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Despite extensive direct sequencing efforts and advanced analytical tools, reconstructing
microbial genomes from soil using metagenomics have been challenging due to the
tremendous diversity and relatively uniform distribution of genomes found in this system.
Here we used enrichment techniques in an attempt to decrease the complexity of a soil
microbiome prior to sequencing by submitting it to a range of physical and chemical
stresses in 23 separate microcosms for 4 months. The metagenomic analysis of these
microcosms at the end of the treatment yielded 540Mb of assembly using standard
de novo assembly techniques (a total of 559,555 genes and 29,176 functions), from
which we could recover novel bacterial genomes, plasmids and phages. The recovered
genomes belonged to Leifsonia (n = 2), Rhodanobacter (n = 5), Acidobacteria (n = 2),
Sporolactobacillus (n = 2, novel nitrogen fixing taxon), Ktedonobacter (n = 1, second
representative of the family Ktedonobacteraceae), Streptomyces (n = 3, novel polyketide
synthase modules), and Burkholderia (n = 2, includes mega-plasmids conferring
mercury resistance). Assembled genomes averaged to 5.9 Mb, with relative abundances
ranging from rare (<0.0001%) to relatively abundant (>0.01%) in the original soil
microbiome. Furthermore, we detected them in samples collected from geographically
distant locations, particularly more in temperate soils compared to samples originating
from high-latitude soils and deserts. To the best of our knowledge, this study is the first
successful attempt to assemble multiple bacterial genomes directly from a soil sample.
Our findings demonstrate that developing pertinent enrichment conditions can stimulate
environmental genomic discoveries that would have been impossible to achieve with
canonical approaches that focus solely upon post-sequencing data treatment.
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Introduction

Soil microbial communities might display the highest level of bacterial diversity of any
environment with a single gram reported to contain about a billion cells making up thousands
to millions of different taxa (Torsvik et al., 2002; Gans et al., 2005; Roesch et al., 2007).
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These microorganisms harbor a large portion of Earth’s biomass
and are responsible for a range of critical functions including
those that affect climate (Falkowski et al., 2000; Finzi et al.,
2011), agriculture production (Kennedy and Smith, 1995; Giller
et al., 1997), bioremediation (Galvão et al., 2005; Boubakri
et al., 2006), pharmaceutical and other industrial applications
(Malpartida and Hopwood, 1984; Daniel, 2004; Jacquiod et al.,
2013). However, despite advances in both data generation and
analysis methods during the last decade, genomic recovery from
soil still represents the most critical bottleneck to develop an
understanding of the evolutionary history, range of adaptation
and functions of soil microorganisms.

Metagenomic approaches (the analysis of DNA recovered
from the environment) have been developed to by-pass the
limitations associated with cultivation efforts (Stahl et al., 1984;
Handelsman et al., 1998; Rondon et al., 2000) and are now
widely used to estimate the structure and functional potential
of microorganisms found in soil samples (Tringe et al., 2005;
Delmont et al., 2011b, 2012; Mackelprang et al., 2011; Fierer et al.,
2012; Jacquiod et al., 2013; David et al., 2014; Nesme et al., 2014).
Today, most soil metagenomic studies rely on taxonomic or
functional annotation of short reads based on curated databases.
However, the limited sensitivity of short reads restrains the fuller
explanation of the available sequencing information (Wommack
et al., 2008; Delmont et al., 2011a).

A more biologically promising yet computationally
challenging alternative is to assemble short reads back together
to reconstruct genomes and other genetic structures in a de novo
manner. This approach was successfully conducted in various
environments, including acid mine drainage biofilms (Tyson
et al., 2004), sludges (Garcia Martin et al., 2006; Albertsen et al.,
2013), human feces (Sharon et al., 2013), cow rumen (Hess et al.,
2011), permafrost soil (Mackelprang et al., 2011), hypersaline
lakes (Narasingarao et al., 2012), hot spring microbial mat (Liu
et al., 2012) and hydrothermal plumes (Anantharaman et al.,
2013). However, the genetic distance between the different
members of the ecosystem affects the efficiency of the assembly
process (Luo et al., 2012; Mende et al., 2012; Albertsen et al.,
2013; Nielsen et al., 2014), leading to a drastic decline of recovery
in metagenomic assemblies of complex communities.

Soil samples harbor large numbers of uniformly distributed
microbial genomes, and approaches that work for other
environments fail to recover genomes from soil in a systematical
manner as they quickly hit the computational limitations of
assembly algorithms. As a consequence, recovering even themost
abundant genomes from temperate soils through metagenomic
assembly approaches have yet to be accomplished (Delmont et al.,
2012; Pell et al., 2012; Howe et al., 2014). For instance, Howe
et al. (2014) generated 1.8 and 3.3 billion reads from two soil
metagenomes, yet the length of genetic structures they could
assemble remained below 21 kb and 3 kb, respectively. Today,
the challenge to recover large genetic structures from a soil
metagenome is unlikely to be addressed with deeper sequencing.
However, employing biologically relevant modifications that take
place before sequencing can reduce the complexity of challenges
that arise after sequencing. For instance, we hypothesize that
altering the structure of a soil microbiome in order to reduce

its complexity by favoring the emergence of dominant microbial
populations can improve metagenomic assemblies.

Microcosm enrichment is a common approach in
bioremediation (i.e., employing microbes to degrade toxic
chemical compounds) and bioprospecting (Wagner-Döbler
et al., 1998; Ibekwe et al., 2001; Yakimov et al., 2005; McKew
et al., 2007). Enrichment studies were also used in combination
with metagenomics to recover new functions from soil
(Jacquiod et al., 2013; David et al., 2014; Delmont et al., 2014)
and successfully recovered novel genomes from less diverse
environments (McIlroy et al., 2013). Here, we implement an
enrichment-based “divide and conquer” approach in an attempt
to reconstruct novel bacterial genomes directly from a soil
sample collected from the Long-term Park Grass experiment,
Rothamsted, UK, where previous efforts to reconstruct genomes
using direct sequencing approaches failed (Delmont et al., 2012).
We divided our soil sample into 23 identical microcosms and
subjected them to various environmental stress conditions
(ESCs), including mercury, ethanol, and diesel enrichments, in
an attempt to stimulate different parts of the microbiome. After
4 months of treatment, we extracted, sequenced and assembled
genetic material from these microcosms.

Material and Methods

Sampling
A soil sample from the top 21 centimeters of the ground was
collected in July 2010 from the Park Grass experiment (Vogel
et al., 2009), Rothamsted Research, Hertfordshire, UK, using
sterile manual corers (10 cm diameter) and was placed in sterile
plastic bags, sealed and placed at room temperature 24 h while
it was transported to Lyon, France. The sample was then sieved
(2mm) and directly used for the microcosm experiment.

Microcosm Conditions
Microcosms were done in triplicates (50 g of soil in each
microcosm), stored at room temperature (except for the high
temperature condition), without light, and were hermetically
closed during the experiment. Following ESCs applied to each
microcosm: ESC C (control): 5ml of purified water was sprayed
for control; ESC 1: 5ml of purified water with ethanol (20%
of the volume) was sprayed for ethanol enrichment; ESC 2:
5ml of purified water with NaCl (30 g/L) was sprayed for salt
enrichment #1; ESC 3: 5ml of purified water with NaCl (300
g/L, salt saturation) was sprayed for salt enrichment #2; ESC 4:
5ml of purified water was sprayed and then microcosms were
incubated at 37◦C for high temperature condition; ESC 5: 5ml of
purified water was sprayed and then, the microcosm atmosphere
was replaced by nitrogen gas for nitrogen atmospheric condition;
ESC 6: 5ml of purified water with diesel (for a final concentration
of 50 g/kg of soil) was sprayed for diesel enrichment; ESC 7:
5ml of purified water with heavy metals (zinc, cadmium, nickel,
and cobalt, for a final concentration of 0.2 g/kg of soil for
each metal) was sprayed for heavy metals enrichment #1; ESC
8: 5ml of purified water with heavy metals (zinc, cadmium,
nickel, and cobalt, for a final concentration of 2 g/kg of soil for
each metal) was sprayed for heavy metals enrichment #2; ESC
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9: 5ml of purified water with inorganic mercury (HgCl2 for a
final concentration of 0.02 g/kg of soil) was sprayed for mercury
enrichment #1; ESC 10: 5ml of purified water with inorganic
mercury (HgCl2 for a final concentration of 0.2 g/kg of soil
for each metal) was sprayed for mercury enrichment #2. Note
that microcosms were aerated (by opening the cap for about a
minute) every week to renewing the normal air condition. For the
nitrogen condition (ESC 5), this step was immediately followed
by replacing the air with nitrogen gas.

DNA Extraction, Quantification, and Fingerprint
Analyzes
After 4 months of incubation, DNA samples were extracted from
0.5 g of soil using the MP BIO 1O1 fast prep (Biomedical,
Eschwege, Germany), a protocol known to be relatively efficient
for this particular soil (Delmont et al., 2011b). Samples were
purified using GFX columns (GE Healthcare) (final volume of
40 microliters) and the DNA was finally quantified using the
Qubit R© (1.0) Fluorometer. A minimum of six DNA extractions
were used to estimate the quantity of DNA extracted and
purified from each microcosm. Ribosomal intergenic spacer
analyzes (RISA) were done for each microcosm to study
condition reproducibility in term of microbial community
relative composition. See (Delmont et al., 2011b) for more details
about RISA analyses. RISA profiles were reproducible for all ESCs
but the mercury enrichment #2 were an outlier microcosm was
detected (Figure S1).

Metagenomic Sequencing
A minimum of 10µg of DNA were used to generate
metagenomic libraries for each Roche/454 pyrosequencing run
on a 454 pyrosequencer (GS FLX Titanium Series Reagents;
Roche 454; Shirley, NY, USA). In a first phase, pair-end
sequencing was done on duplicate microcosms of each ESC
(about one million reads per microcosm). As an exception, the
three replicates of the mercury enrichment #2 were sequenced
due to a low reproducibility of one microcosm observed using
RISA profiles. Thus, 23 metagenomic data were generated. In
a second phase, a mate-pair sequencing effort with 3 kb of gap
was done for duplicates corresponding to 3 promising ESCs:
heavy metals enrichment #2 (one million reads each), mercury
enrichment #1 (two million reads each) and the outlier replicate
of the mercury enrichment #2 (one million reads). Duplicates
corresponding to the ethanol enrichment were also further
sequenced, however, due to the high fragmentation of the DNA
recovered from this ESC, additional sequencing was done with
paired-end library preparation instead of mate-pair.

Data Analyses
Raw metagenomic reads were annotated using MG-RAST
(Meyer et al., 2008). Detected functions and taxa were normalized
to 100% in each sample, and a Kruskal–Wallis test was performed
for Pfams and genera using the R package vegan (Oksanen
et al., 2007). Metagenomic data were also sequentially assembled
(Newbler software v.05, assembly requirement of 96% identity
over a minimum length of 100 nt, with reads limited to
one contig/scaffold). Coverage, GC-content and tetranucleotide

frequency information was used to bin contigs/scaffold into
draft genomes. Visualization of this information was done
using in-house Python programs. Genomes and other genetic
structures reconstructed were subsequently annotated using
RAST (Aziz et al., 2008) and visualized using Artemis and
DNAPlotter (Carver et al., 2009). Completions estimates were
done using a collection of single-copy genes (Wu and Eisen,
2008). Metagenomic datasets were then mapped to these genetic
structures (using CLC v.6 and a mapping requirement of 97%
and 90% identity over the full read length) to estimate their
distribution in the different microcosms as well as in the natural
microbial community (Delmont et al., 2012) and in communities
from distant soil biomes (Fierer et al., 2012). Positive detection
was defined when a minimum of 10 reads from the targeted
structure were detected in the selected dataset. Gephi v0.8.2
(Bastian et al., 2009) was used to generate functional networks
(Force Atlas 2) connecting different collections of reconstructed
genomes and an exhaustive list of genomes affiliated to the same
taxonomy available in NCBI in April 2014: 24 Streptomyces,
18 Chloroflexi, 10 Acidobacteria, 6 Rhodanobacter, and 3
Sporolactobacillus. In parallel, sequences related to the 16S
rRNA gene were screened from metagenomic datasets using
RDP (Cole et al., 2009) database through MG-RAST (Meyer
et al., 2008) with a minimum of 200 nt of alignment and
90% identity. Sequences so collected were partitioned by genus
and independently assembled on Newbler (100 nt alignment,
99% identity minimum, reads limited to one contig) to create
consensus sequences. The metagenomic dataset is publically
available at http://www.genomenviron.org/Projects/METASOIL.
html. Draft genomes are publically available at http://dx.doi.
org/10.6084/m9.figshare.1320632 and in the NCBI Bioproject
PRJNA279807.

16S rRNA Gene Amplicons
A 16S rRNA gene amplification step was done for DNA pools
extracted from the seven microcosms targeted during the second
sequencing phase as well as one microcosm representing the
control condition. Primers pA (5′ AGA GTT TGA TCC TGG
CTC AG 3′) and pH (5′ AAG GAG GTG ATC CAG CCG CA
3′) were used for this amplification. PCR products were then
gel-purified (GE Healthcare illustra GFX PCR DNA and Gel
Band Purification Kit) and cloned in a TOPO-TA using the
TOPO-TA cloning kit for Sequencing (Invitrogen). 96 clones
for each microcosm condition were randomly selected and
inoculated in a 96 well plate. After TOPO-TA vector extraction,
inserts were sequenced with Sanger Technology (Beckmann
Coulter Genomics). Both primer M13for (5′ TGT AAA ACG
ACG GCC AGT 3) and primer M13rev (5′ CAG GAA ACA
GCT ATG ACC 3′) reactions were done. Sequences obtained
with forward and reverse reactions were assembled and vector-
purified with Seqman Software (Lasergen Seqman DNASTAR).
Consensus sequences were then compiled by dataset for further
data analysis.

Taxonomical Inference
Genomic taxonomical affiliation was inferred using information
extracted from (i) global sequence similarity with the RAST
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collection of genomes (Aziz et al., 2008), (ii) full or fragmented
16S rRNA genes present in assembled genomes, (iii) sequences
related to 16S rRNA gene assembled after their screening at the
genus level in unassembled metagenomic datasets, and (iv) 16S
rRNA gene amplicon datasets.

Results and Discussion

ESCs Stimulate the Reconstruction of Genetic
Material from the Soil Microbiome
We sequenced the genetic material of two microcosms for each
ESC as well as the outlier microcosm replicate of the mercury
enrichment #2 (see Figure S1), thus generating 23 metagenomic
datasets. 1.05 (± 0.17) million pyrosequencing reads of about 350
nucleotides were generated for each microcosm, representing a
total of 24.05 million reads. We combined the 23 unassembled
metagenomic dataset with the 13 dataset previously generated
from the natural community of the same site for community
composition comparison purposes (Delmont et al., 2012).
The latter dataset was generated with the same sequencing
strategy and provides background regarding the natural and
methodological fluctuation of the Park Grass soil microbiome.
MG-RAST identified 4,081 genera and 8,541 distinct protein
families (Pfams) from the combined datasets (Tables S1, S2).
Among these, several taxonomical groups and Pfams varied
significantly between different conditions (Kruskal-Wallis test, p-
value < 0.05), indicating that the microcosm strategy initiated
a shift in the composition of the initial microbial community
(Figure 1). Overall, the proportion of Alphaproteobacteria
decreased in all ESCs, which benefited various ESC-specific taxa
(e.g., Ktedonobacter, Bacilli, Betaproteobacteria). We detected

positive selective pressure effect on functions directly related
to ESCs: the Pfam related to Cobalt-zinc-cadmium resistance
protein CzcD was more prevalent under the heavy metal
enrichment #2, anaerobic cytochrome c552 was higher in soil
under nitrogen gas atmosphere, and mercury resistance operon
regulatory protein was higher in the mercury enrichments.
Moreover, some functions were reproducibly detected only
under specific conditions, such as IncI1 plasmid conjugative
transfer DNA primase in microcosms from the heavy metal
enrichment #2.

For most ESCs, we observed a decrease in the total amount
of DNA, suggesting overall population declines throughout the
incubation period (Figure S2). DNA extraction yield varied
from 14.6 (± 2.7) µg to 0.7 (± 0.4) µg per gram of soil
depending on the ESC while it was about 25µg for the
untreated sample. However, the taxonomical and functional
shifts indicated that the ESCs impacted different parts of the soil
microbiome, providing access to distinct genomic populations
through assembly. We assembled each metagenome obtained
from microcosms separately, and RAST annotation identified
a total of 386,684 genes (average length of 451 nt) in contigs
ranging from 0.1 to 300 kb, with 59% of them longer than
1 kb. Assembly efficiency and average length of genes were
substantially enhanced for many of the ESCs in comparison
to our controls (Figures 2A–D). Interestingly, although some
conditions, such as Nitrogen headspace, provided a different
community structure, they did not enhance the assembly,
suggesting that a large number of microbial populations were
co-selected. 52.4% of the genes were successfully annotated in
RAST (Table S3) and affiliated to 24,291 different functions,
most of which were related to Bacteria. We detected three
times more functions through ∼400 thousand assembled genes

FIGURE 1 | Graphs represent the relative distribution of 4 bacterial
taxa using M5NR databases (A) and Pfams (B) in the 36
metagenomic datasets when annotated in MG-RAST. E-value
cut-off was defined as 10-5. P-values were defined using distribution

variations between conditions (Kruskal-Wallis test). X-axes identify
different ESCs: C, control; 1, ethanol; 2, salt #1; 3, salt #2; 4, 37◦C; 5,
nitrogen; 6, diesel; 7, heavy metals #1; 8, heavy metals #2; 9, mercury
#1; 10, mercury #2.
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FIGURE 2 | Panels (A,B) represent the relative percentage of
assembled reads and longest reconstructed contig after
assembling the 23 datasets, respectively. Panels (C,D) represent the
number and percentage of genes longer than 1kb recovered from these
assemblies, respectively. For (A–D), X-axes identify different ESCs. Finally,
(E) represents a functional network linking the 23 assembled
metagenomic datasets and the 24,291 distinct functions annotated from

these assemblies. The network was generated using Gephi and Force
Atlas 2 and represents a total of 85,188 connections. Datasets are
colored and have a size depending on the number of different functions
they are connected to. In all panels, ESCs represent the following
conditions; C, control; 1, ethanol; 2, salt #1; 3, salt #2; 4, 37◦C; 5,
nitrogen; 6, diesel; 7, heavy metals #1; 8, heavy metals #2; 9, mercury
#1; 10, mercury #2.

with RAST, compared to ∼36 million unassembled reads using
MG-RAST. This functional recovery represents a significant
achievement in comparison to what was previously detected
from the direct sequencing effort of the Park Grass microbial
community (Delmont et al., 2012).

Our network analysis connecting 24,291 functions to
microcosms they originate demonstrated the efficacy of multiple
ESCs to stimulate the recovery of different functional pools
(Figure 2E). In particular, the mercury enrichment #1 provided
a total of 3,155 unique functions from 68,450 assembled genes,
representing an 18-fold increase compared to controls (176
unique functions only). Overall, this analysis showed that
ethanol, heavy metals and mercury ESCs resulted in highest rates
of gene and function recovery through metagenomic assemblies.

We Assembled 1% of the Soil Microbiome and
Recovered Novel Bacterial Genomes
We performed additional sequencing for seven microcosms
that showed highest potential for recovery of genomes
(ethanol enrichment, heavy metals enrichment #2 and mercury
enrichments #1 and #2) based on metagenomic assembly scores
(Figure 2). Assembly of the additional data resulted in genetic
structures up to 4 Mb and lead to a total recovery of 334,576
coding genes and 3,820 RNAs from these seven microcosms
using about 6 Gb of sequencing. Overall, we recovered 540
Mb of genetic material that harbors 559,555 genes (average
length of 466 nt, includes 56,228 genes longer than 1,000 nt)

representing 29,176 functions. This genetic material constitutes
1–2.5% of this soil microbiome at 97–90% identity cut-off,
respectively. Ninety-seven percent identity cut-off complies
with strain variation and sequencing errors and was selected for
downstream analysis of the Park Grass soil microbiome. We used
a tetranucleotide frequency-based supervised binning approach
to identify draft genomes using contigs and scaffolds longer than
10 kb (Figure 3). In most cases, clusters displayed stable coverage
and GC-content scores. Contigs that make up draft genomes
of similar taxonomical affiliation most of the time organized in
the same tetranucleotide frequency cluster, or showed consistent
coverage when they were split into multiple clusters (Figure 3).

We determined a total of 17 draft genomes from these
microcosms. Table 1 reports the functional properties and
taxonomical affiliations of these genomes, which represent
Leifsonia (n = 2), Rhodanobacter (n = 5), Acidobacteria
(n = 2), Sporolactobacillus (n = 2), Ktedonobacter (n =
1), Streptomyces (n = 3), and Burkholderia (n = 2). They
carry between 2,637 and 9,051 genes and possess a global GC-
content ranging from 47.3% to 71%. Our analysis of single-
copy gene families revealed that 11 of 17 bacterial genomes
with no close relatives in their microcosms were 97% complete
in average (Table 1). In contrast, the same analysis for the
remaining 6 draft genomes that co-occur with their close relatives
in microcosms they were found (i.e., two Streptomyces genomes
and the two Burkholderia genomes) estimated that they were
61% complete in average, despite their large sizes (up to 9.3Mb
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FIGURE 3 | Panels (A–D) exhibit the metagenomic assemblies
(genetic structures reaching 10kb only) recovered from the Mercury
enrichments 2 (19.5Mb) and 1 (33.8Mb), heavy metals enrichment 2
(12Mb) and ethanol enrichment (10 Mb), respectively. We applied a
mapping requirement of 97% identity to estimate coverage values. Genetic
structures are organized in trees based on their tetranucleotide frequency
(Euclidean distance) and were subsequently fragmented into sections of

20 kb displaying the same color in the first outer cycle. Therefore, each
section in the tree represents a genetic structure ranging from 10 to 20 kb
(length is displayed in the second outer cycle in black). Mean coverage (third
outer cycle) and GC-content (forth outer cycle) are display for each section to
assess the coherence of clusters. Finally, draft genomes determined from
these assemblies are presented in the last outer cycle as well as in the tree
itself.

and 9Mb for Burkholderia and Streptomyces, respectively). As
an alternative approach we compared these draft genomes to
the best matching reference genomes available using the best-
hit function implemented in RAST. Our analysis indicated that
the two Streptomyces draft genomes (Mer-2-A and Mer-2-B)
covered 81% and 83% of the gold standard genome Streptomyces
avermitilis MA-4680, respectively. Similarly, although single-
copy gene analysis estimated only 45% and 36% completion for
the two Burkholderia draft genomes, they covered 87–90% of the
gold standard Burkholderia xenovorans LB400 chromosome 1.

These contrasting findings suggest that draft genome completion
estimates based on single-copy gene families can underestimate
the rate of recovery when multiple closely related bacterial
genomes are present in the assembly.

The relative proportion of the reads associated with these
genomes ranged between <0.0001% and >0.01% of the total
reads sequenced from the original soil site [>12 million reads
available (Delmont et al., 2012)] while they represented 2–58%
of the reads recovered from microcosms after 4 months of
treatment. Therefore, these genomes were enriched by several
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orders of magnitude during the incubation period, in contrast
to the overall decline of total DNA observed after incubation.
Genomes reconstructed from the ethanol enrichment condition
were not detected in the natural community, with one of them
related to the family Ktedonobacteraceae. Until now, this lineage
had only one representative genome sequenced due to the
difficulty cultivating this branch of the tree of life (Chang et al.,
2011). This result emphasizes the interest of investigating rare
members of the soil biosphere to recover the genomic content
of novel taxonomical lineages. The recovery of this draft genome
(6.3Mb) would have been impossible with canonical approaches
that focus solely upon post-sequencing data treatment.

In addition, we observed three phage infections from the
two microcosm replicates of mercury enrichment #1, which
were affiliated with the Streptomyces population based on the
clustering tetranucleotide frequencies. Despite its small size of
156 kb, the most dominant phage recruited 7.68% of all reads
in the metagenomic data generated from the second microcosm
representative of this ESC and reached 1,500× coverage, which
was 38 times more frequent than the two dominant Streptomyces
genomes reconstructed from the same microcosm. Functions for
most genes carried by these three phages were unknown.

Overall, we recovered from one to four bacterial genomes,
along with thousands of orphan genetic structures in each
targeted microcosm, validating the strategy reconstructing a soil
metagenome one ESC at the time.

Different Mega-Plasmids Confer Mercury
Resistance in Coexisting Burkholderia
Populations
Burkholderia populations often harbor a multi-replicon genome
in nature (Chain et al., 2006). Here, we ordered and
oriented scaffolds from the two Burkholderia genomes (mercury
enrichment #2) using G+C skew and recovered two replicons
and a megaplasmid for each of them (Figure 4). The observation
of a well-defined G+C skew provided an additional support for
the reliability of our genomic reconstructions. A similar genomic
organization was observed between the two Burkholderia
genomes (e.g., tRNAs and flagellar genes operon in the replicon
1) and no differences could be detected between their full-length
16S rRNA genes. On the other hand, most genes and functions
were not shared between the two mega-plasmids (Figure S3).
Thesemobile genetic elements also possessed a higher proportion
of hypothetical proteins. Yet, mega-plasmids carried similar

FIGURE 4 | Example of the two Burkholderia genomes reconstructed
from the third replicate of mercury enrichment #2. Panels (A,B)
represent replicons and mega-plasmid from Burkholderia Mer3-A and
Mer3-B, respectively. Artemis and DNAPlotter were used to visualize the two
replicons and mega-plasmid present in this microorganism. First (i.e., interior)

and second circles represents GC skew and GC-content variations,
respectively. Third circle represents the location of tRNAs (dark), conjugative
(chestnut), and mercury (pink) related genes. Fourth and fifth circles represent
genes of known (green) and unknown (blue) functions as well as genes
related to flagellum (red) in the two possible frames.
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mercury resistance gene operons, suggesting a preponderant role
in the ability of these coexisting Burkholderia populations to
grow under the mercury ESC. Two mercury resistance operons
found in Burkholderia Mer3-A (representing the most abundant
population) further supports this suggestion. Similar operons
have been found in plasmids worldwide (Barrineau et al., 1983;
Osborn et al., 1997) while, to the best of our knowledge, not
specifically in organisms affiliated to Burkholderia. However,
these two populations may have acquired mercury resistance
operons during the incubation period, and may not necessarily
possess mercury resistance in the pristine soil.

ESCs are not Redundant and Therefore Can Lead
to a Large Genomic Catalogue from Soil
Different taxonomic groups in our soil sample adapted to
different ESCs. For instance, while ethanol stimulated the
growth of Firmicutes, heavy metals stimulated Proteobacteria
and Actinobacteria. We generated a tetranucleotide frequency-
based tree to display the distribution of 8 taxonomical groups that
were present in our microcosms (Figure 5). Recovered genomes
for each ESC displayed near-identical distribution patterns across
replicate microcosms, demonstrating high reproducibility of ESC
treatments. In most cases genomes that were enriched under a
particular ESC, were not detected in other ESCs. An exception to
this was Rhodanobacter Metals-1, which was abundant in heavy
metals enrichment #2, and it was also detected in the mercury
enrichment #1 (another heavy metal) in lower abundance.
Overall, each ESC provided a unique set of genomes, suggesting
that more genomes could be recovered by applying additional
conditions to this soil. The recovery of distinct organisms by
only changing the concentration of mercury also suggests that
a fine gradient of concentrations may stimulate the recovery
of more genomes from organisms that prefer a specific range.
It is indeed difficult to estimate what fraction of the soil
microbial community that can be targeted from such enrichment
approaches, yet ESCs may be useful to build a larger catalog of
genes and their genomic contexts found in soil.

Recovered Genomes Harbor Different Functional
Pools Driven by Taxonomy
We performed a network visualization using observed functions
in recovered genomes from each ESC (Figure 6A). Similar
genomes recovered from multiple microcosms lead to the
identification of large number of core functions (e.g., about
3,500 identical genes for the two recovered Sporolactobacillus),
as well as smaller, microcosm-specific ones (mostly hypothetical
proteins and mobile elements). Micro-diversity traits are
commonly found in cultivated strains of similar taxonomy,
including in those displaying identical 16S rRNA genes (Jaspers
and Overmann, 2004; Pena et al., 2010). Note that only the
consensus assemblies of each genome were compared between
replicates but that the genomic populations recovered from
our study are likely to be polyclonal, contrasting with most
micro-diversity analyses performed using isolate collections.
We also generated an overall functional network using all 17
genomes and 11,299 functions they entailed (Figure 6B). The
network analysis highlights the functional similarity of the five

Rhodanobacter genomes in spite of different ESCs they were
found (combination of heavy metals vs. mercury alone). Each
taxonomical group possessed unique functions (e.g., 2,088 and
2,545 functions only detected in Burkholderia and Streptomyces
genomes, respectively).

Genomic Functional Differences Suggest Distinct
Ecological Roles within the Soil Microbiome
Our genomic collection contained seven genera (Gram+/Gram−
ratio was close to 1) with distinct functions. A majority of these
organisms possessed gliding and flagellar motility capacities.
Moreover, they harbored different metabolic capacities (e.g.,
Entner-Doudoroff pathway, betaglucoside utilization, fructose
utilization) and strategies to target iron (e.g., ton and tol transport
system, siderophore assembly) (Table 2). The Sporolactobacillus
genomes possessed more than 40 genes related to spore
formation, none of these genes being detected in the other
genomes. Derived from the same condition and representing an
unusual functional trait for Bacteria, the Ktedonobacter genome
has the potential to produce both vitamin K1 (Phylloquinone)
andK2 (Menaquinone) fromChorismate. The three Streptomyces
genomes carried genes related to ethylmalonyl-CoA pathway of
C2 assimilation, spore pigment biosynthetic cluster, sigmaB stress
response regulation, sialic acid metabolism and siderophore
assembly. As a potential industrial interest, several novel
polyketide synthase modules were detected in these genomes.
The two Burkholderia species possessed genes for degrading
benzoate, but only one was carrying genes for a chloroaromatic
degradation pathway, while the other harbored genes for
degrading chlorobenzoate. When focusing on the nitrogen cycle,
all these populations had the functional potential to assimilate
ammonia and most of them could perform nitrite and nitrate
ammonification. On the other hand, only the Sporolactobacillus
genomes possessed adequate genetic information to fix nitrogen
from the atmosphere (operon nifDKHENBQU). This is the
first time this taxon is linked to nitrogen fixation, which is
an important ecological trait in soil systems (Peoples et al.,
1995; Bothe et al., 2006; Prosser et al., 2006). Finally, one
Rhodanobacter genome possessed the genes required to perform
denitrification. Rhodanobacter is involved in the soil nitrogen
cycle through denitrification (Green et al., 2012; Kostka et al.,
2012) and our metagenomic-derived genomes also harbored this
functional trait.

Enriched Populations Harbor Functional Traits
Undetected in Culture Representatives
We compared the genomes we recovered from our microcosms
to genomes of cultivated organisms to identify novel functions.
The five Rhodanobacter genomes recovered from our ESCs
contained more than a thousand additional functions compared
to the six culture-derived Rhodanobacter genomes currently
available. These functions include secretion pathway proteins,
membrane and outer membrane proteins, peptidases, a penicillin
amidase, various transcriptional regulators, virulence proteins,
chitin utilization and lignin degradation proteins as well as
proteins related to cyanophycin metabolism (both cyanophycin
synthase and cyanophycinase) and inositol catabolism. On the
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FIGURE 5 | Coverage of eight draft genomes (organized in a tree
based on their tetranucleotide frequency (Euclidean distance) and
fragmented into sections of 20 kb) in metagenomic data
representing seven microcosms and four incubation conditions. The
data was generated during the first sequencing effort (paired-end
sequencing). Maximum coverage varied between 30× and 50× depending

on the data. Draft genomes are displayed in the outer cycle and the tree
itself. Note that coverage discrepancies observed (e.g., for Burlholderia
Mer-3A in the mercury enrichment #1) do not necessarily reflect a binning
problem, as metagenomic reads that would have mapped to other genetic
structures have a restrained target choice of 8 draft genomes in this
analysis.

FIGURE 6 | Panel (A) functional networks linking genomes and their
associated functions recovered from ethanol, heavy metals and
mercury ESCs. Panel (B) functional network linking the 17 recovered
genomes and their associated functions (a total of 11,299 different
functions were detected). Networks were generated using Gephi and Force

Atlas 2. Node sizes are positively correlated to the number of connections
in each network, leading to enhanced sizes for genomes. Note that
genome sizes cannot be directly compared between networks. Genomic
and functional nodes are colored by taxonomy and their genomic
connections, respectively.
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FIGURE 7 | Panel (A) functional network linking 11 Rhodanobacter
genomes and their functionality (a total of 4,824 functions) using
Gephi. Culture-derived genomes are represented by red nodes: 1, R.
spathiphylli B39; 2, R. fulvus Jip2; 3, R. sp. 115; 4, R. denitrificans 116-
2; 5, R. thiooxydans LCS2; 6, R. sp. 2APBS1. Metagenomic-derived
genomes are represented by purple nodes: 7, R. Metals-1; 8, R.
Metals-2; 9, R. Mer-1A; 10, R. Mer-1B; 11, R. Mer-2. Genomic node
sizes are positively correlated to the number of connected functions. For
the functional nodes, red and purple nodes represent functions detected
only in one or more culture-derived or metagenomic-derived genome,
respectively. Finally, blue functional nodes are detected in the 11
genomes. Panel (B) functional network linking 27 Streptomyces genomes
and their functionality (a total of 11,032 functions) using Gephi.
Culture-derived genomes are represented by red nodes: 1, S. griseus

NBRC 13350; 2, S. fulvissimus DSM 40593; 3, S. sp. Sirex AA- E; 4, S.
sp. PAM C26508; 5, S. flavogriseus ATCC 33331; 6, S. sp. GBA 94- 10;
7, S. sp. PVA 94- 07; 8, S. albus J1074; 9, S. sp. Tu6071; 10, S.
venezuelae ATCC 10712; 11, S. cattleya DSM 46488; 12, S. clavuligerus
ATCC 27064; 13, S. violaceusniger Tu 4113: 14, S. rapamycinicus NRRL
5491; 15, S. bingchenggensis BCW- 1; 16, S. ghanaensis ATCC 14672;
17, S. albulus CCRC 11814; 18, S. collinus Tu 365; 19, S. davawensis
JCM 4913; 20, S. hygroscopicus 5008; 21, S. lividans 1326; 22, S.
coelicolor A3(2); 23, S. scabiei 87.22; 24, S. avermitilis MA- 4680.
Metagenomic-derived genomes are represented by purple nodes: 25, S.
Mer- 1A; 26, S. Mer- 2A; 27, S. Mer- 2B. Genomic node sizes are
positively correlated to the number of connected functions. For the
functional nodes, blues nodes are detected in all genomes and yellow
and green nodes are detected in one and two genomes, respectively.

other hand, 997 functions were detected in all Rhodanobacter
genomes and 1159 only in the culture-derived genomes. The
network analysis displayed separate groupings of cultivated and
metagenomic analysis-based Rhodanobacter genomes, possibly
due to differences in methodologies (Figure 7A). As another
example, the three newly recovered Streptomyces genomes
provided 330 functions undetected in the 24 culture-derived
Streptomyces genomes, which represent 3% increase of the 10,702
functions cataloged for this genus (Figure 7B). Novel functions
included ABC transporters, Daunorubicin (a chemotherapy
agent) resistance, a ferredoxin, four glycosyl hydrolase families,
phenazine (an antibiotic) and pyochelin (a siderophore)
biosynthesis proteins as well as pullulanase and neopullulanase
(starch catabolism) genes. Streptomyces is a filamentous group
of bacteria responsible for producing natural antibiotics that
can be used in human and veterinary medicine (Malpartida
and Hopwood, 1984). Antibiotic resistance in disease-causing
bacteria is a growing concern (Thomson, 1999; Martinez
and Baquero, 2000; Andersson and Hughes, 2010), and soil
is a promising environment for new targets (Lin et al.,
2015). Our recovery of Streptomyces draft genomes from
multiple enrichment conditions suggests that enrichment

studies could accelerate the discovery of novel bio-active
compounds.

Representation of Recovered Genetic Structures
in Geographically Distinct Soil Biomes
The 17 draft genomes we recovered from our ESCs represented
about 0.03% of the natural Park Grass soil, based onmetagenomic
reads mapping at 97% identity cut-off. It is estimated that
each gram of surface soil contains approximately 109 bacterial
cells, which suggests that the number of cells our genomes
represent is up to 0.3 million per gram of this soil. We also
traced the relative abundance of genomes we recovered in a
metagenomic dataset of samples collected from distinct soil
environments [cold and hot deserts, tropical and temperate
forests, prairie, boreal forest, and tundra (Fierer et al., 2012)].
Although no genomes were recovered from these samples,
Fierer et al. (2012) have reported different functional potentials
based on short reads. Our recovered genomes recruited up to
0.1% and 0.2% of short reads from these samples at identity
cut-offs of 97% and 90% (Figures 8A,B), suggesting that the
taxonomic groups they represent are likely to occur globally.
Moreover, genomes and orphan genetic structures (i.e., contigs
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FIGURE 8 | Panels (A,B) represent the relative abundance and
proportion of genomes and orphan genetic structures recovered
from our ESCs in various soil biomes generated from Fierer
et al. (2012), using a 97% and 90% sequence identity cut-off.
Genomes are colored based on their taxonomical affiliation at the genus

level. Panel (C) represents the classification of the same samples using
our assemblies (genomes and orphan genetic structures) as a reference
database and a 90% sequence identity cut-off for mapping. The
dendrogram was generated using Ward’s method with Euclidean
distances.

that were not binned into genomes) recovered from the Park
Grass soil occurred in different proportion between biomes (e.g.,
Burkholderia more prevalent in temperate forests), providing
clear geographic patterns for the recruited soil microbiome
fraction. We subsequently used these genetic structures (more
than half a million contigs averaging 1 kb in length) as a first soil
reference database of its kind to classify soil biomes and defined
tree groups depicting deserts, high latitude soils and temperate
soils (Figure 8C). These observations only partly agree with
results obtained using reference databases lacking soil reference
genomes that required low stringency annotations (Fierer et al.,
2012) and provide a first case study on how soil reference
genomic databases can assist analyzing and partitioning samples
collected from this environment.

Conclusion

Here we assembled 540Mb of genetic material (including 17
draft genomes) from a soil sample using enrichment strategies.
The assembled genetic material constituted about 1% of the
original soil microbiome, and we achieved this using about
10Gb of sequencing and standard bioinformatics approaches.
We detected these draft genomes also in soil samples collected
from distant locations. Although the recovered genetic structures
from Park Grass explain only 1% of the diversity, considering

the absence of any genomes recovered from soil through
metagenomics to date, our study demonstrates the efficacy of
pre-sequencing enrichment applications as a way to break into
the vastly unexplored soil microbiome.
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