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Received: 16 November 2021

Accepted: 16 December 2021

Published: 20 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Anatomy, College of Korean Medicine, Semyung University, Jecheon 27136, Korea;
smkmana@semyung.ac.kr

2 Department of Korean Medical Science, School of Korean Medicine, Pusan National University,
Yangsan 50612, Korea; indiesonne@pusan.ac.kr (S.S.); uk0243@pusan.ac.kr (Y.D.)

3 Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea;
yj.eunice.jo@gmail.com (Y.J.); freefall@skku.edu (D.R.)

4 Department of Korean Pediatrics, School of Korean Medicine, Pusan National University,
Yangsan 50612, Korea

5 Department of Korean Pediatrics, Pusan National University Korean Medicine Hospital,
Yangsan 50612, Korea

* Correspondence: hagis@pusan.ac.kr (K.-T.H.); kkb@pusan.ac.kr (K.K.); Tel.: +82-51-510-8464 (K.-T.H.);
+82-55-360-5952 (K.K.)

Abstract: Background and objectives: The purpose of this study was to confirm the effect of
Galgeunhwanggeumhwangryeon-tang (GGRT) on the skin barrier integrity and inflammation in
an atopic dermatitis-like animal model. Materials and Methods: The model was established using
lipid barrier elimination (LBE) in BALB/c mice. Ceramide 3B, a control drug, and GGRT were
applied to the skin of LBE mice. Gross observation and histological examination were combined with
measurement of skin score, trans-epidermal water loss, and pH. The expression of filaggrin, kallikrein-
related peptidase 7 (KLK7), protease-activated receptor-2 (PAR-2), thymic stromal lymphopoietin
(TSLP), and interleukin 4 (IL-4) was examined. Results: The effect of GGRT on atopic dermatitis was
estimated in silico using two individual gene sets of human atopic dermatitis. In animal experiments,
GGRT treatment reduced atopic dermatitis-like symptoms, as confirmed via gross and histological
observations, skin score, pH change, and trans-epidermal water loss. The expression level of filaggrin
increased in the skin of GGRT-treated mice compared to that in the LBE group. The expression levels
of KLK7, PAR2, TSLP, and IL-4 were decreased in GGRT-treated mice skin compared to those in LBE
mice. Conclusions: We demonstrated that GGRT restored the skin barrier and reduced inflammatory
reactions in a murine model of atopic dermatitis.

Keywords: Galgeunhwanggeumhwangryeon-tang; atopic dermatitis; ceramide; filaggrin; IL-4

1. Introduction

Atopic dermatitis is a chronic inflammatory skin disease that originates from a complex
interaction among various factors [1]. Atopic dermatitis is highly prevalent, affecting up to
20% of children and 1–3% of adults worldwide [2]. The disease generally classified to three
types, i.e., persistent, relapsing, and adult-onset form. Despite many common features in
these forms, there are significant difference between childhood-onset types and adult-onset
type [3]. Patients with atopic dermatitis are at high risk of developing allergic rhinitis and
asthma [1,2]. Several conventional drugs including steroid, calcineurin inhibitors, and
moisturizing creams, are widely, used for treating atopic dermatitis, but often they are not
effective in some patients [1,4]. Thus, novel drugs targeting specific molecules related to T
cell regulation, inflammation, and barrier function are now under struggling [2,5].
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The epidermis plays a critical role in preventing entry of allergens and microorganisms
by providing a physical and functional barrier. Dysfunction of the skin barrier is the first
step in the pathogenesis of atopic dermatitis [6]. Additionally, helper T 2 (Th2)-driven
inflammation is a key factor in the development of the disease [7,8]. The strongest genetic
predisposing factor to atopic dermatitis is loss-of-function mutations in the filaggrin gene,
which is essential for skin barrier function [9,10]. Thus, filaggrin (a key skin barrier-
related protein), as well as Th2-related factors, thymic stromal lymphopoietin (TSLP) and
interleukin (IL)-4, are considered as potential therapeutic targets [7,11].

Galgeunhwanggeumhwangryeon-tang (GGRT), or gegen qinlian decoction in Chi-
nese, is a traditional herbal formula according to Shanghan-lun and has been used to treat
diarrhea accompanied to upper respiratory infection, which is common in children under
5 years [12]. The formula is composed of the roots of four medicinal plants, Pueraria lobata
(Willd) Ohwi, Scutellaria baicalensis George, Coptis japonica Makino, and Glycyrrhiza uralensis
Fischer [13]. Previous pharmacological studies have demonstrated that GGRT affects
several diseases, such as ulcerative colitis, type 2 diabetes mellitus, and acute lung in-
jury [14–16]. The modulation of the gut microbiota is estimated to be a key mechanism
underlying the effects of GGRT on type 2 diabetes mellitus [17]. The herbal formula is
one of the top 20 Shanghan formulae commonly used in traditional Chinese medicine
office visits between 1999 and 2002, according to the National Health Insurance program of
Taiwan [12]. Despite its frequent use and its effect on inflammatory diseases [12,14–17], the
formula has not been used to treat skin disorders, including atopic dermatitis.

In this study, we aimed to investigate whether GGRT affects atopic dermatitis-like skin
inflammation in BALB/c mice with compromised skin barrier. The mechanism underlying
the anti-dermatitis effect of GGRT (skin barrier reconstruction and Th2-mediated immune
response) was also elucidated. These results may open a new therapeutic avenue for the
treatment of atopic dermatitis.

2. Materials and Methods
2.1. Materials

Primary antibodies, including mouse anti-filaggrin (1:100), mouse anti-kallikrein 7
(KLK7; 1:100), mouse anti-protease-activated receptor 2 (PAR-2; 1:100), and mouse anti-
interleukin-4 (IL-4; 1:50), were purchased from Santa Cruz Biotechnology (Santa Cruz,
CA, USA). Mouse anti-thymic stromal lymphopoietin (TSLP; 1:100) antibody was supplied
by Abcam (Cambridge, UK). The standard compounds for identifying the herbal materials
puerarin, daidzin, baicalin, wogonin, berberine, and palmatine, were supplied by the Min-
istry of Food and Drug Safety, Korean Government (MFDS; Cheongju, Korea). Glycyrrhizin
was purchased from the Natural Product Bank of the National Development Institute of
Korean Medicine (Gyeongsan, Korea). Other chemicals and reagents were purchased from
Sigma-Aldrich (St. Louis, MO, USA), unless otherwise indicated.

2.2. Preparation of GGRT Extract

The composition of GGRT is shown in Table 1. The dried materials of the four medici-
nal herbs were purchased from Omniherb Co. (Daegu, Korea). The herbal materials were
authenticated by the botanical expert of Omniherb Co. and were manufactured accord-
ing to the herbal good manufacturing practice (hGMP) regulation controlled by MFDS.
The specimens were kept at the School of Korean Medicine, Pusan National University
(Yangsan, Korea). The dried GGRT material (150 g) was added to 2000 mL of distilled
water, boiled for 3 h, and filtered. The filtrate was concentrated to 50 mL using a rotary
evaporator (Eyela, Tokyo, Japan) and powdered using a freeze drier (Labconco, Kansas,
MO, USA) to obtain 16.4 g of extract (yield: 10.9%). The GGRT extract was diluted in
normal saline to prepare a 5% GGRT extract coating solution.
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Table 1. Composition of galgeunhwanggeumhwangryeon-tang (GGRT).

Scientific Name Botanical Name Marker Compounds Amount (g)

Pueraria lobata (Willd.) Ohwi Puerariae Radix Puerarin, Daidzin 80
Scutellaria baicalensis George Scutellaria Radix Baicalin, Wogonin 20

Coptis japonica Makino Coptidis Rhizoma Berberine, Palmatine 30
Glycyrrhiza uralensis Fischer Glycyrrhiza Radix Glycyrrhizin 20

Total 150

2.3. HPLC Analysis

The phytochemical properties of water extracted GGRT were identified by HPLC
analysis. HPLC analysis was performed using an Agilent HPLC 1200 series system (Agilent
Technologies, Santa Clara, CA, USA), and LC solution software was used to analyze the
data. The ODS group C18 UG120 column (4.6 mm × 250 mm, 5 µm; Osaka Soda Co., Ltd.,
Osaka, Japan) was used as an analytical column. The mobile solvents were acetonitrile
containing 0.1% formic acid (solvent A), and pure water containing 0.1% formic acid
(solvent B); the gradient elution flow was A:B = 15:85 (0–15 min)→ A:B = 22:78 (15–25 min)
→ A:B = 28:72 (25–40 min)→ A:B = 45: 55 (40–41 min)→ A:B = 15:85 (41–50 min) at a flow
rate of 1 mL/min. The oven temperature was 40 ◦C, the ultraviolet detector wavelength
was 265 nm, and the injection volume was 10 µL. GGRT extract (120.6 mg) was dissolved
in 30 mL of methanol, sonicated, and filtered through a 0.45 µm membrane filter. Puerarin,
daidzin, and berberine (0.2 mg/mL), 0.13 mg/mL of palmatine, 0.44 mg/mL of baicalin,
0.26 mg/mL of wogonin, and 0.4 mg/mL of glycyrrhizin were prepared as standard
compounds, according to previous studies [18–21].

2.4. Bioinformatic Analysis

The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was per-
formed using publicly available transcriptomes of human atopic dermatitis tissues as de-
scribed previously [22]. Two independent transcriptomes, GSE157194 [23] and GSE140227,
are available at the Gene Expression Omnibus (GEO) of the National Center for Biotechnol-
ogy Information (NCBI). Gene set enrichment analysis (GSEA; version 4.1.0) and Cytoscape
(version 3.8.2) were used to conduct network analysis of the KEGG pathways. Gene
network analysis presenting the pattern of co-expression in each group was generated
based on Spearman’s correlation. The visualization of Gene Network was conducted using
RStudio (RStudio Desktop v1.4.1717 with R v4.1.1), as previously described [24].

2.5. Animals

Four-week-old male BALB/c mice (OrientBio, Seongnam, Korea) were acclimatized
for 2 weeks in an aseptic breeding apparatus, and then mice weighing 20 ± 1.0 g were
selected and used. Mice were maintained in the animal room at 23–25 ◦C, 55± 10% relative
humidity, and a 12 h light/dark cycle. A standard pellet diet and filtered tap water were
provided ad libitum. Animal experiments were conducted after the approval of the Animal
Experimental Ethics Committee of Pusan National University (IACUC No. PNU-2015-0924).
The care and use of animals were conducted according to the NIH guidelines.

2.6. Induction of Model and Drug Treatment

Experimental animals were divided into four groups, including the control group, lipid
barrier elimination group (LBE), ceramide 3B applied group after lipid barrier elimination
(C3A), and GGRT extract-treated group after lipid barrier removal (GGRT). Ten animals
were assigned to each group. After shaving the dorsal skin of the mice using a depilatory
cream (Body Natur, Nueil-les-Aubiers, France), the stratum corneum (desquamation) was
removed using tape (3M, St. Paul, MN, USA). After applying 500 µL of 10% sodium
dodecyl sulfate (Sigma-Aldrich), the lipid lamella of the stratum corneum was removed by
rubbing it 20 times using a cotton swab. Then, 100 µL of 5% GGRT extract dissolved in
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isotonic sodium chloride solution was applied to the lipid lamella-removed skin of mice in
the GGRT group for 3 days. Isotonic sodium chloride solution (100 µL) and 5% ceramide
3B (Ecofactory, Incheon, Korea) in isotonic sodium chloride solution were used as negative
and positive control drugs, respectively, and were applied to C3A group mice for 3 days
after removing the lipid lamella.

2.7. Evaluation of Skin Dermatitis Severity

The severity of morphology in the dorsal skin was evaluated after 3 weeks and
compared with the baseline. The skin score items were (1) erythema/hemorrhage,
(2) scarring/dryness, (3) edema, and (4) excoriation/erosion was scored as 0 (none),
1 (mild), 2 (moderate), or 3 (severe). The sum of the individual scores was defined as the
atopic skin score [25].

2.8. TEWL and pH Measurement

Three days after the removal of the fat barrier, trans-epidermal water loss (TEWL),
and changes in skin pH were measured. TEWL was measured with a vapometer (Delfin
Technologies, Kuopio, Finland), and skin pH changes were measured using Skin-O-Mat
(SM815, CK Electronics, Cologne, Germany).

2.9. Tissue Chemistry

Cardiac perfusion fixation was performed on the skin with a vascular rinse and 10%
neutral buffered formalin (NBF). After the obtained dorsal skin was fixed in 10% NBF
for 24 h, it was embedded in paraffin using a conventional method, and serial sections
were made with a thickness of 5 µm. Serial sections were observed after staining with
hematoxylin and eosin.

2.10. Immunohistochemistry

For immunohistochemical staining, antibodies against filaggrin, KLK7, PAR-2, TSLP,
and IL-4 were used. First, the skin sections were subjected to proteolysis in proteinase
K (20 µg/µL; Agilent Dako, Santa Clara, CA, USA) for 5 min and then treated with
10% normal goat serum (Vector Lab, Burlingame, CA, USA) containing 1% fetal bovine
serum (Sigma-Aldrich) for 1 h. Then, the appropriate primary antibody was reacted in a
humidified chamber at 4 ◦C for 72 h. The secondary antibody, biotinylated goat anti-mouse
IgG (1:100, Abcam), was linked for 24 h at room temperature and reacted with an avidin-
biotin complex kit (Vector Lab) for 1 h at room temperature. After color development in
0.05 M Tris-HCl buffer (pH 7.4) containing 0.05% 3,3′-diaminobenzidine and 0.01% HCl,
counterstaining was performed with hematoxylin.

2.11. Image Analysis

The results of immunohistochemistry were quantified by image analysis using Image
Pro 10 (Media Cybernetics, Rockville, MD, USA). After randomly selecting 10 skin samples
from each group, they were photographed at ×400 magnification, and then images were
analyzed with positive pixels (intensity 80–100)/2 × 107 pixels.

2.12. Statistical Analysis

For statistical analysis, the experimental data were analyzed using SPSS software
(SPSS 25, SPSS Inc., Chicago, IL, USA). All results are expressed as mean ± standard
deviation (SD). The statistically significant differences were verified using one-way analysis
of variance (ANOVA) and Tukey’s post-hoc test. Statistical significance was set at p < 0.05.

3. Results
3.1. Identification of GGRT Extract by HPLC Analysis

To evaluate the phytochemical properties of the GGRT extract, high-performance
liquid chromatography (HPLC) analysis was conducted using water extracted GGRT and
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a mixture of standard compounds. Seven previously known compounds, such as puerarin,
daidzin, berberine, palmatine, baicalin, wogonin, and glycyrrhizin [18–21], which were
found in the four herbal medicines in GGRT, were confirmed (Figure 1).

Figure 1. High-performance liquid chromatography (HPLC) fingerprinting analysis of GGRT extract. (A) HPLC chro-
matogram of GGRT was monitored with an ultraviolet detector of 265 nm wavelength. (B) The mixture of standard
compounds was also analyzed under the same conditions as GGRT.

3.2. Human Transcriptomic Analysis Indicates GGRT as a Therapeutic for Atopic Dermatitis

According to a recent systems pharmacological study that revealed the mechanism
of action (MOA) of GGRT using a multi-omics approach, including transcriptomic KEGG
enrichment and metabolomic analyses [16], the targets corresponding to each component
of GGRT were related to inflammatory signaling pathways, such as NF-κB, TNF-α, HIF-1,
Toll-like receptor, NOD-like receptor, adipocytokine, and chemokines (summarized in
Supplementary Figure S1). We conducted KEGG enrichment analysis using two different
transcriptomes from 57 or 6 human atopic dermatitis patients (GSE157194 and GSE140227,
available at the NCBI GEO). The results showed that 12 signaling pathways, Toll-like
receptor, T cell receptor, nucleotide-binding oligomerization domain (NOD)-like receptor,
retinoic acid-inducible gene I (RIG-I)-like receptor, chemokine, neurotrophin, vascular
endothelial cell growth factor (VEGF), sphingolipids, calcium, adipocytokine, mammalian
target of rapamycin (mTOR), and mitogen-activated protein kinase (MAPK), among 22 of
the predicted GGRT-related pathways were commonly upregulated in the atopic dermatitis
lesion (Figure 2A,C). Detailed information of the KEGG enrichment analysis is shown
in Supplementary Tables S1 and S2. KEGG network analysis revealed that the two inde-
pendent gene sets showed very similar network patterns, and seven signaling pathways
among GGRT-related KEGG pathways (chemokine, neurotrophin, RIG-I-like receptor, Toll-
like receptor, T cell receptor, MAPK, and VEGF), were commonly upregulated in the two
independent human atopic dermal transcriptomes (Figure 2B,D). In addition to GGRT-
related pathways, signaling pathways associated with autoimmunity, mitochondria, and
cancer were also upregulated in both KEGG network analyses. Furthermore, gene network
analysis based on Spearman’s correlation revealed that genes encoding the previously
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proposed factors [16] mediating the MOA of GGRT were tightly correlated with each other
and generated a co-expressing gene network in the lesions of atopic dermatitis (Figure 2E).
Interestingly, the number of correlated genes, which were visualized with edges, was
increased in skin lesions of atopic dermatitis patients compared to non-lesional sites. These
results of human atopic dermal transcriptomic analysis led us to hypothesize that GGRT is
a possible therapeutic candidate for atopic dermatitis.

Figure 2. In silico prediction for GGRT treatment of atopic dermatitis. (A,C) The enhanced pathways of GSEA KEGG
enrichment analysis for potential targets of GGRT in two individual gene sets (GSE157194 and GSE140227). (B,D) The
potential targets of GGRT were overlapped on the KEGG network analysis of two individual gene sets (GSE157194 and
GSE140227). Red dot represent enriched pathways in atopic dermatitis lesions and the blue dots represent enriched
pathways in non-disease lesions. Green characters mean the pathways are related to GGRT. (E) Gene networks in non-
lesional and lesional skins from atopic dermatitis patients were generated based on correlations (Spearman’s Rho > |0.6|
and p < 0.05) among genes, known to mediate the mechanism of action of GGRT. Each edge represents Spearman’s Rho of
two connected genes. The red or blue gradient color of each edge indicates a positive or negative correlation, respectively.
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3.3. GGRT Restores the Skin Lipid Barrier

To validate this hypothesis, we evaluated the effects of GGRT in rodent models
of dermatitis. First, a histological analysis was performed. After the fat barrier was
removed, macroscopic observation of the skin in the lipid barrier elimination (LBE)
group demonstrated severe dermatitis signs, including scarring at the edge boundary,
and erythema, hemorrhage, and erosion in the center of the excoriated skin. In ceramide
3B (C3A) and GGRT-treated mice, the dermatitis symptoms and size of the lesion were
reduced compared to those in the LBE group (Figure 3A). Histochemical findings showed
structural changes, such as epithelial cell hyperplasia, expansion of the intercellular
space of the spinous layer, increased lymphocyte infiltration, and collapse of the basal
layer, in LBE mice. These changes were reduced in the skin of the C3A and GGRT groups.
The structural damage was more markedly recovered in the GGRT group than in the
C3A group (Figure 3B).

Figure 3. The effects of GGRT on lipid barrier elimination-induced atopic dermatitis lesions. The atopic dermatitis was
induced by the elimination of the lipid barrier by SDS application. Isotonic sodium chloride solution, 5% ceramide, and 5%
GGRT were administrated to lipid-eliminated mice skins for 3 days. (A) Photographs of skins were taken for macroscopic
observation. (B) The fixed skins underwent H&E staining for histopathological examination. Bar size, 50 µm. (C–E) Skin
score, TEWL, and pH were examined. *, p < 0.05 compared with LBE; #, p < 0.05 compared with C3A. Abbreviations: Ctrl,
healthy control group; LBE, normal saline-treated group after lipid barrier elimination; C3A, 5% ceramide 3B treated group
after lipid barrier elimination; GGRT, 5% GGRT extract treated group after lipid barrier elimination; TEWL, trans-epidermal
water loss; H&E, hematoxylin and eosin; EP, epithelium.
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The skin score was elevated in the LBE group (9.7 ± 0.27) compared to that in
the control group (0.4 ± 0.15), whereas it was significantly reduced in the C3A group
(6.9 ± 0.25) and the GGRT group (5.4 ± 0.2) (Figure 3C). Trans-epidermal water loss
(TEWL) increased approximately 19-fold in the LBE group (278 ± 6 g/m2h) than in the
control group (14 ± 1.4 g/m2h). In the C3A (227 ± 7 g/m2h) and GGRT (183 ± 8 g/m2h)
groups, the TEWL was reduced 15-fold and 12-fold from the LBE group, respectively
(Figure 3D). The skin pH also increased in the LBE (8.38 ± 0.09) group from that in the
control group (5.72 ± 0.05). The elevated pH in the LBE group was markedly reduced in
the C3A (7.54 ± 0.04) and GGRT (6.88 ± 0.08) groups (Figure 3E).

3.4. GGRT Recovers the Skin Barrier-Related Proteins

The expression level of filaggrin, a key regulator of the skin barrier in atopic dermati-
tis [26], in the LBE group (7962± 328/2× 107 pixels) was significantly lower than that in the
control group (34,276 ± 818/2 × 107 pixels). Conversely, filaggrin expression levels in the
C3A (41,039± 622/2× 107 pixels) and GGRT (49,842± 557/2× 107 pixels) groups were sig-
nificantly higher than that in the LBE group (Figure 4A,B). The expression level of kallikrein-
related peptidase 7 (KLK7), an atopic dermatitis-associated serine protease [27], was ele-
vated approximately 8-fold in the LBE group (61,577 ± 1080/2 × 107 pixels) compared to
that of the control group (6771 ± 399/2 × 107 pixels). In C3A (49,673 ± 1133/2 × 107 pixels)
and GGRT (27,420 ± 1183/2 × 107 pixels) groups, the KLK7 expression level was signifi-
cantly reduced from that in the LBE group (Figure 4C,D). The expression level of protease-
activated receptor-2 (PAR-2), a key receptor regulating inflammation and ichthyosis in
barrier-damaged skin [28,29], was higher in the LBE group (69,165 ± 1235/
2 × 107 pixels) by approximately 8.7-fold compared to that in the control group
(7084 ± 359/2 × 107 pixels). Compared to that in the LBE group, the PAP-2 expression
levels in C3A (52,380 ± 1189/2 × 107 pixels) and GGRT (23,217 ± 1245/2 × 107 pixels)
groups were 76% and 34% lower, respectively (Figure 4E,F). From these results, GGRT was
more effective at recovering the expression of skin barrier-related proteins compared to the
control drug, C3A.

3.5. GGRT Reduces the Th2-Related Inflammatory Factors

The expression level of TSLP, a key factor for promoting Th2 response in atopic
dermatitis [30], was elevated by approximately 9.8-fold in the skin of LBE group mice
(71,974 ± 1066/2 × 107 pixels) than in the skin of control group mice (6659 ± 343/
2 × 107 pixels). In the C3A (52,004 ± 872/2 × 107 pixels) and GGRT (28,621 ± 793/
2 × 107 pixels) groups, TSLP expression level was significantly reduced to 72% and 40%
compared to the LBE group, respectively (Figure 5A,B). The expression level of IL-4,
a representative Th2-skewing cytokine [31], was also strongly elevated in the dermal
papilla of LBE group mice (72,845 ± 954/2 × 107 pixels) compared to that of the control
group mice (7164 ± 371/2 × 107 pixels), up to approximately 9-fold. IL-4 expression
levels in the C3A (61,106± 1139/2× 107 pixels) and GGRT (29,596 ± 987/2 × 107 pixels)
groups were markedly decreased to 84% and 41% compared to those in the LBE group,
respectively (Figure 5C,D). The results demonstrated that the effect of GGRT on the
expression of Th2-related proteins was more prominent than that of the positive
control, C3A.
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Figure 4. The effect of GGRT on the expression of skin barrier-related proteins. Atopic dermatitis was induced by elimination
of the lipid barrier via SDS application. Isotonic sodium chloride solution, 5% ceramide, and 5% GGRT were administrated
to lipid-eliminated mice skins for 3 days. (A,C,E) Filaggrin, KLK7, and PAR-2 (arrows indicate light brown particle) were
visualized by immunohistochemistry using corresponding antibodies. Bar size, 50 µm. (B,D,E) The densitometric data is
shown as positively stained cells per 2 × 107 pixels of images for each protein. *, p < 0.05 compared with LBE; #, p < 0.05
compared with C3A. Abbreviations: Ctrl, healthy control group; LBE, normal saline-treated group after lipid barrier
elimination; C3A, 5% ceramide 3B treated group after lipid barrier elimination; GGRT, 5% GGRT extract treated group after
lipid barrier elimination; SC, stratum corneum; EP, epithelium.
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Figure 5. The effect of GGRT on the regulation of Th2 differentiation-related proteins. Atopic dermatitis was induced by the
elimination of the lipid barrier via SDS application. Isotonic sodium chloride solution, 5% ceramide, and 5% GGRT were
administered to lipid-eliminated mice skins for 3 days. (A,C) TSLP and IL-4 (arrows indicate light brown particle) were
visualized by immunohistochemistry using corresponding antibody. Bar size, 50 µm. (B,D) The densitometric data is shown
as positively stained cells per 2 × 107 pixels of images for each protein. *, p < 0.05 compared with LBE; #, p < 0.05 compared
with C3A. (E) Schematic representation of inhibition of GGRT on the LBE-induced atopic-like dermatitis. Abbreviations:
Ctrl, healthy control group; LBE, normal saline-treated group after lipid barrier elimination; C3A, 5% ceramide 3B treated
group after lipid barrier elimination; GGRT, 5% GGRT extract treated group after lipid barrier elimination; EP, epithelium.
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4. Discussion

Symptoms of atopic dermatitis, such as itchy, dry skin, and eczema erythematosus,
are caused by damaged skin barriers [6,11,32]. The epidermis functions a protective barrier
by forming a stratum corneum structure composed of corneocytes, cornified envelopes,
lamellar membrane lipids, intercorneocyte lipids, and corneodesmosomes [33]. The corni-
fied protein envelope of keratinocytes, comprising proteins such as involucrin, loricrin, and
trichohyalin, is crucial for maintaining the integrity of the physical barrier [34,35]. In the
stratum corneum of patients with atopic dermatitis, levels of lipids (including ceramide),
which function as a barrier, and retained water are diminished [36–38]. Therefore, minimiz-
ing and recovering damage to the skin barrier has been the focus of research to develop
therapeutics for preventing or treating atopic dermatitis [6,11]. Thus, in this study, we
focused on the effect of herbal formulas on the recovery of the skin barrier using a lipid
barrier-damaged mouse model.

Filaggrin, a filament-associated protein, connects the outer keratinocytes and keratin,
and firmly adheres and fixes keratin in the stratum corneum [39]. It also maintains the
skin barrier by binding proteins such as involucrin, loricrin, and keratin [6,40]. Filaggrin
loss-of-function mutations cause skin barrier damage and IgE sensitization in patients with
atopic dermatitis [10,41,42]. Filaggrin is also decomposed by enzymes and thereby binds
with water to act as a moisturizing factor [43]. It also plays other protective roles, such
as pH control and UV filtration, in the stratum corneum [26,42]. In normal skin tissues,
proteolytic enzymes involved in the exfoliation of keratinocytes are tightly regulated by the
pH of the stratum corneum [3]. In atopic dermatitis patients, the pH of the atopic lesions is
generally higher than that of healthy skin [44].

When the pH increases in the stratum corneum of patients with atopic dermatitis for
various reasons, the activity of serine proteases, including kallikrein 5 protease, is markedly
increased and destroys the skin barrier in the murine atopic dermatitis model [45]. The
expression level of KLK7, a physiological activator of caspase 14, and the enzyme initiating
the degradation of filaggrin, is mostly increased in human and murine atopic dermatitis
tissues [27,46]. A series of proteolytic processes triggers the activation of PAR-2, a type
of G protein-coupled receptor that senses cleaved amino-terminus small peptides, and
consequently causes Th2 inflammation and skin pruritus [28,47]. The activation of PAR-2
stimulates the homing of Th2 cells by increasing the expression levels of Th2-related
cytokines, such as TSLP and IL-4 [30,48]. Because PAR-2 inactivation directly reduces the
expression level of TSLP, PAR-2 has been regarded as a therapeutic target for treating atopic
dermatitis [49,50]. In addition, TSLP plays a critical role in the production of IL-4 from Th2
cells in atopic dermatitis through crosstalk between epithelial cells and dermal dendritic
cells [30,51]. Thus, secretion of IL-4, a typical cytokine related to Th2 cells, induces excessive
inflammation through several pathways, including secretion of IgE and activation of the Fc
ε receptor [31,52,53].

In the present study, elimination of the lipid barrier increased skin pH, TEWL,
and skin score. The expression level of filaggrin, a barrier-forming protein, was re-
duced by lipid barrier deprivation, whereas the expression levels of KLK7, PAR-2, TSLP,
and IL-4 were significantly increased. Treatment with C3A and GGRT effectively re-
duced the indices of atopic dermatitis, such as pH, TEWL, and skin score. In addi-
tion, the expression level of filaggrin was reduced by C3A and GGRT treatment, and
the expression levels of dermatitis-related proteins, including KLK7, PAR-2, TSLP, and
IL-4, were markedly recovered. Furthermore, GGRT recovered the expression of skin
barrier- and dermatitis-related proteins more effectively than the control drug, C3A. These
results demonstrate that the GGRT extract reduced atopic dermatitis-like symptoms by
recovering skin barrier-related proteins and suppressing Th2-related inflammation. How-
ever, in this study, we could not specify the precise mode of action (MoA) underlying the
ameliorating effect of GGRT on barrier elimination-induced model of atopic dermatitis. As
herbal formulas are composed of several different herbal medicines and thus have complex
components, it is difficult to identify the direct molecular targets or precise pathways. To
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elucidate the MoA, further extensive studies examining the active compounds and their
molecular targets are required.

In traditional medicine in Eastern Asia, atopic dermatitis is considered to originate
from fetal heat, a group of diseases with heat manifestations occurring in the newborn
due to the contraction of heat toxin in the fetal stage [54,55]. Thus, herbal medicines that
produce a cooling effect are widely used clinically for the treatment of atopic dermati-
tis [56]. Although GGRT has not been clinically used to treat atopic dermatitis, herbal
medicines, such as P. lobata, S. baicalensis, C. japonica, and G. uralensis, and their active
compounds, including puerarin, licoricidin, and magnoflorine, were previously considered
as candidates for treating atopic dermatitis [56–62]. In addition, previous experimental and
clinical studies on GGRT revealed that the herbal formula has a pharmacological effect on
diabetes mellitus, dyslipidemia, ulcerative colitis, and acute lung injury [14–17,63–65]. The
mechanisms underlying the effect of GGRT on these diseases were estimated and evaluated
by several in silico multi-omics and network pharmacological studies [14–17,64,66,67].
From these previous studies on the ingredients and in silico studies, we estimated that
GGRT might have a potent effect on atopic dermatitis and evaluated its effectiveness using
the lipid barrier elimination model in mice.

Furthermore, the ingredient compounds contained in GGRT are previously known
as possible anti-atopic dermatitis. Puerarin reduced the atopic dermatitis-like skin
lesion through suppressing inflammatory responses [59]. A metabolite of diadzin,
7,8,4′-Trihydroxyisoflavone also ameliorates the 2,4-dinitrochlorobenzene-induced atopic
dermatitis-like symptoms and pro-inflammatory cytokines [59]. Wogonin also increased
the antioxidant gene, heme oxygenase 1 and reduced mite antigen-induced thymus- and
activation-regulated chemokine expression in human keratinocyte [68]. Berberine showed
anti-atopic dermatitis effect through reducing cutaneous eukaryotic translation initia-
tion factor 3-mucosa-associated lymphoid tissue lymphoma translocation protein 1 path-
way [69]. The MoA of these natural products is not corresponding to protection of skin
barrier. However, several studies showed that these compounds, including puerarin,
berberine, and wogonin, regulated the mammalian target of rapamycin (mTOR) and signal
transducer and activator of transcription 3 (STAT3) [70–75]. The mTOR and STAT3 signal-
ing pathways have been known as crucial for maintaining homeostasis of skin barrier in
pathophysiology of atopic dermatitis [76,77]. Thus, we postulate that these mechanisms
might be involved in the anti-atopic dermatitis effect of GGRT or their ingredient. To assess
the possibility, the further extensive studies are needed.

In this study, we first confirmed that GGRT influences skin barrier recovery and exerts
anti-inflammatory effects on atopic dermatitis. The effect of GGRT on dermatitis was much
greater than that of the control drug, ceramide, in terms of skin barrier reconstitution and
inflammation relief. However, this study has several limitations, including safety concerns
and application route. Although GGRT is generally administered orally in clinical settings,
we applied the herbal formula topically. The formula has been orally administered up to
62 g for 8 weeks in several clinical studies [78]. Thus, we assume that the dose used in
this study, 5% in normal saline, is too low to induce any safety issues, because the dermal
absorption rate is much lower than that in the gastrointestinal tract [79]. In addition, since
this study is limited to animal experiments, it only suggests the possibility of efficacy
in humans. To confirm the clinical efficacy and safety, further studies and clinical trials
are needed.

5. Conclusions

In this study, we evaluated the therapeutic efficacy of GGRT extract on an atopic
dermatitis-like damaged skin model. GGRT recovered the damaged skin as confirmed
by gross examination, histopathological observation, and measurement of TEWL and
pH. Proteins related to skin barrier structure, such as filaggrin, KLK7, and PAR-2, were
recovered in GGRT-treated mice. In addition, the LBE-stimulated expression levels of
TSLP and IL-4, key regulators of Th2-related inflammation, were significantly decreased by
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GGRT treatment. From these results, we suggest that topical application of GGRT extract
on skin with damaged lipid barrier might help recover the skin barrier integrity and relieve
the inflammatory response.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/medicina57121387/s1. Figure S1: The KEGG signaling pathways predicted as potential
GGRT targets. Table S1: KEGG enrichment analysis of GSE157194. Table S2: KEGG enrichment
analysis of GSE140227.
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