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Abstract: (1) Background: Non-invasive uroflowmetry is used in clinical practice for diagnosing
lower urinary tract symptoms (LUTS) and the health status of a patient. To establish a smart system
for measuring the flowrate during urination without any temporospatial constraints for patients with
a urinary disorder, the acoustic signatures from the uroflow of patients being treated for LUTS at a
tertiary hospital were utilized. (2) Methods: Uroflowmetry data were collected for construction and
verification of a long short-term memory (LSTM) deep-learning algorithm. The initial sample size
comprised 34 patients; 27 patients were included in the final analysis. Uroflow sounds generated
from flow impacts on a structure were analyzed by loudness and roughness parameters. (3) Results:
A similar signal pattern to the clinical urological measurements was observed and applied for health
diagnosis. (4) Conclusions: Consistent flowrate values were obtained by applying the uroflow sound
samples from the randomly selected patients to the constructed model for validation. The flowrate
predicted using the acoustic signature accurately demonstrated actual physical characteristics. This
could be used for developing a new smart flowmetry device applicable in everyday life with minimal
constraints from settings and enable remote diagnosis of urinary system diseases by objective
continuous measurements of bladder emptying function.

Keywords: acoustic signal; classification; flowrate prediction; lower urinary tract symptoms; long
short-term memory

1. Introduction

Urinary impairment, which causes a decline in the quality of life, increases with age.
For diagnoses of the cause of LUTS, conventional weight transducer sensors and ultra-
sonography, as forms of uroflowmetry, have been the common non-invasive techniques
for measuring bladder emptying [1–3]. Uroflowmetry is more objective than an IPSS or
OABSS questionnaire, and they are typically performed on an outpatient basis at a specific
time and place. Nonetheless, such tests have many limitations for measuring urinary
patterns [4]. For example, some patients may be forced to urinate even though they have
no urge, while some patients may have difficulty in urinating at a specific place, such as
hospitals, in a similar manner to patients with white-coat syndrome.
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Urination is influenced by the environment and emotions. Such a phenomenon
is even more prominent in patients with an overactive bladder [5]. Because of these
urinary characteristics, we cannot use flowmetry alone to obtain accurate urinary patterns.
Porru et al. [6] applied home- and office-based uroflowmetry tests for assessing treatment
outcomes in LUTS patients. They provided information that was beneficial for examining
the status of LUTS through a physician’s measurement of multiple flow curves overnight in
a clinical trial. Krhut et al. [4] compared the difference between sonoflow and uroflowmetry.
Kwon et al. [7] proposed a test method based on the flowrate measurement using a mobile
phone application.

Diagnosis of the bladder emptying pattern needs to have information about the
flowrate and total flow volume. For outside flows, it is not straightforward to install instru-
ments [8]. The sounds and vibrations due to urine flows include important information
about the health status. Proper daily collection of the statistical features helps to diagnose
the status and progress. A long short-term memory (LSTM) network is a type of recurrent
neural network capable of learning order dependence in sequence prediction problems [9].
The LSTM network was proposed to address the vanishing gradient problem [10]. LSTM
learns to bridge minimal time lags in excess of 1000 discrete time steps through “constant
error carousels” (CECs) within special units, called cells. It has advantages for predicting
patterns in urinary activities due to LUTS with a long time period.

In this study, the quantification was preformatted using the sounds of urine flow with
the statistical features trained by deep learning. The proposed model substitutes the classic
uroflowmetry to be used in daily life. As an example, for application of the proposed
methodology by the acoustic signals, the long short-term memory (LSTM) was used to
classify LUTS, compared with those treated, by the information from the uroflowmetry. A
dataset was constructed with loudness and roughness as the input coefficients. The flowrate
measured using uroflowmetry was used as the output coefficient. The algorithm was
constructed to classify the health status of the urinary system based on the prediction results
of the flowrate sequence using the LSTM classification model. This allows applications to
continuously monitor urination characteristics on an everyday basis.

2. A New Non-Invasive Method for Uroflow Measurement

When detailed information about the urination characteristics is required, the patient
begins urinating into the uroflowmeter connected to a computer recorder for measuring the
voided volume, voiding time, and urinary pattern. The test results assist the physician in
identifying the causes of specific urological impairment and determining the efficiency of
the bladder and the sphincter. In this study, the sounds from the interaction of uroflow with
the test setup was utilized as a new non-invasive method. Figure 1 shows the experimental
setup for measuring the uroflow sounds. To reduce the load measurement error from the
microphone weight and to prevent sensor failure due to bouncing urine during urination, a
microphone (PCB, PIEZOTRONICS, 132249) was set up about 30 cm from the uroflowmeter.
The sound was recorded by a multi-channel device (HEAD acoustics, SQobold, 33020162).
When the patient began urination, the sound pressures were collected in real time. The
urine weight was recorded simultaneously using the load cell transducer. The volume
flowrate, V, was calculated by differentiation of the urine weight as:

V(t) =
.

W(t)/ρ (1)

where W and ρ are the urine weight and the density of urine, respectively.
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Figure 1. Experimental setup to measure the radiated urinary sound and weight of urine. A micro-
phone was installed 30 cm away from the experimental setup to collect sound radiations. Uroflow-
metry was also used to characterize the actual flow pattern. This pattern was utilized for LSTM 
training and verification. 

3. Uroflow Identification with Sound Radiations 
To examine the real-time fluctuations in the sound pressure according to the urine 

velocity, short-time Fourier transform (STFT) was performed to study the variation in 
spectral components depending on the flowrates as:  𝑋(𝑘, 𝑚) = 𝑝(𝑛)𝑊(𝑛 𝑚)𝑒 ( ⁄ )  (2)

where p and N are the discrete sound pressure to be transformed and the number of peri-
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with a 25% overlap and m = 4096. Figure 2 shows the waveform of the measured urinary 
sound and STFT components. The effect of background noise occurs at a frequency range 
below 100 Hz, and the maximum spectrum level was 50 dB. 

Figure 1. Experimental setup to measure the radiated urinary sound and weight of urine. A micro-
phone was installed 30 cm away from the experimental setup to collect sound radiations. Uroflowme-
try was also used to characterize the actual flow pattern. This pattern was utilized for LSTM training
and verification.

3. Uroflow Identification with Sound Radiations

To examine the real-time fluctuations in the sound pressure according to the urine
velocity, short-time Fourier transform (STFT) was performed to study the variation in
spectral components depending on the flowrates as:

X(k, m) =
∞

∑
n=−∞

p(n)W(n−m)e−j(2πk/N)n (2)

where p and N are the discrete sound pressure to be transformed and the number of
periodic frequency samples, respectively (herein N = 4096). This transformation allowed
an investigation of the influence of background noise on the experimental environment.
The Hanning window was applied for leakage reduction as:

W(n) = 0.5
[

1− cos
(

2πn
m

)]
, n = 0, 1, . . . , m− 1 (3)

where m is the shifting length of the window function. The transformation was performed
with a 25% overlap and m = 4096. Figure 2 shows the waveform of the measured urinary
sound and STFT components. The effect of background noise occurs at a frequency range
below 100 Hz, and the maximum spectrum level was 50 dB.

With the increase in outflow velocity, the uroflow sound generated from flow impact
increased over the entire frequency range correspondingly. With the constant dimension
of the patient’s urinary track, a rapid urinary speed generated uroflow sound with high
energy at high frequencies. To enhance the accuracy of the LSTM predictions, a dataset
was constructed with loudness and roughness as the input coefficients, and the flowrate
measured using uroflowmetry as the output coefficient. The loudness represented the
volume of acoustic signals measured by a microphone. Roughness reflected the pattern of
variation in the spectrum level. These two parameters were used as the input features of
LSTM for the training process. Figure 3 shows the overall flowchart for this study. Part
of the dataset was used to construct the LSTM deep-learning algorithm for prediction of
the flowrate sequence, while the remaining data were used to confirm the accuracy of the
training model and optimize the deep-learning parameters. The algorithm was constructed
to classify the health status of the urinary system based on the prediction results of the
flowrate sequence using the LSTM classification model. Compared with the conventional
method using a load cell and a specific program in a given simple toilet, real-time velocity
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measurements with the LSTM method were proposed in this study. As it is measured only
by a sound sensor, it can be easily and simply applied in various environments such as
public toilets and homes, as well as hospitals, for developing an automatic classification
system for urinary patients.
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Figure 3. Framework of the proposed LSTM neural network for predicting and classifying the urinary
flowrate with the urinary sound quality factors.

4. Patients and Inclusion Criteria

This study included patients being treated for LUTS at the Department of Urology,
Hanyang University Medical Center, who were admitted between April and May 2019.
All study participants provided informed consent, and the study design was approved
by the appropriate ethics review board. The patients’ information is shown in Table 1.
Exclusion criteria were as follows: patients less than 18 years, diaper-voiding patients, or
patients on self-catheterization because of a neurogenic bladder, and patients diagnosed
with vesicoureteral reflux during voiding. The protocol was performed in accordance with
the relevant guidelines and regulations.
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Table 1. List of the patients participating in the clinical trial after IRB approval.

Age 51–60 51–70 ≥71
5 10 12

Type A B C
15 6 6

The urinary flowrate pattern calculated by Equation 1 was used to divide the patients
into 3 groups as shown in Figure 4, based on doctors’ clinical experience. In clinical
settings, doctors classify patients’ health conditions using the maximum rate, urination
time, average rate, and the pattern of the graphs. In the healthy group, the maximum
flowrate was larger than 15 mL/s. The flowrate showed a bell-shaped variation, with a
rapid increase in the initial phase, followed by a gradual decrease, as shown in Figure 4a.
This demonstrated the beginning and the end of the external sphincter activity during
urination, and voiding time was relatively short. Figure 4b shows a maximum flowrate less
than 10 mL/s, where the bell-shaped pattern was not maintained. There was intermittent
interruption or a decreased flowrate during urination. In such cases, lower urinary tract
obstruction or an impaired detrusor contractility was suspected. The third group had a
maximum flowrate of less than 5 mL/s, disrupted pattern, a delay in voiding time, and
an interrupted shape depicted by examination of the reference, as shown in Figure 4c. In
such cases, there was a high likelihood of urethral obstruction (stenosis, compression by
tumor, or prostatic hyperplasia) or urinary impairment. Such pattern variations were used
to classify and label the health status of the participants.
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Figure 4. Classification of the patients’ urinary flowrate based on doctors’ clinical experience through uroflowmetry
results. The measured flowrate divided the patients into three groups where (a) a bell-shaped variation represented
the healthy patient group, (b) the staccato and (c) the interrupted flowrate indicated lower urinary track obstruction or
urinary impairment.
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Because of the limitation of the quantity of patient samples, an additional dataset was
required to establish an LSTM classification model. The interpolation method and random
signals were applied to obtain an additional flowrate dataset as:

V′(t) = |V(t) + A·rand(t)|, 0 < A < 0.05·max[V(t)] (4)

where V, A, and rand were the original flowrate measured by uroflowmetry, the amplitude,
and the random signal, respectively. One hundred flowrate data (V′) per patient unit were
additionally constructed for training the LSTM classification model; this was verified with
the raw flowrate data (V) measured by uroflowmetry. The classification results of the
patients’ health status with the LSTM model were compared with the doctor’s diagnosis.

5. Statistical Feature Extractions from Sounds

For continuous real-time monitoring, the measured sounds need to be converted
into features representing the flow mass. The flow mass was recorded in regular time
intervals during urination. For conversion of the sound response into the flow mass, the
statistical features representing level variations were used. The loudness represents the
sound volume. The roughness represents sound fluctuations [11]. These two parameters
were calculated by a Head Artemis Analyzer and used as the input coefficients for the
LSTM model. A loudness value (N) was calculated as the integral of the specific loudness
(N’) at a critical band rate as [11]:

N =
∫ 24Bark

0
N′dz (5)

The specific loudness was calculated quantitatively as:

N′ = 0.08
(

ETQ

E0

)0.23
[(

0.5 + 0.5
E

ETQ

)0.23
− 1

]
soneG
Bark

(6)

where ETQ and E0 are the excitation versus the critical band rate at a threshold of quiet
and that corresponds to the reference intensity I0 = 10−12 W/m2, respectively. The index
G at the unit “sone” was added to represent the calculation using the critical band levels.
Transformation of the sound spectrum into an excitation pattern was described by [12,13].
The Hanning window was used for transformation with N = 4096 and a 25% overlap.

When the sound is modulated at a frequency between 20 and 300 Hz, the change in
sound according to the time cannot be felt; only the roughness of the sound is felt. Using
the boundary condition of a 1-kHz tone at 60 dB and 100%, amplitude-modulated 70 Hz
produces a roughness of 1 asper; the rate of the change in the sound level was evaluated by
the roughness, calculated as:

R = 0.3
∫ 24Bark

0
fmod∆L(z)dz (7)

where f mod and ∆L represent the modulation frequency and the masking depth, respec-
tively [11]. The modulation frequency was set to 70 Hz. With the sound pressure of
the measuring environment shown in Figure 2, the masking depth was set as 50 dB to
minimize the effect of the background noise on the roughness calculation. The calculated
real-time sound parameters reflected the measured flowrate very closely, as shown in
Figure 5. Datasets were constructed using the sound parameters by labeling them with
the measured flowrate. This allowed robust estimation with minimal dependence on the
surrounding environment.
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Figure 5. Comparison of the sound parameters and urinary information: (a) loudness, (b) roughness, and (c) flowrate. The
time-dependent variations in the sound parameters closely followed the flowrate variations.

6. LSTM Network for the LUTS Health Monitoring

LSTM is based on the architecture of an upgraded recurrent neural network (RNN) that
includes the preservation of previous information. The cell state in LSTM only needs linear
summation to pass through the hidden layer, and the gradient moves between networks
without attenuation. LSTM makes the neural network switch between memorizing the
latest information and the information from a long time ago, so that the data can decide
which information to keep and which to forget. This makes it suitable for classifying,
processing, and predicting time series data [10]. Figure 6 shows the LSTM network for
the prediction of urinary flowrate using acoustic parameters as the input sequences. It
consists of multiple cells, and each LSTM unit cell has an input gate (it), an output gate
(ot), a forget gate (ft), and a memory cell state (Ct). The cells remember the values over an
arbitrary time interval, while the three gates control the flow of information into and out
of the cells [8]. When the input vector constructed with the uroflow sound loudness and
roughness [xt = (Nt, Rt)] and the previous output values (ht−1) are given, the first step in
the forget gate layer of the LSTM cell is to determine which information is to be thrown
away, which is carried out as follows:

ft = σ
(

W f [ht−1, xt] + b f

)
(8)
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The next step is to decide what information is to be saved in the input gate layer. A
vector of new candidate values is added to the state as follows:

it = σ(Wi[ht−1, xt] + bi),
C̃t = tanhh(Wc[ht−1, xt] + bc),

(9)

The output value from the forget gate (ft) is multiplied to forget a certain amount of
the cell state values (ct−1), whereas the input (xt) and previous output values (ht−1) are
multiplied by the processed output values of the input gate (it) to accept a certain amount
as input values, from which a new cell state (ct) is created. The output value (ot) under
this cell state is multiplied as the output of the LSTM cell (ht) to determine how much to
forget from the cell state value and how much of the input value should be newly accepted,
as follows:

ct = ftct−1 + itC̃t,
ot = σ(Wo[ht−1, xt] + bo),

(10)

The present study proposed an LSTM for real-time flowrate estimation of the external
flow and carried out training of the LSTM with the loudness and roughness of the uroflow
sounds as the inputs, and the mass flowrate measured by the weight balance as the
output (Vt).

Vt = ottan h(ct) (11)

To check the health status of the urinary system in a comfortable environment, the
health status classification utilizing the flowrate was further proposed. Figure 6 shows
the structure of the LSTM neural network for the classification of health status after the
flowrate predictions. Unlike the sequence-to-sequence LSTM prediction model, the LSTM
classification model is a sequence-to-label data classification network [14]. When the
predicted flowrate sequence is expressed as a vector using the look-up layer, it is applied
to the LSTM network. The output (ht) from the last instance expresses the entire sequence.
The softmax non-linear layer predicts the probability distribution of the fully connected
layer and health status as:

y = softmax(Wht + b) (12)

where y, W, σ, tanh, and b represent the probability of health status classification, the
weight, the sigmoid function, the hyperbolic tangent, and the bias term, respectively.

7. Results

The input node, batch size, hidden unit parameters were set to one, three, and five,
respectively. The optimizer function was set as Adam. Epoch was set to 40 because any
change above this did not affect the model’s performance. To make the output layer predict
only the flowrate, a dense layer with just one neuron was used to carry out the training
of the LSTM network. To verify the accuracy of the flowrate predictions through the con-
structed LSTM, Figure 7 compares the transient variations. This comparison allows pattern
recognition performance evaluation, regardless of the magnitude of the flowrate. These
graphs show the comparison between the uroflowmetry measurements and the predicted
flowrate by application of the loudness and roughness of uroflow sounds that were not
used in the training. The results confirm that the derivative varied very closely. The
constructed LSTM model allowed an estimation of health status by the variation patterns.

Figure 8 compares the flowrate of the proposed LSTM predictions with the experimen-
tal measurements. There were many matching inflection locations between the predicted
and measured values, and the mean flowrate error rates were 5.9, 6.0, and 6.2%. This
confirms the potential for the development and realization of an LSTM deep-learning-
based uroflowmetry system that is robust against the surrounding environmental noise.
For accurate training and discrimination, the existing flowrate data need to be normal-
ized between zero and one on the time scale. The interpolation method was applied to
resample the data length to 246 for constructing the training database. When the batch
size, epoch, hidden unit, and class number were set to 3, 500, 50, and 3, respectively. The
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data obtained using the interpolation method were used for training, and accuracy was
tested using the measured flowrate. Group A represented normal urinary activity with
a bell-shaped urinary pattern, Group B represented LUTS or IDC with a staccato pattern,
and Group C represented BPH/urethral stenosis or compression by adenoma with an
interrupted pattern. The rate values predicted through the constructed classification model
differed from each other. Rate values were classified according to the graph pattern, and a
rate value of 0.9 or higher was derived from the specific rate. Depending on the amount
of data used for training and the training parameters, the rate value may vary. In this
study, the diagnosis and treatment by the medical team from the urination characteristics
of patients were similar to the health status classification results found by flowrate patterns
through the proposed LSTM classification model, as shown in Table 2. The technology
proposed in this study can be used for predicting the flowrate based on measurement of
uroflow sounds. It can also be used to check health status through the predicted flowrate
patterns and enable suspicion in addition to early diagnosis of LUTS. The magnitude of the
sound varies depending on the environment in which it is measured or on the sensitivity
of the microphone device. Compared with the two-dimensional input using the loudness
and roughness of the urinary sound, the error rate of the flowrate predicted only with
roughness increased slightly, but the patterns were similarly predictable. For LSTM health
status classification, the flowrate was normalized from 0 to 1, so it depended only on the
shape of the pattern rather than the flow mass. Thus, the health status classification was
possible only from variation in the pattern of the uroflow sound.
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Table 2. Health status classification of the patients by the LSTM algorithm.

Gender Age Voiding
Volume

Voiding
Time

Maximum
Flowrate

Average
Flowrate

Classification Rate
Doctor’s Diagnosis

A B C

M 70 119.9 13.3 14.8 8.6 0.9990 0.0010 0.0000

Normal

M 58 340.3 42.3 20.8 8.5 0.9979 0.0021 0.0000
F 61 99.1 3.5 44.4 20.2 0.9995 0.0005 0.0000
M 69 275.2 26 17 10.5 0.9992 0.0008 0.0000
M 66 172 16.8 18.1 9.3 0.9994 0.0006 0.0000
M 58 555 54 32.6 10.8 0.9996 0.0004 0.0000

M 89 50.5 19 4.7 2.9 0.0000 0.9983 0.0017

LUTS or IDC

M 77 187.8 42.5 9 4.8 0.0001 0.9999 0.0001
M 66 63.9 9.3 9.2 5.9 0.0008 0.9991 0.0001
M 81 43.9 14 5.8 3.1 0.0001 0.9998 0.0001
M 68 195.2 44.8 9.1 4.5 0.0000 0.9998 0.0002
M 79 320 64.8 13.9 5.2 0.0002 0.9998 0.0000
M 61 495.3 71 13.6 6.8 0.0002 0.9997 0.0001
M 72 110.6 19 9.4 5.3 0.0000 0.9998 0.0002
M 71 99.1 50.8 6.8 2.8 0.0001 0.9993 0.0006
M 69 185 73.3 12.8 4.2 0.0000 0.9998 0.0002
M 71 123.9 36.5 7.4 3.5 0.0001 0.9995 0.0004
M 63 281.9 47.8 17.7 7.7 0.0005 0.9995 0.0000
M 81 76.3 20.3 8.7 3.9 0.0000 0.9999 0.0001
M 60 171.5 28.3 17.1 6.4 0.0001 0.9998 0.0001
M 74 172.3 49.8 8.6 3.6 0.0002 0.9997 0.0001

M 69 106.5 34.5 8.7 4 0.0000 0.0004 0.9996

BPH or urethral stenosis

M 51 71.9 49.8 7.4 2.7 0.0000 0.0002 0.9998
M 85 33.7 60.8 3.5 1.9 0.0000 0.0000 1.0000
M 83 50.3 19.8 4.9 2.2 0.0000 0.0003 0.9997
M 75 223.5 93 5 2.6 0.0000 0.0004 0.9996
F 72 266 61 8.3 4.3 0.0000 0.0043 0.9957

8. Discussion

As a data-driven estimation method, LSTM has feedback connections and it processes
not only a single data point but also entire sequences of data. This study developed a new
LSTM estimation methodology using uroflow sound signals as a replacement for conven-
tional flowmetry. The proposed LSTM model allowed physical flowrate measurements
with a high level of accuracy. The diagnosis of urinary impairment using only the sound
pressure is not a novel idea. In this study, acoustic responses generated during urination in
arbitrary environment were used for an LSTM algorithm to help the accurate diagnosis of
urinary impairment. Many urologists have taken interest in and conducted various studies
on the diagnosis of urinary impairment using sounds. Koiso et al. [15] attached a sensor to
a perineum for measurement and analysis of the acoustics of urine passing through the
urethra. Their results showed the ability to objectively identify bladder outlet obstruction.
The basic concept of utilizing sound analysis for estimating urinary flow parameters has
been verified, and conventional sono-uroflowmetry has been applied to cell phones for
use in various mobile network environments [4,7]. They created a flowmeter using audio
recordings of flow sounds using a smartphone application. These sono-uroflowmetry
recordings were visualized in the form of a trace, representing sound level over time.

The sound level is a factor expressing the loudness of the sound. Differences may occur
depending on the height of the urine fluid. The present study showed its applicability
in several forms such as panels in public smart toilets. The present study used time-
dependent variations in the loudness and roughness of the acoustic response generated
during urination as input values. The LSTM predictions closely followed the measurements
of conventional flowmetry and allowed accurate prediction of the urination patterns. By
utilizing the pattern variations, the presented identification was robust to differences in the



Sensors 2021, 21, 5328 11 of 12

height of the urinary tract. This study classified the patients into groups from the predicted
flowrate patterns based on uroflow sound. Group A represented normal urinary activity
with a bell-shaped urinary pattern, Group B represented LUTS or IDC with a staccato
pattern, and Group C represented BPH/urethral stenosis or compression by adenoma with
an interrupted pattern. These groupings allow the monitoring of health status through
the flowrate patterns, and enable suspicion in addition to early diagnosis of LUTS. This
procedure would be useful in clinical practices, homes, and offices. Our algorithm is
applicable to portable devices for use in various environments with minimal influence
from the surrounding noise.

As the clinical data were measured on patients suffering from LTUS, the data used
were collected almost exclusively from elderly males (two females and 25 males) in this
study. The focus was on securing the possibility of classification techniques for LUTS pa-
tient states using the deep-learning algorithm from the engineering perspective. For mass
application in the other fields, a larger number of samples in different circumstances (US or
European toilets, sitting/standing, background noise, females, different age groups) should
be secured. The multipath channel effects need to be overcome to reduce the signal distor-
tion due to reflections and reverberations. Further statistical analysis needs to be conducted
in the future for more robust and precise diagnoses of LUTS in various environments.

9. Conclusions

Repeated flowmetry at home or office with the user in a stable condition and a
comfortable environment is relevant to the accurate measurement of urinary patterns. Such
potential can be recognized despite the white coat syndrome often noticed during blood
pressure measurements [16]. The measurements obtained by the LSTM deep-learning
algorithm would be beneficial for minimizing the influence of surrounding noise. This is
important because many of the patients are elderly; hence, minimizing their environmental
constraints enhances the accuracy of tests.

Devices for home-based uroflowmetry have been developed in various forms [17–19].
The findings from this study may be used to promote the development of various devices
in different formats. The disposable home device proposed by Heesakkers et al. [20] was
used to measure urinary symptoms in male patients with LUTS. They developed and
analyzed the device by focusing on Qmax and reported the findings from the analysis
after using the device on 59 male patients. This study realized that 81% of the patients
preferred measurement at home. Despite the advantages of measurement at home, there
are limitations in using the device on females or children. The device developed in the
present study allowed accurate measurements in both males and females.

The LSTM flowrate classification model proposed in the present study illustrated
accurate diagnosis for LUTS and early diagnosis of abnormal symptoms. By integrating
linkage and wireless communication technologies for IoT-based metrological, analytical,
and monitoring devices, a fun device for male and female public restrooms could be
developed to realize LUTS health diagnoses of abnormal signs for the public, while also
making a significant contribution to accumulating national health data, which is our next
activity for further research.
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