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Oncolytic virotherapy is emerging as a promising approach 
for the treatment of several neoplasms. The term “oncolytic 
viruses” is generally employed to indicate naturally occurring 
or genetically engineered attenuated viral particles that 
cause the demise of malignant cells while sparing their non-
transformed counterparts. From a conceptual standpoint, 
oncolytic viruses differ from so-called “oncotropic viruses” in 
that only the former are able to kill cancer cells, even though 
both display a preferential tropism for malignant tissues. Of 
note, such a specificity can originate at several different steps 
of the viral cycle, including the entry of virions (transductional 
specificity) as well as their intracellular survival and replication 
(post-transcriptional and transcriptional specificity). During 
the past two decades, a large array of replication-competent 
and replication-incompetent oncolytic viruses has been 
developed and engineered to express gene products that 
would specifically promote the death of infected (cancer) 
cells. However, contrarily to long-standing beliefs, the 
antineoplastic activity of oncolytic viruses is not a mere 
consequence of the cytopathic effect, i.e., the lethal outcome 
of an intense, productive viral infection, but rather involves the 
elicitation of an antitumor immune response. In line with this 
notion, oncolytic viruses genetically modified to drive the local 
production of immunostimulatory cytokines exert more robust 
therapeutic effects than their non-engineered counterparts. 
Moreover, the efficacy of oncolytic virotherapy is significantly 
improved by some extent of initial immunosuppression 
(facilitating viral replication and spread) followed by the 
administration of immunostimulatory molecules (boosting 
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Introduction

Oncolytic viruses. Using viruses against cancer is not a particu-
larly new concept, as it was initially put forward at the beginning 
of the 20th century.1 Still, it was not until the 1950s that the 
antineoplastic potential of (naturally occurring) viruses begun 
to be tested in preclinical settings as well as in patients, most 
often with deceiving results in terms of either safety or efficacy.2–5 
Throughout the following three decades, the clinical interest in 
viruses as antineoplastic agents declined, even though a few stud-
ies reported encouraging safety data and even anecdotic cases of 
tumor regression.5–7 The possibility of using viruses as highly spe-
cific tumor-targeting tools came back under the limelight only in 
the late 1990s, along with the establishment of modern genetic 
engineering technologies.8–10 Since then, the clinical interest in 
oncolytic (and oncotropic) viruses has never declined again.

The term “oncolytic viruses” is generally employed to indi-
cate non-pathogenic viral particles that specifically infect can-
cer cells, and hence cause their demise, while leaving unaffected 
non-malignant tissues.11 From a strict conceptual standpoint, 
oncolytic viruses differ from their oncotropic counterparts in 
that while the latter only exhibit a specific tropism for malignant 
cells, the former (be they replication-competent or not) kill their 
hosts upon infection (via several mechanisms, see below).9 Thus, 
oncotropic viruses (e.g., baculovirus, canarypox virus and canine 
parvovirus) efficiently enter malignant cells (and hence can be 
used as vectors for anticancer gene therapy) but are unable to 

antitumor immune responses). In this Trial watch, we will 
discuss the results of recent clinical trials that have evaluated/
are evaluating the safety and antineoplastic potential of 
oncolytic virotherapy.
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be found in refs. 11 and 41. Of note, some viral particles are 
capable of inducing the demise of malignant (but not normal) 
cells upon uncoating even in the absence of viral gene expres-
sion.42 The precise molecular mechanisms underlying this phe-
nomenon remain obscure, yet its efficacy appears to be linked 
to the number of virions actually entering target cells and being 
uncoated. Along similar lines, a long list of viral proteins exerts 
bona fide tumor-selective pro-apoptotic functions.43 For example, 
both apoptin, a 15 kDa protein encoded by the chicken anemia 
virus, and the polypeptide coded by the adenoviral E4 open read-
ing frame have been shown to preferentially trigger the apoptotic 
demise of malignant, as opposed to non-transformed, cells.44–46

Immunogenic activity of oncolytic viruses. Contrarily to 
long-standing beliefs, the antineoplastic potential of oncolytic 
virotherapy is not a mere consequence of the cytopathic effect, 
but rather involves (at least in a majority of settings) the induc-
tion of a tumor-specific immune response.9,11,47,48 In line with 
this notion, oncolytic viruses genetically engineered to drive 
the production of various immunostimulatory factors have been 
shown to mediate more robust therapeutic effects than their 
non-engineered counterparts. Proof-of-principle evidence in 
support of this concept has been generated for oncolytic viruses 
that express membrane-bound co-stimulatory molecules, such as 
CD40 ligand (CD40L) and CD80,49–52 as well as multiple dis-
tinct immunostimulatory cytokines encompassing interleukin 
(IL)-2,53 IL-12,54–56 IL-1557–59 and granulocyte macrophage col-
ony-stimulating factor (GM-CSF).55,60–62 In addition, the clinical 
efficacy of oncolytic virotherapy appears to be robustly amelio-
rated by some degree of initial immunosuppression (facilitating 
viral replication and spread) followed by the provision of immu-
nostimulatory factor (boosting antitumor immunity).9,11

Obstacles against efficient oncolytic virotherapy. The 
administration of oncolytic viruses as a standalone therapeutic 
intervention has been shown to rarely induce the complete, long-
term regression of established tumors in vivo, owing to several 
reasons.9,11 First, preclinical and clinical evidence indicates that 
oncolytic viruses often infect neoplastic lesions in a rather hetero-
geneous and incomplete fashion, irrespective of administration 
route and whether viruses are replication-competent or not.63–67 
A prominent role in this context is played by tumor size68 as well 
as physicochemical barriers to infection, including the layers 
of connective tissue,69,70 the elevated interstitial pressure,71 the 
poorly permissive vasculature72 and the large areas of necrosis/
calcification73,74 that generally characterize solid tumors. Second, 
oncolytic viruses often establish a “dynamic equilibrium” with 
tumors, that is, a state in which viral infection affects a spatially-
restricted population of malignant cells, rather than the entire 
lesion, and is continuously counterbalanced by the prolifera-
tion of non-infected cancer cells.75,76 Of note, while in immu-
nodeficient settings such an equilibrium may be relatively stable 
(and hence de facto impede tumor growth),77 at some stage the 
immune system is expected to eradicate the viral infection in 
immunocompetent animals, thereby tilting the tip of the balance 
in favor of malignant cells. Third, similar to what commonly 
observed in the course of chemo- and radiotherapy, malignant 
cells are prone to become resistant to oncolytic virotherapy over 

complete the viral cycle and hence fail to exert major cytotoxic 
effects.12–14 Conversely, bona fide oncolytic viruses selectively 
infect cancer cells and kill them, either as a mere consequence of 
viral replication (cytopathic effect, mediated by replication-com-
petent viruses only) or following the expression of endogenous or 
exogenous cytotoxic gene products (suicide gene therapy, medi-
ated by both replication-competent and replication-incompetent 
virions).9,11 A detailed description of all the viral species that have 
been tested for their oncolytic potential or genetically engineered 
in this sense—each of which is associated with specific advan-
tages and drawbacks—exceed the scope of the present Trial 
Watch and can be found in refs. 9 and 11.

Tropism and selectivity of oncolytic viruses. The specific tar-
geting of malignant cells is an absolute requirement for the clinical 
success of oncolytic virotherapy. In line with this notion, during 
the past two decades several distinct strategies have been pursued 
to improve the oncotropism of naturally occurring viruses (some 
of which exhibit an inherent preference for malignant cells), as 
well as to increase their oncoselective cytotoxic potential.9,11 The 
strategies that have been investigated to ameliorate the selectiv-
ity of oncolytic viruses include (1) the genetic manipulation of 
viral envelopes or capsids to provide viruses with a strict specific-
ity for cells bearing a tumor-associated surface marker (transduc-
tional targeting);15,16 (2) the expression of one or more genes that 
are essential for the viral cycle under the control of promoters 
that functions only in transformed cells, including tissue-specific 
and hypoxia-responsive promoters (transcriptional targeting);17–20 
(3) the insertion of essential viral genes downstream of internal 
ribosome entry sites (IRESs) that cannot be used as translational 
origins in specific tissues (translational targeting);21 (4) the use 
of so-called “destabilization domains,” rendering essential viral 
products inherently unstable unless a stabilizing chemical is 
administered (in a tissue-restricted manner) (post-translational 
targeting);22,23 (5) the deletion of one or a few virulence factors, 
resulting in attenuated viral strains that are able to replicate only 
in cells bearing cancer-associated alterations in specific signal 
transduction pathways, such as the hyperactivation of RAS or the 
inactivation of p53 (oncogenetic targeting);24–28 and (6) the inser-
tion of tissue-specific microRNA-binding elements in the 3'-UTR 
of essential viral genes, allowing tissues that express such microR-
NAs to escape productive infection (microRNA targeting).29–32

Alongside, great efforts have been dedicated at rendering onco-
lytic viruses increasingly more toxic for cancer cells, well beyond 
the cytopathic effect normally mediated by replication-compe-
tent particles. Strategies that have been undertaken in this sense 
include the integration into the viral genome of sequences coding 
for: (1) enzymes that can transform a non-toxic pro-drug into 
a lethal cytotoxic chemical, such as the thymidine kinase (TK) 
of herpes simplex viruses (HSVs), converting ganciclovir into 
deoxyguanosine triphosphate;33,34 or cytosine deaminase, cata-
lyzing the conversion of 5-fluorocytosine into 5-fluorouracil;35–37 
(2) proteins that (at least potentially) exert tumor-restricted cyto-
toxic functions, such as wild-type p53 or death receptor ligands 
(e.g., FASL);38,39 and (3) short-hairpin RNAs targeting proteins 
that are specifically required for the survival of malignant cells, 
such as survivin.40 A detailed description of these approaches can 
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enzymes like hyaluronidase;108 and (5) the careful modulation of 
the immune system (for instance with cyclophosphamide, which 
at high doses exerts potent immunosuppressive effects)109–111 to 
avoid premature antiviral responses that would compromise viral 
spread (and hence therapeutic efficacy).112

The safety and preliminary antineoplastic effects of sev-
eral naturally occurring and genetically modified viruses have 
been/are being tested in multiple distinct clinical trials (see 
below). As it stands, however, no oncolytic viruses are licensed 
by the U.S. FDA for use in cancer patients (source www.fda.gov). 
Conversely, gendicine, an oncotropic, recombinant adenovirus 
engineered to express wild-type p53, has been approved for the 
treatment of subjects affected by head and neck squamous cell 
carcinoma in China as early as in 2003.113,114 Along the lines of 
our monthly Trial Watch series,115–128 here we will briefly review 
the progress of recent clinical trials that have investigated/are 
investigating the antineoplastic potential of oncolytic viruses.

Clinical Development of Oncolytic Viruses

Literature. As mentioned above, the possibility of using viruses 
to specifically kill neoplastic cells begun to attract the attention 
of clinicians, and hence to be tested in patients, in the 1950s.1 
In this context, hundreds of patients bearing a wide array of 
distinct neoplasms received highly impure viral preparations 
(including infected body fluids and so-called “oncolysates,” i.e., 
autologous malignant cells or established cancer cell lines killed 
by viruses ex vivo), via almost every conceivable route of admin-
istration.3,11,129,130 Most often, these attempts failed to drive any 
therapeutic response as viruses were rapidly inactivated by the 
immune system. Nevertheless, sporadic cases of tumor regression 
were reported, in particular among immunodeficient patients, 
who however were at increased risk of death owing to the spread 
of the viral infection to healthy tissues.3,11,129,130 Perhaps the most 
impressive results of this period were obtained by Asada and col-
leagues, who reported 37 tumor regressions among 90 termi-
nal cancer patients treated with a non-attenuated strain of the 
mumps virus.131

In 1991, Martuza et al. were the first to demonstrate that a 
genetically manipulated variant of HSV lacking the TK-coding 
gene (and hence displaying attenuated virulence) could be suc-
cessfully employed to treat glioblastoma in mice.132 This report 
de facto paved the way to modern virotherapy and drove an 
intense wave of preclinical and clinical investigation that has 
not yet come to an end. Since then indeed, dozens—if not hun-
dreds—of distinct oncolytic and oncotropic viruses have been 
developed and tested in preclinical models. An exhaustive dis-
cussion of the preclinical results obtained during the last two 
decades with oncolytic viruses can be found in refs. 9, 11, 133 
and 134. Alongside, several oncolytic viruses entered the clinics 
and their safety and preliminary antineoplastic potential begun 
to be investigated in patients affected by a wide variety of (mostly 
solid) tumors.11,135,136

Adenoviruses and HSVs represent by far the oncolytic 
viruses most extensively investigated (at both the preclinical 
and clinical level) and developed so far.137–139 Indeed, attenuated 

time,67,72,77–79 presumably linked to their intrinsic genomic insta-
bility and propensity to accumulate mutations.80,81 Interestingly, 
cancer cells that had been rendered resistant to the parvovirus H1 
in vitro were found to be cross-protected against the cytotoxic 
effects of tumor necrosis factor α (TNFα),82–84 an observation 
with profound implications for the development of combination 
chemoimmunotherapeutic regimens involving oncolytic viruses. 
Fourth, a large fraction of the population has previously been 
exposed to the naturally occurring viruses that are commonly 
employed to generate therapeutic strains, de facto being fully 
protected against their infectious potential by high levels of neu-
tralizing antibodies.85,86 Along similar lines, some viral particles, 
including HSV1- and murine leukemia virus-derived viruses, are 
particularly prone to inactivation by the complement system.87,88 
Fifth, unless specific preventive measures are undertaken, onco-
lytic viruses administered i.v. are massively sequestered (most 
often upon opsonization) by the mononuclear phagocytic system 
(MPS) of the liver and spleen.89,90 On one hand, this significantly 
restricts the amount of infectious particles that are capable of 
reaching the tumor site, de facto compromising transduction 
efficiency and hence therapeutic effects.91 On the other hand, 
the accumulation of viral particles into the liver and the spleen 
may trigger the release of pro-inflammatory cytokines, poten-
tially driving serious, dose-limiting toxicities.92,93 Sixth, although 
great progresses have already been made in this sense, the use 
of viruses remains intrinsically associated with some threats, in 
particular when cancer patients—who often exhibit some degree 
of immunosuppression—are concerned.94–96 In this respect, one 
problematic issue relates to the fact that all viruses are potentially 
immunogenic and hence can cause—at the therapeutic doses 
of 1012 particles—unwarranted side effects including transient 
hepatic inflammation (see above) and low-grade disseminated 
intravascular coagulation.97,98 In addition, great concerns have 
been raised by the case of three children who developed a leuke-
mic syndrome following the reinfusion of retrovirally transduced 
T cells for the treatment of a severe monogenic immunodefi-
ciency, most likely owing to the integration of the viral vector in 
the proximity of the LMO2 oncogene.99,100

Taken together, these observations highlight an urgent need 
for the development of ever more refined oncolytic viruses and 
the design of combinatorial strategies by which the obstacles 
described above would be—at least in part—circumvented. 
Several approaches have already been conceived to ameliorate 
the therapeutic potential of oncolytic virotherapy, including 
(among several others) (1) the use of coating polymers to shield 
viral particles from the neutralizing effects of circulating anti-
bodies and the complement system as well as from sequestration 
by the MPS;101–103 (2) the pre-administration of molecules that 
selectively increase the permeability of tumor vessels (e.g., IL-2, 
TNFα, histamine, bradykinin analogs) or aggressive chemo-
therapy, to reduce interstitial pressure;104,105 (3) the intratumoral 
administration of antifibrotic agents, such as the FDA-approved 
antihypertensive drug losartan, or enzymes that degrade com-
ponents of the extracellular matrix, such as hyaluronidase;106,107 
(4) the development of oncolytic viruses that—in addition 
to cytotoxic factors—express extracellular matrix-degrading 
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and antineoplastic profile of JX594 (developed by Transgene as 
Pexa-Vec), administered i.v. most often as a standalone thera-
peutic intervention, in subjects bearing hepatocellular carci-
noma (NCT01171651; NCT01387555; NCT01636284), CRC 
(NCT01380600, NCT01394939; NCT01469611) or chemo-
refractory solid tumors (NCT00625456; NCT01169584). The 
highly attenuated oncolytic vaccinia virus GL-ONC1 (devel-
oped by Genelux, also known as GLV-1h68)187 is being tested 
in combination with chemoradiotherapy for the treatment of 
HNC patients (NCT01584284), as a standalone therapeutic 
intervention administered intrapleurally in lung cancer patients 
(NCT01766739), and upon intravenous or intraperitoneal deliv-
ery in subjects affected by advanced solid tumors or peritoneal 
carcinomatosis, respectively (NCT00794131; NCT01443260).

In addition, clinical trials are currently ongoing for investi-
gating the safety and antineoplastic activity of: (1) talimogene 
laherparepvec,62 administered i.t.—as a standalone intervention 
or combined with systemic ipilimumab188,189—to melanoma 
patients (NCT00769704; NCT01368276; NCT01740297); 
(2) naturally occurring coxsackievirus A21 (developed by 
Viralytics as Cavatak™),190 administered i.t. as a single agent 
to melanoma patients (NCT01227551; NCT01636882); 
(3) CGTG-102 (an oncolytic adenovirus engineered to drive the 
local expression of GM-GSF, developed by Oncos),191 adminis-
tered i.t. or i.v.—alone or in combination with metronomic cyclo-
phosphamide—to patients affected by advanced solid tumors 
(NCT01437280; NCT01598129); (4) DNX-2401 (a geneti-
cally manipulated replication-competent adenovirus developed 
by DNAtrix),192,193 given i.t. as a standalone agent to glioblas-
toma and glioma patients (NCT00805376; NCT01582516); 
(5) HSV1716 (a γ34.5-deficient variant of HSV developed by 
Virttu as Seprehvir®),169 administered intrapleurally or intra-
tumorally to individuals affected by mesothelioma or solid 
tumors (NCT01721018; NCT00931931); (6) Toca511® (a ret-
rovirus engineered to express cytosine deaminase, developed by 
Tocagen), given alone or in combination with 5-fluorocytosine 
to subjects affected by astrocytoma, glioblastoma, oligoastrocy-
toma and oligodendrocytoma (NCT01156584; NCT01470794); 
(7) the Seneca Valley virus (a replication-competent oncolytic 
picornavirus also known as NTX-010),194 administered i.v. as a 
single agent or combined with metronomic cyclophosphamide 
to patients with lung cancer or neuroendocrine tumors, respec-
tively (NCT01017601; NCT01048892); (8) PVSRIPO (an non-
pathogenic recombinant poliovirus),195 given i.t. as a standalone 
intervention to glioblastoma patients (NCT01491893); (9) the 
attenuated measles virus commonly used as a prophylactic vac-
cine,75,196 given intrapleurally as a single therapeutic agent to 
mesothelioma patients (NCT01503177); (10) CG0070 (a condi-
tionally replicating GM-CSF-armed oncolytic adenovirus),61,197 
instilled intravesically as a single agent to subjects with bladder 
carcinoma (NCT01438112); (11) HF10 (a spontaneous attenu-
ated variant of HSV1),198,199 administered i.t. as a standalone inter-
vention to individuals affected by refractory HNC or other solid 
tumors (NCT01017185); (12) an attenuated lentogenic isolate of 
the Newcastle disease virus (known as NDV-HUJ),174,200 given 
i.v. as a single agent to glioblastoma, neuroblastoma and sarcoma 

adenoviral strains, most often lacking the genes coding for E3 
or the anti-apoptotic protein E1B55K,43 have already been used 
in patients affected by glioma,140 sarcoma,141 head and neck can-
cer (HNC),97,142–145 pancreatic cancer,146,147 colorectal carcinoma 
(CRC),147–149 prostate carcinoma,150–152 ovarian cancer,153,154 blad-
der carcinoma61 and multiple solid tumors.155,156 Along similar 
lines, the safety and therapeutic potential of attenuated HSVs, 
near to invariably lacking the gene coding for the main neu-
rovirulence factor γ34.5,157 have been tested in subjects with 
glioma,158–162 breast carcinoma,163 HNC,164–166 melanoma,167–170 
pancreatic carcinoma,171 CRC hepatic metastases172 and various 
solid malignancies.173 Most of the remaining clinical trials that 
have been completed so far were designed to evaluated the safety 
and the oncolytic profile of stains of Newcastle disease virus (in 
subjects affected by glioma and other solid tumors),174–176 parvo-
virus (in glioblastoma multiforme patients),177 reovirus (in indi-
viduals bearing glioma, melanoma and other solid tumors)178–181 
and vaccinia virus (in hepatocellular carcinoma and melanoma 
patients).62,182–184 The majority of these studies were Phase I/II tri-
als, most often reporting reassuring safety data and sporadic anti-
neoplastic activity, even when oncolytic viruses were employed 
as standalone therapeutic interventions. In this setting, the most 
encouraging results have surely been recorded with talimogene 
laherparepvec (developed by Amgen, also known as OncoVex), 
an oncolytic γ34.5-deficient variant of HSV genetically manipu-
lated to drive the expression of GM-CSF by infected cells.185 As a 
single agent administered i.t., talimogene laherparepvec induced 
the complete regression of both injected and distant lesions in 
8 out of 50 metastatic melanoma patients.170 A similar efficacy 
has been observed with JX954, an oncolytic vaccinia virus engi-
neered to express GM-CSF that was shown to induce objective 
responses in a consistent percentage of hepatocellular carcinoma 
patients.62,184 In addition, multiple studies have shown that com-
bining oncolytic viruses with conventional radio- or chemothera-
peutic is generally safe and improves (to some extent) the rates of 
clinical responses.141,143,145,146,149–152,166,174,179 In summary, accumu-
lating clinical data strongly support the development of oncolytic 
virotherapy.

Recent, ongoing clinical trials. Nowadays (April 2013), offi-
cial sources list no less than 52 recent (started after January 1, 
2008), ongoing (not withdrawn, terminated or completed at 
the day of submission), clinical trials assessing the safety and 
antineoplastic potential of oncolytic viruses in cancer patients 
(Table 1). One third (17) of these studies are investigating the 
activity of a wild-type reovirus (serotype 3 Dearing, developed 
by Oncolytics Biotech under the name of Reolysin®)186 adminis-
tered i.v. or (rarely) i.p., often in combination with conventional 
therapeutic regimens, to patients affected by multiple myeloma 
(NCT01533194), HNC (NCT00753038; NCT01166542), 
breast carcinoma (NCT01656538), melanoma (NCT00651157; 
NCT00984464), lung cancer (NCT00861627; NCT00998192; 
NCT01708993), pancreatic carcinoma (NCT00998322; 
NCT01280058), CRC (NCT01274624; NCT01622543), 
prostate cancer (NCT01619813), reproductive tract neoplasms 
(NCT00602277; NCT01199263) or pediatric solid tumors 
(NCT01240538). Eight clinical trials are assessing the safety 
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a single agent to subjects affected by hepatocellular carcinoma 
(NCT01628640). The large majority of these studies are Phase 
I/II clinical trials, with the notable exceptions of NCT01438112 
(assessing the antineoplastic activity of CG0070 in bladder 
carcinoma patients), NCT01166542 (evaluating the efficacy 
of Reolysin® in HNC patients) as well as NCT00769704 and 

patients (NCT01174537); (13) parvovirus H1 (a naturally 
occurring parvoviral variant developed by Oryx Verwaltungs as 
ParvOryx®),177,201 administered i.v. or i.t. as a standalone thera-
peutic intervention to glioblastoma patients (NCT01301430); 
and (14) a variant of the vesicular stomatitis virus engineered 
to drive the expression of interferon β (IFNβ),202,203 given i.t. as 

Table 1. recent clinical trials evaluating oncolytic virotherapy in cancer patients*

Virus Indication(s) Phase Status Route Co-therapy Ref.

CG0070 Bladder carcinoma II/III
Not yet  

recruiting
Intravesical As single agent NCT01438112

CGTG-102 Solid tumors I
recruiting i.t. and i.v. Combined with cyclophosphamide NCT01598129

Not yet  
recruiting

i.t. As single agent NCT01437280

Coxsackievirus A21 Melanoma II recruiting i.t. As single agent
NCT01227551

NCT01636882

DNX-2401
GBM I/II recruiting CeD As single agent NCT01582516

Glioma I recruiting i.t. As single agent NCT00805376

GL-ONC1

HNC I recruiting i.v. Combined with cisplatin and rT NCT01584284

Lung cancer I recruiting Intrapleural As single agent NCT01766739

Peritoneal  
carcinomatosis

I/II recruiting i.p. As single agent NCT01443260

Solid tumors I recruiting i.v. As single agent NCT00794131

HF10
HNC

Solid tumors
I recruiting i.t. As single agent NCT01017185

HSv1716

Mesothelioma I/II recruiting Intrapleural As single agent NCT01721018

Non-CNS 
solid tumors

I recruiting i.t. As single agent NCT00931931

JX594

HCC II
recruiting

i.v. As single agent NCT01636284

n.a. Combined with BSC NCT01387555

Active not 
recruiting

i.v. and i.t. Followed by sorafenib NCT01171651

CrC
I

Active not 
recruiting

i.v. As single agent NCT01380600

recruiting i.v. As single agent NCT01469611

I/II recruiting i.v. and i.t. Combined with irinotecan NCT01394939

Solid tumors I
Active not 
recruiting

i.t. As single agent NCT01169584

i.v. As single agent NCT00625456

Measles virus Mesothelioma I recruiting Intrapleural As single agent NCT01503177

NDv-HUJ

GBM

NB

Sarcoma

I/II
Not yet  

recruiting
i.v. As single agent NCT01174537

NTX-010
Lung cancer II recruiting i.v. As single agent NCT01017601

Neuroendocrine 
tumors

I recruiting i.v.
Combined with  

cyclophosphamide
NCT01048892

ParvOryx GBM I/II recruiting i.t. or i.v. As single agent NCT01301430

PvSrIPO GBM I recruiting i.t. As single agent NCT01491893

Abbreviations: BSC, best supportive care; CeD, convection enhanced delivery; CNS, central nervous system; CrC, colorectal cancer; GBM, glioblas-
toma multiforme; HCC, hepatocellular carcinoma; HNC, head and neck cancer; HSv, herpes simplex virus; i.p., intra peritoneum; i.t., intra tumorem; 
i.v., intra venam; n.a., not available; NB, neuroblastoma; NDv, Newcastle disease virus; rT, radiotherapy. *Started after January 1, 2008, and not with-
drawn, terminated or completed on the day of submission.
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Concluding Remarks

During the last two decades, great efforts have been dedicated 
at the development of viruses that would selectively and effi-
ciently kill malignant cells while sparing their normal counter-
parts. Accumulating clinical evidence indicates that oncolytic 
virotherapy is generally well tolerated and, at least under specific 
circumstances, exerts durable antineoplastic effects. Importantly, 
although some degree of immunosuppression initially favors 

NCT01368276 (both investigating the antineoplastic poten-
tial of talimogene laherparepvec in melanoma patients). Of 
note, Amgen representatives have very recently declared that 
NCT00769704 met its primary endpoint of durable response 
rate, defined as the rate of complete or partial response lasting 
continuously for at least six months (source www.amgen.com/
media/media_pr_detail.jsp?releaseID=1798143). Thus, talimo-
gene laherparepvec appears relatively close to being approved by 
FDA for use in melanoma patients.

Table 1 (Continued). recent clinical trials evaluating oncolytic virotherapy in cancer patients*

Virus Indication(s) Phase Status Route Co-therapy Ref.

reolysin®

Breast carcinoma II recruiting n.a. Combined with PTX NCT01656538

CrC
I

Active not 
recruiting

i.v. Combined with FOLFIrI regimen NCT01274624

II recruiting n.a.
Combined with BvC  

and FOLFOX regimen
NCT01622543

HNC
II

Active not 
recruiting

i.v.
Combined with

CBP and PTX
NCT00753038

III
Active not 
recruiting

i.v.
Combined with 

CBP and PTX
NCT01166542

Lung cancer II recruiting i.v.
Combined with 

CBP and PTX
NCT00861627

NCT00998192

Combined with DCX or pemetrexed NCT01708993

Melanoma II

Active not 
recruiting

i.v. As single agent NCT00651157

recruiting i.v.
Combined with

CBP and PTX
NCT00984464

Multiple myeloma I recruiting i.v. As single agent NCT01533194

Pancreatic cancer II
recruiting i.v.

Combined with

CBP and PTX
NCT01280058

Active not 
recruiting

i.v.
Combined with  

gemcitabine
NCT00998322

Pediatric solid 
tumors

I recruiting i.v.
Combined with  

cyclophosphamide
NCT01240538

Prostate cancer II recruiting n.a. Combined with DCX and prednisone NCT01619813

reproductive 
tract tumors

I recruiting i.v. + i.p. As single agent NCT00602277

II recruiting i.v. Combined with PTX NCT01199263

Talimogene

laherparepvec
Melanoma

I/II recruiting i.t. Combined with ipilimumab NCT01740297

III

Active not 
recruiting

i.t. As single agent NCT00769704

enrolling by 
invitation

i.t. As single agent NCT01368276

Toca 511

Astrocytoma 
GBM 

Oligoastrocytoma 
Oligodendroglioma

I recruiting resection cavity As single agent NCT01470794

I/II recruiting i.t. Combined with 5-FC NCT01156584

vSv-IFN-β HCC I recruiting i.t. As single agent NCT01628640

Abbreviations: 5-FC, 5-fluorocytosine; BvC, bevacizumab; CBP, carboplatin; CrC, colorectal cancer; DCX, docetaxel; FOLFIrI, folinic acid, 5-fluorouracil, 
irinotecan; FOLFOX, folinic acid, 5-flurouracil, oxaliplatin; GBM, glioblastoma multiforme; HCC, hepatocellular carcinoma; HNC, head and neck cancer; 
IFN, interferon; i.p., intra peritoneum; i.t., intra tumorem; i.v., intra venam; n.a., not available; PTX, paclitaxel; vSv, vesicular stomatitis virus. *Started 
after January 1, 2008, and not withdrawn, terminated or completed on the day of submission.
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to systemic—route of administration stands out as a safe and 
efficient alternative in this setting. Of note, encouraging results 
have also been obtained by combining oncolytic viruses with 
selected chemotherapeutics, such as the microtubular inhibi-
tor paclitaxel.209 It is tempting to speculate, yet remains to be 
formally demonstrated, that such an effect may originate from 
the capacity of some combinatorial antineoplastic regimens to 
elicit immunogenic cell death.210,211 Irrespective of this unre-
solved issue, the rational combination of oncolytic virotherapy 
with immunotherapy and chemotherapy is expected to drive 
the development of ever more efficient clinical protocols for the 
treatment of cancer.
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transduction and viral spread, the antineoplastic potential of 
oncolytic viruses in fine appears to rely on the elicitation of 
tumor-specific immune responses.9,11,47,48 This notion is best 
exemplified by the fact that oncolytic viruses engineered to drive 
the expression of immunostimulatory factors, such as GM-CSF 
and IFNβ, are usually more efficient at promoting tumor regres-
sion than their naturally occurring counterparts.52,173,202,203

As oncolytic virotherapy may soon move from the bench to 
the beside, future studies will have to elucidate to which extent, 
if any, the clinical efficacy of oncolytic viruses can be improved 
by combining them with appropriate immunomodulatory 
interventions. At least theoretically, both (pre-conditioning) 
immunosuppressive regimens and robust immunostimulatory 
interventions such as the local or systemic administration of 
recombinant cytokines,118,204 Toll-like receptor (TLR) ago-
nists,119,120,205,206 or immune checkpoint-blocking antibod-
ies,115,124,188,207 may significantly boost the therapeutic effects of 
oncolytic virotherapy, yet optimal schedules and administration 
routes to achieve this objective will have to be carefully defined. 
Rommelfanger and colleagues have indeed demonstrated 
that the intratumoral administration of lipopolysaccharide (a 
natural TLR2/TLR4 agonist) significantly enhances the anti-
neoplastic potential of an oncolytic vesicular stomatitis virus 
administered i.t. to melanoma-bearing mice, yet drives a lethal 
inflammatory syndrome in the majority of animals when viral 
particles are given i.v.208 As several distinct oncolytic viruses 
delivered i.t. have been shown to induce clinical responses even 
in distant, non-injected lesions,62,168,170 the local—as opposed 
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