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Abstract: Rearranged during transfection proto-oncogene (RET) fusions represent a potentially
targetable oncogenic driver in non-small cell lung cancer (NSCLC). Imaging features and metastatic
patterns of advanced RET fusion-positive (RET+) NSCLC are not well established. Our goal was
to compare the imaging features and patterns of metastases in RET+, ALK+ and ROS1+ NSCLC.
Patients with RET+, ALK+, or ROS1+ NSCLC seen at our institution between January 2014 and
December 2018 with available pre-treatment imaging were identified. The clinicopathologic features,
imaging characteristics, and the distribution of metastases were reviewed and compared. We
identified 215 patients with NSCLC harboring RET, ALK, or ROS1 gene fusion (RET = 32; ALK = 116;
ROS1 = 67). Patients with RET+ NSCLC were older at presentation compared to ALK+ and ROS1+

patients (median age: RET = 64 years; ALK = 51 years, p < 0.001; ROS = 54 years, p = 0.042) and
had a higher frequency of neuroendocrine histology (RET = 12%; ALK = 2%, p = 0.025; ROS1 = 0%,
p = 0.010). Primary tumors in RET+ patients were more likely to be peripheral (RET = 69%; ALK = 47%,
p = 0.029; ROS1 = 36%, p = 0.003), whereas lobar location, size, and density were comparable across
the three groups. RET+ NSCLC was associated with a higher frequency of brain metastases at
diagnosis compared to ROS1+ NSCLC (RET = 32%, ROS1 = 10%; p = 0.039. Metastatic patterns
were otherwise similar across the three molecular subgroups, with high incidences of lymphangitic
carcinomatosis, pleural metastases, and sclerotic bone metastases. RET+ NSCLC shares several
distinct radiologic features and metastatic spread with ALK+ and ROS1+ NSCLC. These features
may suggest the presence of RET fusions and help identify patients who may benefit from further
molecular genotyping.

Keywords: lung cancer; RET rearrangement; mutation; radiology

1. Introduction

Chromosomal rearrangements are an important class of driver oncogene alterations in non-small
cell lung cancer (NSCLC). Validated examples of oncogenic fusion drivers in NSCLC include anaplastic
lymphoma kinase (ALK) and ROS1 gene fusions [1–4]. Advanced NSCLC harboring either ALK or
ROS1 fusion can be effectively treated with tyrosine kinase inhibitors (TKIs) targeting ALK or ROS1,
respectively, and several ALK/ROS1 tyrosine kinase inhibitors (TKIs) are now approved by the United
States Food and Drug Administration.
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Fusions involving the rearranged during transfection proto-oncogene (RET) occur in 1–2% of
NSCLC [5–7], and are more commonly seen in patients with minimal to no smoking history and
adenocarcinoma histologic subtype, reminiscent of ALK and ROS1 fusions [8–11]. RET fusions are
mutually exclusive with other oncogenic drivers such as ALK and ROS1 fusions. Until recently,
RET-selective TKIs were not available, and multitargeted TKIs with anti-RET activity such as
cabozantinib and vandetanib were therefore tested in patients with advanced RET fusion-positive
(RET+) NSCLC, with modest activity and significant toxicities [12–21]. More recently, two highly
potent, RET-selective TKIs, BLU-667 and LOXO-292, have entered the clinic (ClinicalTrials.gov identifier
NCT03037385 and NCT03157128, respectively). Both of these agents have demonstrated promising
preliminary safety and efficacy profiles in patients with advanced solid tumors harboring RET
alterations, including RET+ NSCLC [15,22–25].

Prior studies have suggested distinct imaging features that may be seen in NSCLCs harboring
specific driver mutations, including ALK and ROS1 fusions [26–35]. Less is known, however, regarding
the radiologic features of advanced RET+ NSCLC. Here, we performed a retrospective analysis to
determine the imaging features and metastatic patterns of advanced RET+ NSCLC, specifically as
compared to those of ALK+ and ROS1+ NSCLC, the most common oncogenic fusions in lung cancer.

2. Results

2.1. Patient Characteristics

The study included 215 patients with advanced NSCLC harboring either RET, ALK, or ROS1 gene
fusions (RET: 32; ALK: 116; ROS1: 67). Baseline characteristics of these patients are summarized in
Table 1. Patients with RET+NSCLC were older at initial diagnosis compared to those with ALK+ or
ROS1+ NSCLC (median age: RET: 64 years vs ALK: 51 years, p < 0.001; vs ROS1: 54 years, p = 0.042).
While the majority of tumors in all three molecular subgroups had adenocarcinoma histology, there was
a higher frequency of neuroendocrine histology among RET+ tumors included in this study (RET: 12%
vs ALK: 2%, p = 0.025; vs ROS1: 0%, p = 0.010). A higher proportion of RET+ patients in this cohort
presented initially with stage I-II disease (RET: 25% vs ALK: 6%, p = 0.004; vs ROS1: 7%, p = 0.023).

Table 1. Clinicopathologic features of patients with RET, ALK, and ROS1 fusion-positive NSCLC.

Clinical Feature RET ALK ROS1 RET vs. ALK RET vs. ROS1

(N = 32) (N = 116) (N = 67) p-Value p-Value

Age
Median 64 51 54 <0.0001 0.042
Range (42–83) (19–75) (23–89)

Sex
Female 14 (44%) 66 (57%) 49 (73%) 0.230 0.007
Male 18 (56%) 50 (43%) 18 (27%)
Race

Caucasian 26 (81%) 90 (78%) 49 (73%) 0.868 0.378
Asian 5 (16%) 17 (15%) 10 (15%)
Other 1 (3%) 9 (8%) 8 (12%)

Smoking history
Never 23 (72%) 87 (75%) 45 (67%) 0.820 0.817

Prior/current 9 (28%) 29 (25%) 22 (33%)
Tumor histology
Adenocarcinoma 28 (88%) 108 (93%) 67 (100%) 0.025 0.010
Neuroendocrine 4 (12%) 2 (2%) 0

Other 0 6 (5%) 0
Stage

I-II 8 (25%) 7 (6%) 5 (7%) 0.0044 0.023
III 2 (6%) 22 (19%) 13 (19%)
IV 22 (69%) 87 (75%) 49 (73%)

Statistically significant p-values are highlighted.

ClinicalTrials.gov
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2.2. Imaging Features of the Primary Tumor

We first evaluated the radiologic features of the primary tumor in RET+ NSCLC compared to
ALK+ or ROS1+ NSCLC. RET+ primary tumors were more likely to be peripheral in location compared
to ALK+ and ROS1+ tumors (RET: 69% vs ALK: 47%, p = 0.029; vs ROS1: 36%, p = 0.003). Otherwise,
no significant differences were observed among the three groups with respect to primary tumor size,
density, or lobar location (Table 2). A vast majority of the primary tumors were solid in density. Air
bronchograms, cavities, and calcifications were infrequently observed in all three subgroups without a
significant difference.

Table 2. Imaging features of the primary tumor in patients with RET, ALK, or ROS1
fusion-positive NSCLC.

Imaging Feature RET ALK ROS1 RET vs. ALK RET vs. ROS1

(N = 32) (N = 116) (N = 67) p-Value p-Value

Tumor size (mm)
Median 32 41 33 0.258 0.836
Range (9–89) (5–115) (10–126)
≥3 cm 19 (59%) 80 (69%) 37 (55%) 0.396 0.829

Density
Solid 30 (94%) 115 (99%) 64 (96%) 0.118 0.657
Subsolid 2 (6%) 1 (1%) 3 (4%)

Other features
Air bronchograms 2 (6%) 7 (6%) 3 (4%) 1.000 0.657
Cavitation 0 7 (6%) 2 (3%) 0.347 1.000
Calcification 0 0 0

Tumor location
RUL 4 (12%) 28 (24%) 14 (21%) 0.249 0.477
RML 6 (19%) 10 (9%) 10 (15%)
RLL 8 (25%) 24 (21%) 19 (28%)
LUL 8 (25%) 22 (19%) 8 (12%)
LLL 6 (19%) 32 (28%) 16 (24%)

Lobar level
Lower 14 (44%) 56 (48%) 35 (52%) 0.693 0.521
Upper 18 (56%) 60 (52%) 32 (48%)

Laterality
Left 14 (44%) 54 (47%) 24 (36%) 0.843 0.510
Right 18 (56%) 62 (53%) 43 (64%)

Axial location
Central 10 (31%) 62 (53%) 43 (64%) 0.029 0.003
Peripheral 22 (69%) 54 (47%) 24 (36%)

RUL = right upper lobe; RML = right middle lobe; RLL = right lower lobe; LUL = left upper lobe; LLL = left lower
lobe. Statistically significant p-values are highlighted.

2.3. Patterns of Metastases

We next compared patterns of metastases at initial diagnosis as validated by radiologic imaging
among the three gene fusion groups, as summarized in Table 3. A higher frequency of brain metastasis
was noted at initial diagnosis in RET+ NSCLC compared to ROS1+ NSCLC (RET: 32% vs ROS1: 10%;
p = 0.039); however, the frequency of brain metastasis at initial diagnosis was not significantly different
between RET+ and ALK+ NSCLC (RET: 32% vs ALK: 25%; p = 0.592). The incidences of lung, pleural,
lymphangitic, or pericardial spread were comparable across the three molecular subgroups. All three
fusion cohorts had a high incidence of extrathoracic metastases (detected in 59%–77% of patients),
including to the bone, without a significant difference (Table 3). Sclerotic-type bone metastases were
common in the three molecular subgroups (RET: 80% vs ALK: 68%, p = 0.703; vs ROS1: 56%; p = 0.399).
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Table 3. Patterns of metastatic sites among patients with advanced RET, ALK, or ROS1
fusion-positive NSCLC.

Metastatic Site RET ALK ROS1 RET vs. ALK RET vs. ROS1

(N = 22) (N = 87) (N = 49) p-Value p-Value

Intrathoracic 14 (64%) 64 (74%) 41 (84%) 0.429 0.074
Lung 4 (18%) 18 (21%) 18 (37%) 1.000 0.167

Pleural 10 (45%) 35 (40%) 20 (41%) 0.809 0.797
Lymphangitic
carcinomatosis 6 (27%) 35 (40%) 21 (43%) 0.329 0.292

Pericardium 1 (5%) 2 (2%) 2 (4%) 0.495 1.000
Extrathoracic 17 (77%) 65 (75%) 29 (59%) 1.000 0.183

Bone 10 (45%) 41 (47%) 16 (33%) 1.000 0.425
Sclerotic metastasis 8 (80%) 28 (68%) 9 (56%) 0.703 0.399

Liver 3 (14%) 21 (24%) 10 (20%) 0.393 0.741
Brain 7 (32%) 22 (25%) 5 (10%) 0.592 0.039

Distant lymph nodes 5 (23%) 17 (20%) 8 (16%) 0.769 0.524
Adrenal 4 (18%) 6 (7%) 7 (14%) 0.114 0.729

Soft tissue 1 (5%) 5 (6%) 1 (2%) 1.000 0.527

3. Discussion

RET fusions are a targetable oncogenic driver in NSCLC, with two promising RET-selective
inhibitors now on the horizon [15,22–24]. To our knowledge, this is the largest study to date to
systematically assess the imaging features of the primary tumor and patterns of distant metastases in
advanced RET+ NSCLC, in comparison to ALK+ and ROS1+ NSCLC. Our findings revealed that the
primary tumors in advanced RET+ NSCLC tended to be solid in density and not typically associated
with air bronchograms, cavitation, or calcification, similar to ALK+ and ROS1+ NSCLC. However,
primary RET+ tumors were more likely to be peripheral rather than central in location. All three
fusion subgroups were relatively frequently associated with pleural metastases and lymphangitic
carcinomatosis and extrathoracic metastases, brain, and bone metastases, at initial presentation. When
bone metastases were present, these tended to be sclerotic rather than lytic.

These findings add to the emerging literature evaluating radiologic features and metastatic
patterns in tumors harboring specific oncogenic drivers. Several prior studies have reported that
certain imaging features may suggest the presence of gene alterations in NSCLC, and that the presence
of these radiologic features may therefore help with triaging patients for expedited or repeat molecular
testing when clinically warranted [26–28,36–40]. The available data on the imaging features of RET+
NSCLC are more limited [31,38,39]. While molecular testing of the more common targetable alterations,
including EGFR mutations and ALK fusions, in advanced NSCLC is recommended by national and
international lung cancer guidelines, testing for RET fusions has not yet been as widely adopted, at least
partly owing to the dearth of selective RET inhibitors until recently [41,42]. In select patients with
clinical and imaging features suggestive of RET+ NSCLC—and in the absence of other well-validated
targets such as EGFR or BRAF mutations, ALK or ROS1 fusions on initial genotyping—it would be
prudent to consider further testing for RET fusions so as to potentially expand effective treatment
options for these patients.

In our cohort, the RET+ NSCLC primary tumors were mostly solid without associated air
bronchograms, cavitation, or calcification (Figure 1). These primary tumor imaging features are not
significantly different compared to the ALK+ and ROS1+ NSCLC tumors included in our cohort (Table 2)
or compared to prior reports on ALK or ROS1+ tumors [26,31,37,38,43]. In this study, the primary RET+

tumors were more commonly peripheral rather than central in location, concordant with available
literature [38,39]. Plodkowski et al. similarly reported that RET+NSCLC had an increased tendency for
peripheral location [38]. However, their main comparison subgroup included EGFR-mutant NSCLC,
rather than ALK+ NSCLC. Comparison with ALK+ NSCLC may be of added utility given the significant
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overlap in the clinical features of the two fusion driver subgroups [8,18,44,45]. An additional study by
Saiki et al. also suggested that most primary tumors in RET+ NSCLC were peripherally located [39].
The peripheral propensity of RET+ tumors may have potential diagnostic or therapeutic implications,
such as approaches to tissue sampling, surgery, or the delivery of radiation [46–48].
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Figure 1. Representative imaging features in a 62-year-old female with RET+ NSCLC. Pretreatment 
CT shows a solid nodule in the peripheral right upper lobe (A, arrow) and associated septal and 
peribronchial thickening consistent with lymphangitic carcinomatosis (A,B, arrowheads). There was 

Figure 1. Representative imaging features in a 62-year-old female with RET+ NSCLC. Pretreatment
CT shows a solid nodule in the peripheral right upper lobe (A, arrow) and associated septal and
peribronchial thickening consistent with lymphangitic carcinomatosis (A,B, arrowheads). There was
also an associated malignant pleural effusion (C, arrow), mediastinal and hilar lymphadenopathy
(C, arrowheads), and a sclerotic osseous metastasis of the first lumbar vertebral body (D, arrow).

The frequency of brain metastases at initial diagnosis of advanced RET+ NSCLC observed in
our study is noteworthy. Approximately a third (32%) of patients with RET+ NSCLC were found to
have baseline brain metastases at initial diagnosis, which is comparable to the incidence detected in
ALK+ NSCLC and higher than that in ROS1+ NSCLC (Table 3). Previous studies have suggested that
ALK+ NSCLC may be associated with a higher frequency of brain metastases at initial diagnosis and
cumulatively [34], and that RET+ NSCLC may be associated with a significant cumulative incidence
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of brain metastases during patients’ disease course (at a level intermediate between that observed
in ALK+ NSCLC and ROS1+ NSCLC) [35]. The significant incidence of brain metastases in RET+

disease underscores the importance of developing RET-targeted therapeutic agents with robust central
nervous system (CNS) activity. In this regard, both RET-selective TKIs, BLU-667 and LOXO-292 have
demonstrated preliminary encouraging CNS activity in patients with advanced RET+ NSCLC and
baseline brain metastases [19,23,25,35].

The patients with RET+ NSCLC in our cohort, otherwise, shared similar patterns of metastases to
those with ALK+ or ROS1+NSCLC, including high frequencies of pleural and bone metastases and
lymphangitic carcinomatosis (Table 3; Figure 1). Notably, the osseous metastases in all three fusion
subgroups tended to be predominantly sclerotic, rather than lytic as has previously been associated
with NSCLC (Figure 1) [49,50]. To our knowledge, no prior studies have reported the propensity
for sclerotic bone metastases in RET+. Notably, a similar predilection for sclerotic bone metastases
has been reported in ALK+, or ROS1+ NSCLC [29,40]. The molecular mechanisms underlying the
propensity for the development of sclerotic osseous metastases in these fusion-driven lung cancers
remain to be studied.

Our study had several limitations. Although this is the largest study to date to assess the
imaging features and metastatic patterns in RET+ NSCLC, our cohort is still relatively small due to the
rarity of RET alterations in NSCLC overall. Thus, the statistical power was limited in determining
significant differences among the three molecular subgroups. The moderate sample sizes also precluded
multivariable analysis adjusting for confounding factors to obtain stable and precise estimates of any
effect size. The data were collected retrospectively from a single institution, predisposing to selection
and referral bias and potentially limiting their generalizability to larger populations. Additionally,
the study did not evaluate for differences between RET+ NSCLC and oncogenic subsets of NSCLC
other than ALK+ or ROS1+ NSCLC (such as EGFR-mutant NSCLC, BRAF-mutant NSCLC, etc.).
These comparator cohorts were chosen because ALK and ROS1 fusions represent two well-validated
fusion targets in NSCLC. Despite these limitations, our findings add to the growing understanding
of the clinical and radiologic features of RET+ NSCLC. In select patients with clinical and imaging
features suggestive of RET+ NSCLC, and negative testing for EGFR, BRAF, ALK, or ROS1 alterations,
further molecular testing for RET fusions may be advisable.

4. Materials and Methods

4.1. Patient Identification

This retrospective study was performed under an institutional review board-approved protocol
(Partners Human Research Protocol #: 2019P000198). Patients were eligible if they fulfilled the
following criteria: (1) had the diagnosis of advanced/metastatic NSCLC with a RET, ALK, or ROS1
fusion confirmed by locally accepted testing at the time of presentation (e.g., fluorescent in situ
hybridization, polymerase chain reaction, next-generation sequencing, and/or immunohistochemistry
(for ALK)); (2) were seen in the thoracic oncology clinic of Massachusetts General Hospital between
January 2014 and December 2018; and (3) had pre-treatment imaging performed at our institution,
or at another facility, with the examination uploaded into the picture archiving and communication
system (PACS) for radiologist review. The testing method used to detect the driver mutations varied
depending on when the patient presented. Clinicopathologic data were extracted from the electronic
medical records, including patient age, sex, race, smoking history, tumor histology, and stage of disease
at initial diagnosis per the American Joint Committee on Cancer TNM Staging, 7th edition.

4.2. Imaging Review and Analysis

Baseline imaging data obtained at diagnosis prior to the initiation of therapy (e.g., surgery,
radiation, or systemic therapy) were selected and reviewed on the institutional PACS (AGFA Impax
6, Mortsel, Belgium). Required imaging studies included, at minimum, computed tomography (CT)
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scans of the chest, abdomen, and pelvis with or without concurrent fluorodeoxyglucose (FDG)-positron
emission tomography (PET), and CT and/or magnetic resonance imaging (MRI) of the brain. Radiologic
findings were determined by consensus between two radiologists (S.R.D. and D.P.M.).

When a primary tumor was identifiable, CT features of the primary tumor were analyzed
with regard to its size, lobe, axial location (i.e., central versus peripheral), density (i.e., solid versus
subsolid), and the presence or absence of cavitation, air bronchograms, or calcification. Images were
also assessed for lymphadenopathy and thickening of the interstitium suggestive of lymphangitic
carcinomatosis. A lymph node was considered malignant if it measured greater than 1 cm in its short
axis and/or had increased FDG uptake on 18-FDG PET imaging. Malignant lymph nodes were recorded
as ipsilateral or contralateral, and as hilar, mediastinal, supraclavicular, or distant (e.g., cervical,
axillary, intra-abdominal, etc.). Other sites examined for evidence of metastases included the lungs,
pleura, pericardium, liver, adrenal glands, other visceral organs (e.g., spleen, kidney), brains, bones,
and subcutaneous soft tissues. Bone metastases were additionally classified as predominantly lytic
versus predominantly blastic or sclerotic.

4.3. Statistical Analysis

To preserve power given modest sample sizes, we performed pairwise comparisons between
patients with RET+ NSCLC and patients with ALK+ or ROS1+ NSCLC. Fisher’s exact test was used
to compare clinicopathologic characteristics of patients and imaging features of the primary tumor
between molecular subgroups as well as distribution of metastatic sites among patients with advanced
NSCLC. Wilcoxon rank-sum test was used to analyze the age distribution at initial diagnosis. Data
analysis was performed using SAS 9.4 (SAS Institute Inc., Cary, NC, USA), and p-values were reported
for two-sided tests.

5. Conclusions

RET+ NSCLC shares several radiologic features with ALK+ and ROS1+ NSCLC, including
solid density of the primary tumor and high frequencies of lymphangitic carcinomatosis and pleural,
brain, and bone metastases. When bone metastases are present, these are often sclerotic in nature.
These imaging features may suggest the presence of RET fusions and help triage those patients who
may benefit from further molecular genotyping.
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