers to adoption
The largest barrier to adoption of many of the technologies discussed remains cost, this is particularly true for newer
molecular techniques such as those utilizing CRISPR or NGS. Excellent performance, minimal lab equipment and
personnel training requirements, heat stability and ease of use are all crucial for adoption of new technologies as
well. The CrAg LFA remains the standard to which other diagnostic tests for meningitis must strive. Performance
and cost are optimal. The CrAg LFA test is easy to use and can be performed at the bedside. CrAg LFA does not
require extensive training, a steady electrical supply or cold-chain distribution. For CSF diagnostic tests to be truly
accessible and useful worldwide, all of these attributes must be met. Thus, noncryptococcal meningitis diagnostic
tests continue to require improvements. While syndromic PCR panels are attractive in terms of requiring smaller
volumes of CSF to detect multiple pathogens (e.g., Biofire FilmArray ME), their limitations must be considered.
First, these are only able to detect pathogens that they are designed to detect, which is generally appropriate based
on high-income country epidemiology of meningitis, yet multiplex panels may miss unexpected pathogens, thus a
thorough history and expert physician diagnostic acumen is still required. This seems obvious but the lack of TB in
the panel means this panel is less useful in most low and middle resource countries. Further, to truly use the panel
correctly, one must understand its limitations and supplement the panel as needed (e.g., the FilmArray ME panel
does not eliminate the need for CrAg testing).

Conclusion
Despite the existence of numerous diagnostic techniques, determining the etiology of infectious meningitis remains
difficult and cumbersome in many cases. Delay in diagnosis is a significant contributor to mortality in bacterial,
tuberculosis and fungal meningitis. When evaluating a patient for meningitis, physicians must incorporate many
factors to determine the most appropriate tests to order. CSF volume from an LP should be conserved for use
on tests of the most likely etiology, rather than ordering numerous tests from the start (a common practice in
the era of electronic medical records and auto-populated order sets). Physicians must consider local epidemiology,
duration of symptoms, current and recent medications, current immune status, country of origin, current living
situation, social history, vaccination status and history of travel among other factors. Currently, excellent diagnostic
techniques exist for cryptococcal meningitis along with many bacteria and viruses that cause meningitis. Yet
significant room for improvement exists with other bacteria, viruses, fungi and TB. GeneXpert MTB/Rif Ultra
seems to be a major improvement in the diagnosis of TBM, yet cases are still missed. Thus, additional improvements
in TBM are urgently needed. Cutting-edge technologies such as NGS hold significant promise but require extensive
bioinformatics and sample processing expertise – the role of NGS in meningitis diagnosis is not yet clear.

Future perspective
The field of diagnostic testing in infectious diseases is ever evolving. Impressive strides have been made over the last
5 years in NGS, and these technologies are starting to be used clinically. Newer molecular techniques that utilize
the CRISPR-Cas9 system are in their infancy but may have potential with further investigation. It remains difficult
to assess which new diagnostic techniques will become available in low income setting due to significant monetary
and practical barriers for implementation. Yet, to truly improve diagnosis of meningitis worldwide, diagnostic test
development must focus on these practical issues that affect test availability in many settings worldwide.
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Executive summary

Background
• Infectious meningitis may be due to bacteria, viruses, mycobacteria such as tuberculosis, or fungi (most notably

Cryptococcus neoformans).
• Mortality rates are unacceptably high expect for in viral meningitis.
• Prompt diagnosis and treatment are keys to improving outcomes.
Epidemiology
• Incidence of meningitis due each infectious etiology varies by location, though Sreptococcus pneumoniae

remains the most common cause of bacterial meningitis worldwide.
• Cryptococcus and Mycobacterium tuberculosis are much more common in areas with high rates of HIV and are

the two most common causes of meningitis in sub-Saharan Africa.
General diagnostic tests
• Cerebrospinal fluid (CSF) White cell count and differential, total protein and glucose measurements from CSF are

all helpful tools for diagnosing meningitis. Yet, despite ‘classic’ patterns, these nonspecific markers are not
specific enough for definite diagnosis.

• Those with meningitis due to bacteria or mycobacteria, generally have more inflammatory CSF than those with
viral or fungal meningitis.

Bacterial meningitis
• The mainstay of diagnosis for bacterial meningitis remains CSF culture.
• PCR testing, especially in the form of assays that test for multiple pathogens has the potential to reduce the time

to diagnosis and thus allow for more rapid narrowing of antibiotics.
• MALDI-TOF MS is widely used for detection of bacteria in blood, and has been shown to have the potential for

application to CSF samples and diagnosis of bacterial meningitis.
Tuberculosis meningitis
• While Acid-fast bacilli smear is fast and widely available, its sensitivity is inadequate (<15%).
• Culture is more sensitive, it still detects only 50–60% of TBM and results take multiple weeks.
• Xpert MTB/Rif (GeneXpert) is an automated PCR that can detect M. tuberculosis DNA while simultaneously

testing for genes that correspond to rifampin resistance.
• Xpert MTB/Rif Ultra is more sensitive than Xpert or culture and is now recommended as the first test to be used

to detect tuberculosis meningitis (TBM).
Cryptococcal meningitis
• Diagnosis of cryptococcal meningitis centers around detection of cryptococcal antigen (CrAg) via lateral flow

assay, though culture is often helpful as well.
• Detection of CrAg in serum or plasma is recommended as a screening technique for treatment naive HIV patients

with CD4 counts <100 cells/μl. If positive, fluconazole preemptive therapy is recommended to prevent
cryptococcal meningitis.

Other fungi
• Diagnosis of other types of fungal meningitis remains difficult, and requires a high degree of clinical suspicion

and awareness of geographic endemicity.
• Diagnosis of other forms of fungal meningitis has historically centered around fungal culture, which takes a

significant amount of time and has low diagnostic yield.
• Fungus-specific antibody, antigen or non-specific 1,3-β-D-glucan testing has been utilized.
• Further development of rapid diagnostic techniques are needed, especially with the ever growing

immunosuppressed patient population.
Aseptic meningitis
• Diagnostic techniques for aseptic meningitis, specifically PCR, may be underutilized and could lead to decreased

antibiotic utilization.
• Others argue to only test for those viral etiologies that are treatable, such as Herpes Simplex Virus and defer

testing for entities that do not have a targeted antiviral treatment, such as Enterovirus.
Conclusion & future perspective
• Early diagnosis and treatment remain imperative for good outcomes in meningitis.
• Diagnosis of cryptococcal meningitis is ideal, while bacterial meningitis diagnosis may be accurate if clinicians

maintain a high degree of suspicion.
• GeneXpert MTB/Rif Ultra has the potential to significantly improve diagnosis of TBM but is not adequate to ‘rule

out’ TBM.
• Next-generation sequencing techniques hold excellent potential for diagnosis of sub-acute and chronic

meningitis in particular.
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