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Abstract: Inflammation is a hallmark of many metabolic diseases. We previously showed that
ferrocene-appended 1H-1,2,3-triazole hybrids inhibit nitric oxide (NO) production in in vitro
models of lipopolysaccharide-induced inflammation in the BV-2 cell. In the present study,
we explored the viability, anti-inflammatory, and antioxidant potential of ferrocene-1H-1,2,3-triazole
hybrids using biochemical assays in rat mesangial cells (RMCs). We found that, among all the
ferrocene-1H-1,2,3-triazole hybrids, X2–X4 exhibited an antioxidant effect on mitochondrial free
radicals. Among all the studied compounds, X4 demonstrated the best anti-inflammatory effect
on RMCs. These results were supplemented by in silico studies including molecular docking with
human cytosolic phospholipase A2 (cPLA2) and cyclooxygenase 2 (COX-2) enzymes as well as
absorption, distribution, metabolism, excretion, and toxicity (ADMET) profiling. Besides, two new
crystal structures of the compounds have also been reported. In addition, combining the results from
the inducible nitric oxide synthase (iNOS), cPLA2, COX-2, and matrix metalloproteinase-9 (MMP-9)
enzymatic activity analysis and NO production also confirmed this argument. Overall, the results
of this study will be a valuable addition to the growing body of work on biological activities of
triazole-based compounds.

Keywords: tumor necrosis factor-α (TNF-α); cytosolic phospholipase A2 (cPLA2); prostaglandin E2

(PGE2); matrix metalloproteinase-9 (MMP-9); inducible nitric oxide synthase (iNOS)

1. Introduction

Inflammation, the body’s immune response to stimulus, is a complex biological process/defense
mechanism that is triggered by external or internal stimuli. It is associated with minor infections/injuries
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and with major disorders such as cancer, cystitis, arthritis, asthma, and psoriasis [1]. In renal disease,
mesangial cells (MCs) play a vital role in the evolution of immune-mediated inflammation. It has
been shown that tumor necrosis factor-α (TNF-α) levels are associated with the development of
nephropathy [2]. Renal expression and circulating levels of bioactive TNF-α increase in lupus nephritis
and correlate with disease activity [3]. TNF-α has been implicated in renal inflammation by its
upregulation of inflammatory genes such as cyclooxygenase-2 (COX-2), cytosolic phospholipase A2

(cPLA2), prostaglandin E2 (PGE2), matrix metalloproteinase-9 (MMP-9), and inducible nitric oxide
synthase (iNOS) [4,5]. Eicosanoids, which are involved in immune-mediated renal inflammatory
diseases, are generated from arachidonic acid metabolism via cPLA2 and COX-2. We previously
identified some traditional Chinese medicines that were effective in treating TNF-α-induced MC
inflammation via downregulation of cPLA2 and COX-2 [6]. Several other studies also indicated
the significance of MMPs and tissue inhibitors of metalloproteinases (TIMPs) in the progression of
glomerulonephritis [7]. The production of nitric oxide (NO) is catalyzed by NO synthase (NOS), which
degrades L-arginine to L-citrulline and NO. iNOS is one NOS isoform that is expressed by macrophages
and other tissues in response to (pro) inflammatory mediators [8]. Therefore, the modulation of MC
responses could offer a pathophysiology-based therapeutic approach to prevent glomerular injury.

To alleviate chronic inflammation and its related pain, the current drugs of choice are nonsteroidal
anti-inflammatory drugs (NSAIDs) [8]. However, long-term use of classical NSAIDs has been
associated with complications, including gastrointestinal ulcers, gastroduodenal erosions, renal
dysfunction, and hepatotoxicity, mainly because of their variable selectivity towards COX enzymes [9].
These drawbacks led to the search for new synthetic anti-inflammatory agents, which has identified
several new carbocyclic and heterocyclic small molecules that are in clinical use. For example, celecoxib,
ramifenazone, and famprofazone are well-known examples of pyrazole-based anti-inflammatory
drugs. However, serious side-effects, including bone marrow depression, water and salt retention, and
carcinogenesis prompted researchers to continue the search for new anti-inflammatory drugs.

Among heterocyclic cores, 1,2,3-triazole enjoys a reputable position in the area of drug discovery.
Easy synthesis/functionalization, ability to interact with bioreceptors, rigid, and stable structure
are some of the leading reasons behind the popularity of this core. [10] Similarly, organometallic
compounds such as ferrocene are known for their high metabolic stability, redox behavior, lipophilic
and non-toxic features. Recently, Guo and co-workers demonstrated that ferrocene-based compounds
could significantly reduce the LPS-induced NO secretion, IL-6, and TNF-α levels [11] The structure
activity relationship (SAR) studies indicated that the presence of planar spacers attached to the
ferrocene fragment is beneficial for the inhibition of NO production in the in vitro model. It has
been suggested that the new classes of anti-malarial, anti-tubercular, and anti-microbial agents
could be achieved by merging these two cores, i.e., ferrocene-triazole hybrids [12]. Previously,
we reported that 1,4-disubstituted 1H-1,2,3-triazoles (F, X1–X5, Scheme 1) inhibit NO production in
in vitro models of lipopolysaccharide (LPS)-induced inflammation [9]. Prompted by these results,
we decided to use rat mesangial cells (RMCs) as an in vitro cell culture model to examine the effects
of ferrocene-1H-1,2,3-triazole hybrids on TNF-α-induced inflammation. First, the cell viability of
these compounds on RMCs were evaluated. Next, we explored the effect of these compounds on
TNF-α-induced inflammation in vitro. In addition, we report two new crystal structures.
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2. Results and Discussion 

2.1. Synthesis and Characterization 

We previously reported the detailed synthesis, structural and electrochemical characterization 
of X1–X5 [9]. Briefly, these compounds were obtained in good yields and purity by azide-alkyne 
chemistry using ethynyl ferrocene and substituted amines. We were able to grow two new crystals 
(X1 and X5) and the results are discussed below. 

2.1.1. X-ray Crystal Structure 

Single crystals of X1 and X5 were collected from dichloromethane solution after slow 
evaporation. The experimental details and the crystal data for X1 and X5 are given in Table 1, while 
their molecular structures are shown in Figure 1a,b. The structural parameters for both ferrocenyl 
substituents in compounds X1 and X5 were within the normal ranges, and the iron atom is 
sandwiched almost perfectly centrally between the two cyclopentadienyl rings in compound X1 
compared with X5. The distance of iron from the two cyclopentadienyl rings differs slightly in the 
two compounds. The iron was observed at 1.649 (5) and 1.652 (5) Å from the plane defined by the 
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benzene ring formed dihedral angles of 5.160 (7)° in compound X1 and 61.41 (7)° in compound X5. 
The variation in the dihedral angle may be associated with ortho- and para-substitution of the NO2 
group in compounds X1 and X5, respectively. Single-crystal data indicate nitro N–O bond lengths of 
1.216 (5) and 1.212 (5) Å in compound X1 and 1.205 (5) and 1.216 (5) Å in compound X5, respectively. 
The crystal data indicate an N–O double bond and involvement of greater resonance in the para-
containing nitro group in X1 compared with the ortho-substitution in compound X5. 
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at different positions in these compounds. The details of the intermolecular hydrogen bonds present 
in both compounds X1 and X5 are summarized in Table 2. Compound X1 forms a dimer because of 
C—H⋯O interactions (Figure 2a) and is stabilized by packing because of π⋯π interactions (Figure 
2b). Compound X5 forms a one-dimensional polymeric structure because of C—H⋯N interactions 
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such noncovalent interactions is very important in biological applications to allow understanding of 
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Scheme 1. Structures of 1,4-disubstituted 1H-1,2,3-triazoles.

2. Results and Discussion

2.1. Synthesis and Characterization

We previously reported the detailed synthesis, structural and electrochemical characterization
of X1–X5 [9]. Briefly, these compounds were obtained in good yields and purity by azide-alkyne
chemistry using ethynyl ferrocene and substituted amines. We were able to grow two new crystals
(X1 and X5) and the results are discussed below.

X-ray Crystal Structure

Single crystals of X1 and X5 were collected from dichloromethane solution after slow evaporation.
The experimental details and the crystal data for X1 and X5 are given in Table 1, while their molecular
structures are shown in Figure 1a,b. The structural parameters for both ferrocenyl substituents in
compounds X1 and X5 were within the normal ranges, and the iron atom is sandwiched almost perfectly
centrally between the two cyclopentadienyl rings in compound X1 compared with X5. The distance
of iron from the two cyclopentadienyl rings differs slightly in the two compounds. The iron was
observed at 1.649 (5) and 1.652 (5) Å from the plane defined by the two cyclopentadienyl systems in
X1 but at 1.642 (5) and 1.652 (5) Å in compound X5. In both structures, the ferrocene has adopted
an eclipsed conformation. The NO2 group attached to the benzene ring formed dihedral angles of
5.160 (7)◦ in compound X1 and 61.41 (7)◦ in compound X5. The variation in the dihedral angle may be
associated with ortho- and para-substitution of the NO2 group in compounds X1 and X5, respectively.
Single-crystal data indicate nitro N–O bond lengths of 1.216 (5) and 1.212 (5) Å in compound X1 and
1.205 (5) and 1.216 (5) Å in compound X5, respectively. The crystal data indicate an N–O double bond
and involvement of greater resonance in the para-containing nitro group in X1 compared with the
ortho-substitution in compound X5.
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ellipsoids are drawn at the 40% probability level. 

Figure 1. The molecular structure of compounds (a) X1 and (b) X5 with atom labeling. Displacement
ellipsoids are drawn at the 40% probability level.
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Table 1. Experimental details and crystal structure data for compounds X1 and X5.

Experimental Details Crystal Data of X1 Crystal Data of X5

CCDC 1537323 1537684
Chemical formula C18H14FeN4O2 C18H14FeN4O2

Mr 374.18 374.18
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/c

Temperature (K) 296 293
a, b, c (Å) 11.1502 (7), 5.7600 (2), 24.1625 (12) 10.1528 (7), 13.9830 (6), 11.2383 (7)
α, β, γ (◦) 90.000 (4), 95.892 (4), 90.000 (4) 90.000 (4), 100.475 (5), 90.000 (4)

V (Å3) 1543.64 (14) 1568.87 (16)
Z 4 4

Radiation type Mo Kα Mo Kα
µ (mm−1) 1.00 0.98

Crystal size (mm) 0.50 × 0.25 × 0.11 0.72 × 0.37 × 0.13
Data collection Diffractometer STOE IPDS 2 STOE IPDS 2

Absorption correction Integration (X-RED32; Stoe & Cie,
2002)

Integration (X-RED32; Stoe & Cie,
2002)

Tmin, Tmax 0.755, 0.945 0.675, 0.900
No. of measured, independent

and observed [I > 2 σ (I)]
reflections

8127, 2976, 2356 7441, 3027, 2510

Rint 0.028 0.027
(sin θ/λ) max (Å−1) 0.614 0.615

Refinement R [F2 > 2 σ (F2)], wR
(F2), S

0.035, 0.094, 1.01 0.028, 0.073, 1.04

No. of reflections 2976 3027
No. of parameters 226 226
No. of restraints 12 0

H-atom treatment H-atom parameters constrained H-atom parameters constrained
∆ρmax, ∆ρmin (e Å−3) 0.58, −0.36 0.21, −0.22

As is clear from the structure (Figure 1), the benzene ring (C13–C18) and cyclopentadienyl ring
(C6–C10) form dihedral angles to the central triazole ring (N1–N3/C11–C12) at 17.09 (8)◦ and 12.58
(8)◦, respectively, in compound X1. However, the benzene ring (C13–C18) and cyclopentadienyl
ring (C6–C10) form dihedral angles to the central triazole ring (N1–N3/C11–C12) at 9.56 (7)◦ and
34.83 (7)◦, respectively, in compound X5. This variation is due to the presence of substituted nitro
groups at different positions in these compounds. The details of the intermolecular hydrogen bonds
present in both compounds X1 and X5 are summarized in Table 2. Compound X1 forms a dimer
because of C—H· · ·O interactions (Figure 2a) and is stabilized by packing because of π· · ·π interactions
(Figure 2b). Compound X5 forms a one-dimensional polymeric structure because of C—H· · ·N
interactions (Figure 2c) and is also stabilized by packing due to π· · ·π interactions (Figure 2d).
The presence of such noncovalent interactions is very important in biological applications to allow
understanding of many biological processes [13].

Table 2. Hydrogen-bond geometry (Å, ◦) of compounds X1 and X5.

D—H· · ·A D—H H· · ·A D· · ·A D—H· · ·A

Compound X1
C17—H17· · ·O1i 0.93 2.53 3.388 (3) 154.4

Compound X5
C14—H14· · ·N2i 0.93 2.57 3.428 (2) 154.4
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2.2.1. Antioxidant Effect on RMCs 

To identify a non-toxic dose, we first examined the cell viability on RMCs of various 
concentrations of ferrocene (F) and ferrocene-1H-1,2,3-triazole hybrids X1–X5 using the 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. As shown in Figure 3a, the 
compounds were noncytotoxic at concentrations up to 50 μg/mL. It is worthwhile to mention here 
that the incorporation of triazole fragment to the ferrocene did not affect the cell viability profile of 
the ferrocene. Since all the hybrid compounds exhibited similar cell viability effects on RMCs, it can 
be concluded that merging these two pharmaceutically active cores is a safe strategy. Accordingly, a 
concentration of 12.5 μg/mL ferrocene-1H-1,2,3-triazole hybrids was used for all subsequent 
experiments. 

Free radicals have the main role in inflammation and are divided into two categories, including 
reactive oxygen species (ROS) and reactive nitrogen species (RNS). ROS contains superoxide (O2−), 
hydroxy radical (•OH), peroxy radical (ROO•) and H2O2. Superoxide (O2−) is mainly produced in the 
mitochondrial electron transfer chain. When the cell performs respiration to generate ATP, about 1%–
3% of the electrons leak out in a series of transmission processes and combine with oxygen to produce 
superoxide [14]. In addition, cells will also produce superoxide through nicotine adenine 
dinucleotide phosphate (NAD (P) H) oxidase. Next, to quantitate the free radicals (ROS) in cells and 
in the mitochondria, we performed dihydroethidium (DHE) and MitoSOX staining (mitochondrial 
staining) followed by flow cytometric analysis and immunofluorescence, respectively. The results of 

Figure 2. A view of the formation of dimer due to C—H· · ·O interactions (a) and a packing diagram
along the b-axis with π· · ·π interactions (b), shown as pink dashed lines in X1. A view of the formation
of a polymeric structure of X5 due to C—H· · ·N interactions (c) and packing diagram along the a-axis
(d) are shown as pink dashed lines.

2.2. In Vitro Characterizations

2.2.1. Antioxidant Effect on RMCs

To identify a non-toxic dose, we first examined the cell viability on RMCs of various
concentrations of ferrocene (F) and ferrocene-1H-1,2,3-triazole hybrids X1–X5 using the
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. As shown in Figure 3a,
the compounds were noncytotoxic at concentrations up to 50 µg/mL. It is worthwhile to mention
here that the incorporation of triazole fragment to the ferrocene did not affect the cell viability
profile of the ferrocene. Since all the hybrid compounds exhibited similar cell viability effects on
RMCs, it can be concluded that merging these two pharmaceutically active cores is a safe strategy.
Accordingly, a concentration of 12.5 µg/mL ferrocene-1H-1,2,3-triazole hybrids was used for all
subsequent experiments.

Free radicals have the main role in inflammation and are divided into two categories, including
reactive oxygen species (ROS) and reactive nitrogen species (RNS). ROS contains superoxide (O2

−),
hydroxy radical (•OH), peroxy radical (ROO•) and H2O2. Superoxide (O2

−) is mainly produced in
the mitochondrial electron transfer chain. When the cell performs respiration to generate ATP, about
1%–3% of the electrons leak out in a series of transmission processes and combine with oxygen to
produce superoxide [14]. In addition, cells will also produce superoxide through nicotine adenine
dinucleotide phosphate (NAD (P) H) oxidase. Next, to quantitate the free radicals (ROS) in cells and
in the mitochondria, we performed dihydroethidium (DHE) and MitoSOX staining (mitochondrial
staining) followed by flow cytometric analysis and immunofluorescence, respectively. The results
of this study indicated that, except hybrids X1 and X5 (Figure 3b), all other compounds showed
antioxidant activities. Though there is no exact explanation behind the ineffectiveness of X1 and
X5, the antioxidant behavior of other hybrids (X2, X3 & X4) and reference (F) compounds could be
attributed to the following: Firstly, ferrocene-1H-1,2,3-triazole hybrid compounds are electroactive
and can undergo facile redox changes. This means they have a propensity to scavenge free radicals
(or at least alter their level). The electron-donating capability of the hybrid compounds is largely
governed by the core attached to the ferrocene ring. For instance, electrochemical studies suggested that
compound X4 (Eox (onset) = 0.32 V) has more tendency to get oxidized than X3 (Eox (onset) = 0.34 V)
and X1 (Eox (onset) = 0.39 V) [9]. Interestingly, the same trend has been reflected in the antioxidant
assay (antioxidant effect = X4 > X3 > X1). Secondly, it has been demonstrated that 1,2,3-triazole can
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be readily oxidized at the N1 position of the triazole core [15], thus provide an additional site for
radical scavenging by such hybrid compounds. Of the antioxidant compounds, X2–X4 exhibited
a significant antioxidant effect on mitochondrial free radicals (Figure 3c). Absorption, distribution,
metabolism excretion, and toxicity (ADMET) calculations (vide infra) supported this observation
too, i.e., mitochondrial localization of the compounds. However, all the compounds cannot induce
antioxidant enzymes, including HO-1 or SOD-2 (Supplementary Figure S1). Therefore, we suggest
that the antioxidant mechanisms of these compounds were not via antioxidant enzyme expression.
In the future, we can further explore the antioxidant mechanisms of these compounds.
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Figure 3. The antioxidant effect of ferrocene-1H-1,2,3-triazole hybrids in RMCs. Effect of
ferrocene-1H-1,2,3-triazole hybrids on cell viability. (a) RMCs were treated with twofold serial
dilutions of ferrocene-1H-1,2,3-triazole hybrids for 24 h, and cell viability was determined by the
MTT assay. Data are expressed as % of control (1% dimethyl sulfoxide (DMSO)-treated group) and
each column represented the mean ± standard error of the mean (SEM) of four independent tests. (b,c)
Intercellular ROS in RMCs treated with F, X1, X2, X3, X4, or X5 at 12.5 µg/mL for 2 h at 6 h post-TNF-α
(10 ng/mL) incubation were assessed using DHE fluorescence followed by flow cytometric analysis
(b), and MitoSOX staining (mitochondrial staining) followed by immunofluorescence. Results are
expressed as mean ± SEM of at least three repeated and independent assays, * p < 0.05; ** p < 0.01
versus control; # p < 0.01; ## p < 0.01 versus TNF-α treatment alone.
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2.2.2. Effect on iNOS Expression and NO Production in RMCs

RNS contains nitric oxide (NO•) and peroxynitroso (ONOO−) anions. Nitric oxide is a gas with
unpaired electrons produced by NOSs in tissues, which is widely distributed in the body and has
many physiological functions, defense, signal transduction, etc. The peroxynitroso anion is produced
by the reaction of NO• and superoxide. It is a kind of free radical with extremely active and super
destructive power [16]. It has been shown that the progression of renal disease is associated with
an increase in NO production and iNOS activity [17]. However, NO is a very polar molecule that is
easily oxidized, whereas nitrite is a stable oxidative metabolite of NO. Therefore, NO production was
represented by the accumulation of nitrite. In the present study, we measured nitrite levels and iNOS
expression by Griess assay and real-time polymerase chain reaction (PCR), respectively. As shown in
Figure 4a, a 24-h treatment with TNF-α (10 ng/mL) led to a 34.79-times higher expression of iNOS
compared with control. Upon addition of ferrocene-1H-1,2,3-triazole hybrids (except X5) to the culture
of RMCs, the iNOS level decreased remarkably compared with TNF-α-treated RMCs (p < 0.01). In a
parallel experiment (Figure 4b), the production of NO was significantly increased in TNF-α-stimulated
cells. Pretreatment with X1–X5 decreased this TNF-α-induced response. Inhibition of NO and iNOS
indicated that ferrocene-1H-1,2,3-triazole hybrids could protect against inflammation in RMCs.
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Figure 4. Effect of ferrocene-1H-1,2,3-triazole hybrids on iNOS expression and NO production in RMCs.
Cells were pretreated with the compounds at 12.5 µg/mL for 2 h and subsequently stimulated with
TNF-α (10 ng/mL) for 24h. The expression of iNOS and NO in RMCs were determined by (a) real-time
PCR analysis and (b) nitric oxide assay, respectively. (c) Cells were incubated without or with F, X1,
X2, X3, X4, or X5 at 12.5 µg/mL for 24 h. The mRNA was extracted, reverse transcribed, and then
analyzed the iNOS expression by real-time PCR. Data are expressed as fold of control (1% DMSO-treated
group) and each column represents the mean ± SEM of at least three repeated and independent assays.
Asterisks indicate a significant difference compared with the control group, ** p < 0.01. Hashes indicate
a significant difference compared with the TNF-α-treated group, ## p < 0.01.

To investigate whether ferrocene-1H-1,2,3-triazole hybrids could suppress iNOS gene expression
in RMCs, the cells were treated with these compounds at a non-toxic dose of 12.5 µg/mL for 24 h and
analyzed by real-time PCR. As shown in Figure 4c, compounds F and X1–X5 did not spontaneously
induce iNOS gene expression in RMCs. Among them, X2 and X4 attenuated endogenous iNOS
expression, but only F, X1, and X3 significantly cause this inhibition (Figure 4c). Compared with
other compounds, X5 was the weakest in inhibiting endogenous iNOS and did not reach statistical
significance. The expression of endogenous iNOS in X5 alone treatment is close to that in the control
group (Figure 4c). It may explain why it did not inhibit the expression of iNOS under the stimulation
of TNF-α (Figure 4a). From the results obtained, it seems that the triazole core has an important role
in the suppression of iNOS expression. In compounds X2 and X5, azole fragment is blocked by the
substituents present at the ortho position of the ring attached to azole (see Figure 1b). In X1 and X3,
the substituents are present on the para position and did not block azole fragments (see Figure 1a),
thus causing inhibition. This steric effect fact is also supplemented by a comparative low inhibition
profile of ferrocene alone, e.g., without steric effect. In addition, we speculate that the structure of
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these compounds contains the iron in ferrocene to interact with NO induced by TNF-α, leading to
decrease nitrite formation (Figure 4b). This may explain why X5 does not inhibit TNF-α-induced
iNOS expression but inhibits nitrite production. The ability of F, X1, and X3 to suppress the NO
concentration could be also ascribed to a number of factors, but we envision that the molecular weight
(MW), hydrogen bonding capability, solubility profile, topology and planarity of the compounds
played a major role here. Overall, these results implied that compounds F, X1, and X3 were better at
preventing the elevation of NO concentrations.

2.2.3. Effect on the Expression of Inflammatory Proteins in RMCs

TNF-α is a pro-inflammatory cytokine that plays a vital role in human and experimental
glomerulonephritis and lupus nephritis [3,4]. TNF-α has been reported to up-regulate inflammatory
genes in various cells. Both of COX-2 and cPLA2 can be considered as indicators of inflammation and
play a vital role in several renal inflammatory diseases. In our previous study, we have established
the relationship between COX-2 and cPLA2 and suggested that TNF-α enhances PGE2 generation
via cPLA2/COX-2 upregulation in RMCs [4]. In addition, increasing studies have reported the
significance of MMPs and TIMPs in the progression of glomerulonephritis. MMP-9 produced by
neutrophils participates in the progression of renal fibrosis [18]. Therefore, we investigate whether
ferrocene-1H-1,2,3-triazole hybrids regulate the expression of inflammatory proteins in RMCs, the
protein levels of COX-2, cPLA2, and MMP-9 were examined. As demonstrated in Figures 5a and 6a,
treatment with all ferrocene-1H-1,2,3-triazole hybrids significantly (p < 0.05) decreased the expression
of all these proteins in RMCs in response to TNF-α treatment. The levels of transcription of COX-2
(Figure 5b) and MMP-9 (Figure 6b) were also examined. Among ferrocene-1H-1,2,3-triazole hybrids,
X3 and X4 caused more significant inhibition of TNF-α-induced COX-2 mRNA level than F (Figure 5b),
while X2, X4, and X5 significantly attenuated more TNF-α-induced MMP-9 mRNA level than F
(Figure 6b). These results indicate that combining ferrocene and triazole motifs is an intriguing
strategy to achieve an enhanced anti-inflammatory effect. In all the cases, we observed that the
ferrocene-1H-1,2,3-triazole hybrids are more active than the ferrocene alone. However, the cells-treated
with X3 spontaneously increased COX-2 protein expression (Figure 5c) and the cells treated with
X5 spontaneously increased MMP-9 transcription (Figure 6c). In addition, RMCs treated with X2
do not decrease COX-2 mRNA level in response to TNF-α (Figure 5b). Taken together, among all
the ferrocene-1H-1,2,3-triazole hybrids, X4 demonstrated the best anti-inflammatory effect on RMCs.
From the results of Figure 5a,b, we can speculate that the main pharmacological mechanism of F, X1,
and X2 may be to inhibit TNF-α-induced COX-2 protein synthesis rather than mRNA transcription
inhibition. In contrast, the X3–X5 group may inhibit COX-2 mRNA transcription hence protein levels.
We further analyze the effect of these compounds on the activity of COX-2 and cPLA2. As shown in
Figure 5d, treatment with all ferrocene-1H-1,2,3-triazole hybrids significantly decreased the activity of
cPLA2 as well as COX-2 in RMCs in response to TNF-α treatment. In this study, we also proved that
cPLA2 affects COX-2 activity by AACOCF3 (a cPLA2 inhibitor) pretreatment, which is consistent with
our previous publication [4]. On the inhibitory mechanisms of ferrocene-1H-1,2,3-triazole hybrids in
TNF-α-induced MMP-9 expression, X2 and X4 mainly inhibit transcription level, but the rest of the
compounds may affect enzyme activity (Figure 6a,b). It is worth noting that the treatment of healthy
cells with X3 and X5 under a safe dose will cause side effects, because these two compounds cause the
expression of inflammatory proteins. It is not recommended to use it in healthy food or for preventing
inflammation in the future.
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Figure 5. Effect of ferrocene-1H-1,2,3-triazole hybrids on the protein expression of cPLA2 and COX-2
in RMCs. (a,c) Western blot assay to detect COX-2 and cPLA2 expression in cell lysate. (b) The
COX-2 mRNA level was determined by real-time PCR. The sequence of addition of TNF-α reagent and
compounds was as follows. In panels (a,b), RMCs were treated with ferrocene-1H-1,2,3-triazole hybrids
(12.5 µg/mL) for 2 h and then exposed to TNF-α for another 24 h. In panel (c), RMCs were treated
without or with F, X1, X2, X3, X4, or X5 at 12.5 µg/mL for 24 h. COX-2 and cPLA2 expression were
measured by comparison with that of GAPDH (internal control). In panel (d), the enzyme activity assay
kits to detect of endogenous cPLA2 and COX-2 activity in RMC cell lysate (6 µg) stimulated without
or with ferrocene-1H-1,2,3-triazole hybrids or AACOCF3 (AA) in the presence of 10 ng/mL TNF-α.
Data were obtained from at least three independent experiments and are expressed as mean ± SEM.
One-way analysis of variance (ANOVA) followed by Bonferroni’s multiple-comparisons test was used
to identify significant differences between multiple groups. Asterisks indicate a significant difference
compared with the control group, ** p < 0.01. Hashes indicate a significant difference compared with
the TNF-α-treated group, ## p < 0.01; # p < 0.05.
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GAPDH was used as an internal control and examined by Western blotting. Densitometric 
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were determined by real-time PCR. Results are presented as the mean ± SEM. Data are combined from 
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between multiple groups. Asterisks indicate a significant difference compared with the control group, 
** p < 0.01. Hashes indicate a significant difference compared with the TNF-α-treated group, ## p < 0.01. 
(c) Cells were treated without or with F, X1, X2, X3, X4, or X5 at 12.5 μg/mL for 24 h. MMP-9 mRNA 
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2.3. In Silico Studies 

2.3.1. ADMET Predictions 

To obtain more information on the bioactivity and potential use of the reported molecules as 
drugs, we predicted their ADMET; the results of this analysis are presented in Table 3. From the data, 
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profiles. For example, all compounds returned positive results for blood–brain barrier (BBB) 
transition, gastrointestinal (GI) absorption, and oral bioavailability criteria, indicating their ability to 
pass through the BBB and be absorbed into tissues. Compounds X1, X2, and X5 exhibited similar GI 
absorption (p = 0.8939), while compound X3 (p = 0.8706) and compound X4 (p = 0.8252) had 
comparatively lower probability of absorption. The fact that all compounds showed category III acute 
oral toxicity indicates that they may be acceptable for oral delivery. Moreover, all compounds showed 
the probability of mitochondrial localization, which is well reflected in the results of the antioxidant 
assays (Figure 3c). It should be noted that all these values are calculated and therefore, in vivo studies 
are required to confirm these observations. 

Figure 6. Effect of ferrocene-1H-1,2,3-triazole hybrids on MMP-9 expression in RMCs. RMCs were
treated with ferrocene-1H-1,2,3-triazole hybrids (12.5 µg/mL) for 2 h and then exposed to TNF-α
for an additional 24 h. (a) MMP-9 expression was examined by gelatin zymography of the culture
media. GAPDH was used as an internal control and examined by Western blotting. Densitometric
quantification of MMP-9 in culture media is presented. (b) The mRNA levels of MMP-9 and β-actin
were determined by real-time PCR. Results are presented as the mean ± SEM. Data are combined from
three independent experiments with three replicate samples per group in each experiment. One-way
ANOVA and Bonferroni’s multiple-comparisons tests were used to identify significant differences
between multiple groups. Asterisks indicate a significant difference compared with the control group,
** p < 0.01. Hashes indicate a significant difference compared with the TNF-α-treated group, ## p < 0.01.
(c) Cells were treated without or with F, X1, X2, X3, X4, or X5 at 12.5 µg/mL for 24 h. MMP-9 mRNA
level was determined by real-time PCR.

2.3. In Silico Studies

2.3.1. ADMET Predictions

To obtain more information on the bioactivity and potential use of the reported molecules as
drugs, we predicted their ADMET; the results of this analysis are presented in Table 3. From the data,
it is clear that the compounds possess acceptable physicochemical, pharmacokinetic, and toxicity
profiles. For example, all compounds returned positive results for blood–brain barrier (BBB) transition,
gastrointestinal (GI) absorption, and oral bioavailability criteria, indicating their ability to pass through
the BBB and be absorbed into tissues. Compounds X1, X2, and X5 exhibited similar GI absorption
(p = 0.8939), while compound X3 (p = 0.8706) and compound X4 (p = 0.8252) had comparatively lower
probability of absorption. The fact that all compounds showed category III acute oral toxicity indicates
that they may be acceptable for oral delivery. Moreover, all compounds showed the probability of
mitochondrial localization, which is well reflected in the results of the antioxidant assays (Figure 3c).
It should be noted that all these values are calculated and therefore, in vivo studies are required to
confirm these observations.

Table 3. Pharmaceutical prediction of in silico ADMET properties.

Code Physicochemical Properties Pharmacokinetics Toxicity Parameters

MWa HBAb HBDc RBd logP GIAe OBf Carcino genesis Irritation

X1 374.18 5 0 3 3.96 + + − +
X2 495.28 7 0 5 5.54 + + − −

X3 381.62 3 0 2 4.85 + + − −

X4 408.08 3 0 2 4.82 + + − +
X5 374.18 5 0 3 3.96 + + − +

a = Molecular weight, b = Hydrogen bond acceptor, c = Rotatable bonds, d = Hydrogen bond donor,
e = Gastrointestinal absorption, f = Oral bioavailability.

2.3.2. Docking Results

Molecular docking studies have become a common technique to identify molecular targets for
treating disease. Using this method, one can easily predict the biological potential of compound(s),
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and active/catalytic sites within an enzyme. Biological results indicated that ferrocene-1H-1,2,3-triazole
hybrids X1–X5 exhibit neuroprotective effects via the inhibition of NO production in microglial cells
(BV-2). To rationalize this observation at the supramolecular level, we carried out docking studies of the
compounds with the enzymes established for participation in inflammatory processes. It is reported
that compounds bearing 1,2,3-triazole core exhibit an anti-inflammatory effect via the inactivation of
microglia localized COX isoenzymes [19]. Similarly, Chuang et al. [20] have shown that cPLA2 plays
a crucial role in ROS/NO signaling in LPS activated BV2 cells; thus, cPLA2 can be considered as an
intriguing therapeutic target for inflammation control.

In the present study, we carried out shape-based docking studies of compounds into the active
sites of cPLA2 (apo form, PDB code: 1CJY) [21] and COX-2 (PDB code: 6COX) [22] using Autodock
vina tools [23]. Since the crystal structure of cPLA2 had some missing regions, it was modelled
using an online server, SWISS Model prior to the docking studies [24]. The results of the docking
studies indicated that all hybrid compounds preferred to enter the active site of the enzyme and
interact with the nearby residues (Figure 7). For instance, it has been reported that, in order to impart
COX-2 inhibitory activity, a ligand should interact with conserved (His90), nonconserved (Arg513)
and nearby residues (Arg120, Tyr355 and Glu524, Trp387, Phe518, Ser530, Arg120, Tyr355, Glu524
and Val523) of COX-2 via polar and nonpolar interactions [13]. Our docking result indicated that the
ferrocene-1H-1,2,3-triazole hybrids prefer to enter the active site of the target and interact via multiple
H-bonds (Table 4).

Table 4. Binding energy and interacting residues of X1–X5 for COX-2 and cPLA2.

PDB Compound Code H-bonding Site
Residues

Binding Energy
(kcal/mol) Distance (A)

6COX X1 Arg120, Tyr355 −9.04 2.9, 3.1
6COX X2 Gln203, Tyr409 −10.33 2.7, 3.0, 3.2
6COX X3 Tyr115 −7.75 2.9
6COX X4 Tyr115 −8.23 2.9, 3.0

6COX X5 Arg513, Tyr355,
Ser353, His90 −9.35 2.7, 2.8, 3.1, 3.4

1CJY X1 Gly551, Leu552,
Lys595 −6.97 3.5, 3.2, 2.6

1CJY X2
Gly197, Gly198,
Ser228, Asp549,

Gly551
−11.51 2.5, 2.6, 2.8, 3.0

1CJY X3 Asp345 −9.13 2.8

1CJY X4 Asp345, Trp346,
Pro559 −9.94 2.9, 3.2, 3.4

1CJY X5 Asn262, Val407,
Asn682, Gly684 −7.15 2.7, 2.8, 3.0, 3.1, 3.5

Docking studies with cPLA2 (PDB code: 1CJY) indicated that, except X2, compounds X1–X5
did not make any contact with the catalytic residue Ser228 or with the “oxyanion hole” (residues
Gly197/Gly198) of the enzyme [25]. However, they interacted with the nearby residues of the catalytic
site of cPLA2 (Figure 8 and compiled in Table 4). The binding propensity of the ligand is significantly
controlled by the functionalities present over the phenyl ring of triazole fragment. Unfortunately, we
found that the docking energies do not match with the observed activity. However, in both cases,
we observed that compound X2 has the highest binding energies than the others, which is not very
well reflected in in vitro studies. This can be ascribed to several factors, but we envisaged that high
molecular weight (MW), hydrogen bonding propensity, solubility, and structural rigidity played
important roles here.
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Figure 8. Molecular docking of hybrid compounds X1 (a), X2 (b), X3 (c), X4 (d), and X5 (e) with cPLA2

(PDB code: 1CJY).

For instance, compound X2 has five HBA units (due to two nitro groups), which explains why
it showed high affinity and binding energy with the enzymes in docking studies. At the same time,
compound X2, due to its comparatively higher MW (Table 3), lower solubility (logP = 5.54, Table 3),
and less structural rigidity (due to the presence of rotatable biphenyl units) leads to lower in vitro
activity. Similarly, compounds X3 and X4, bearing halogen atoms over the phenyl ring with moderate
MW and lowest number of HBA units showed high activities.
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3. Materials and Methods

3.1. Synthesis and Characterization

All chemicals, except where stated otherwise, were obtained from Merck (Darmstadt,
Germany) and used as received. The detailed synthesis and characterization of compounds
1-(4-nitrophenyl)-4-ferrocenyl-1H-1,2,3-triazole (X1), 1-(4,4′-dinitro-2-biphenyl)-4-ferrocenyl-1H-1,2,3-
triazole (X2), 1-(3-chloro-4-fluorophenyl)-4-ferrocenyl-1H-1,2,3-triazole (X3), 1-(4-bromophenyl)-4-
ferrocenyl-1H-1,2,3-triazole (X4), and 1-(2-nitrophenyl)-4-ferrocenyl-1H-1,2,3-triazole (X5) can be found in
our previous report [9]. Single-crystal X-ray diffraction for compounds X1 and X5 was carried out on a
Stoe IPDS 2 diffractometer equipped with a graphite crystal monochromator situated in the incident beam
for data collection at room temperature [26]. The determination of unit cell parameters and data collection
were performed using Mo-Ka radiation (λ = 0.71073 Å). [27] Unit cell dimensions were obtained with
least-squares refinements, and all structures were solved by direct methods with SHELXT2015 [28,29]. All
H atoms were located from difference-Fourier maps, but in the final cycles of refinement they were included
in the calculated positions and treated as riding atoms: C-H = 0.93–0.98 Å with Uiso (H) = 1.2 Ueq (C).
Selected geometric parameters (Å, º) of the compounds are listed in Supplementary Tables S1 and S2.

3.2. In Vitro Characterizations of Synthesized Compounds

3.2.1. Cell Culture in the Presence of Ferrocene-1H-1,2,3-Triazole Hybrids

RMCs (from the American Type Culture Collection (ATCC; Rockville, MD, USA)) were cultured
in Dulbecco’s minimal essential medium containing 10% heat-inactivated fetal bovine serum (FBS) at
37 ◦C in a 5% CO2 atmosphere. For the measurement of protein expression, enzymatic activity, and
mRNA levels, 2 × 105 cells/well were seeded into 12-well plates. In anti-inflammation experiments,
cells were starved in 0% FBS and cultured with or without X1–X5 for 2 h prior to TNF-α (R&D Systems,
Minneapolis, MN, USA) treatment for 24 h.

3.2.2. Viability Assay

Cells were seeded at a density of 3 × 105 cells per well into 96-well plates and treated with different
concentrations of X1–X5 (from 1.5625 to 100 µg/mL in 1% DMSO) for 24 h, followed by the addition of
0.5 mg/mL MTT (Merck) for another 2 h. The MTT solution was then discarded and 100 µL of DMSO
(Merck) was added to dissolve the formazan crystals. The level of colored formazan was analyzed on a
microplate reader (SpectraMax 250, Molecular Devices, San Jose, CA, USA) at a wavelength of 540 nm.
The values were determined by comparing the optical density of the X1–X5-treated group with that of
the vehicle-treated group (1% DMSO).

3.2.3. Gelatin Zymography

MMP-9 expression was analyzed as previously described [30]. Briefly, after treatment, the culture
medium was collected and centrifuged at 10,000× g for 5 min at 4 ◦C to remove cell debris. Next,
the supernatants were mixed with 5× nonreducing sample buffer and electrophoresed on a 10%
polyacrylamide gel containing 0.15% gelatin. After electrophoresis, the gel was washed twice in 2.5%
Triton X-100 and then incubated in developing buffer at 37 ◦C overnight. After incubation, the gel was
stained with staining buffer (30% methanol, 10% acetic acid, and 0.5% (wt/vol) Coomassie brilliant
blue). Gelatinolytic activity was observed as white bands on a blue background.

3.2.4. Nitrite Production

After cell treatment, the conditioned medium was collected and analyzed for nitrite production
by Griess assay [31]. Briefly, 50 µL of a solution containing 4% sulfanilic acid, 0.2% N-(1-naphthyl)
ethylenediamine dihydrochloride, and 10% phosphoric acid was added to 50 µL of conditioned
medium. Absorbance reading was taken at 550 nm after samples were incubated at 25 ◦C for 10 min
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in the dark. The standard curve of various NaNO2 concentrations was used to calculate the NO
production in the sample.

3.2.5. Western Blotting for Inflammatory Proteins

Western blotting was conducted as previously described [4]. Briefly, after the cell culture, RMCs
were washed, scraped, collected, and centrifuged at 45,000× g for 1 h at 4 ◦C to yield the whole-cell
extract. The whole-cell extracts were quantitated, adjusted for concentration, denatured, resolved with
10% sodium dodecyl sulfate polyacrylamide gel electrophoresis, and transferred to polyvinylidene
fluoride membranes (Millipore, Bedford, MA, USA). Membranes were incubated with primary
anti-COX-2 (Cell Signaling Technology, Danvers, MA, USA), anti-cPLA2 (Cell Signaling Technology) or
anti-GAPDH antibody, which was used as a loading control (Santa Cruz Biotechnology, Santa Cruz, CA,
USA) at 4 ◦C overnight and secondary anti-rabbit or anti-mouse horseradish peroxidase antibody for 1
h at room temperature. The immunoreactive signals detected by enhanced chemiluminescence reagents
were developed using a LumiFlash Ultima chemiluminescent substrate horseradish peroxidase system
(Visual Protein Biotech Corporation, Taipei, Taiwan). The densitometry units of COX-2, cPLA2 and
GAPDH were quantified by ImageLab TM 5.0 Software (Bio-Rad Laboratories, Inc., Hercules, CA,
USA).

3.2.6. Real-time PCR

Real-time PCR was performed using the CFX Connect Real-time PCR Detection System (Bio-Rad
Laboratories) to determine the expression of inflammatory genes, as per the workflow steps described
previously [4]. Briefly, total RNA was extracted and provided as a template for cDNA reverse
transcription. The thermal conditions used were 3 min at 95 ◦C, 40 cycles of 10 s at 95 ◦C and
30 s at 58 ◦C. Relative gene expression was determined by the 2−∆∆Ct method. Gene expression
was normalized relative to unstimulated cells and fold variation was normalized to levels of
β-actin expression (an endogenous control). The primers used for real-time PCR were as follows:
5′–CGTGAAAAGATGACCCAGATCA–3′ (forward) and 5′–CTCCGG AGTCCATCACAATG–3′

(reverse) for β-actin; 5′–ACATTCAGGCAGCAGAGGA–3′ (forward) and 5′–CCACCACAGGCACAT
CAC–3′ (reverse) for cPLA2, and 5′–CAAGAATCAAATTACC GCTGAAG–3′ (forward) and
5′–CGAAGGAAGGGAATGTTGTT–3′ (reverse) for COX-2; 5′–CGCTTTCACCAAGACTGTGA–3′

(forward) and 5′–GCATCCCAAGTACGAGTGGT–3′ (reverse) for iNOS.

3.2.7. cPLA2 and COX-2 Enzyme Activity

The experimental procedure of COX-2 activity detection is in accordance with the manufacturer’s
instructions (Abcam, Cambridge, UK). The following are simple instructions: First, we established a
standard curve by a series of diluted resorufin standards. Resorufin is a redox fluorescent probe that can
be used to visualize cell respiration directly. Next, for sample preparation, 5 × 106 cells treated without
or with compounds in the presence of TNF-α were scraped off from the culture plate and washed with
cold PBS. After centrifuging at 500× g for 3 min, we discarded the supernatant and resuspended the
cell pellet in 0.2 mL of lysis buffer with protease inhibitor cocktail on ice for 5 min. After centrifuging
at 12,000× g 4 ◦C for 3 min, we collected the supernatant used as the sample. Sample and COX-2
positive control were separately loaded into each of the 96 wells at 20 µL and then 2 µL DMSO (for
total COX activity detection) and 2 µL COX-2 inhibitor (Celecoxib, for COX-2 activity detection) were
added in two groups. Reaction mix reagents (containing COX Probe, Diluted COX Cofactor and COX
Assay Buffer) at 68 µL were loaded into each well and mixed enough, using a multichannel pipette to
add 10 µL diluted arachidonic acid/NaOH solution into each well to initiate the reaction at the same
time. After addition of the arachidonic acid, the fluorescence (Ex/Em = 535/587 nm) was measured
immediately in a kinetic mode once every 15 sec for at least 30 min. One Unit COX activity = amount
of COX which generates 1.0 µmol of resorufin per min.
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The activity of COX-2 in the test samples is calculated as:

COX Activity =
( B

∆T × M

)
= pmol/min/mg or uU/mg (1)

where
B = Amount of resorufin from Standard Curve (pmol).
∆T = Reaction time (min).
M = Protein amount added into the reaction well (mg)
at pH 8.0, 25 ◦C.
Use the ∆RFU535/587nm to obtain B pmol of resorufin generated by COX-2 during the reaction time

(∆T = T2 – T1).
∆RFU535/587nm = (RFUS2 - RFUS1) - (RFUI2 - RFUI1) (2)

where
RFUS2 is the sample (DMSO) reading at time T2.
RFUS1 is the sample (DMSO) reading at time T1.
RFUI2 is the inhibitor sample (Celecoxib) at time T2.
RFUI1 is the inhibitor sample (Celecoxib) at time T1.
PLA2 sample that can utilize arachidonoyl thio-PC as a substrate can be measured by colorimetric

cPLA2 assay kit (Abcam). Among them, any residual sPLA2 can be removed from the samples by
using a membrane filter with a molecular weight cut-off of 30,000. To avoid any measurement of iPLA2
activity in the sample, use the iPLA2-specific inhibitor Bromoenol Lactone. Briefly, we added 15 µL
of assay buffer (non-enzymatic control), positive control (bee venom PLA2) and sample (including
iPLA2-specific inhibitor) to wells. We initiated the reactions for 1 h at room temperature by adding 200
µL substrate solution. The addition of 10 µL of DTNB/EGTA to each well stopped enzyme catalysis
and developed the reaction for 5 min at room temperature. The absorbance was read at 414 nm using a
microplate reader (SpectraMax 250). The activity of cPLA2 in the test samples is calculated as:

cPLA2Activity =
∆A414/min

10.66 mM− 1
×

0.225 mL
0.01 mL

× Sample dilution = umol/min/mL (3)

where
A414/min = A414 (sample) −A414 (blank)/60 min
∆A414/min = (A414/minSample − A414/minInhibitor)

3.3. In Silico Studies

The physicochemical properties and oral bioavailability of compounds X1–X5 were predicted
using admetSAR 2 webserver. [32,33]. SMILE formats (as input) of the molecules were generated using
Marvin 16.11.28.0, 2016, ChemAxon (http://www.chemaxon.com). Shape-based molecular docking
studies were performed on an Intel (R) Core (TM) i5 CPU (2.3 GHz) with a Windows 2010-based
operating system. Cif files of the ligands were converted to PDB files which were further used for
docking analysis. The ligands were docked into the active sites of human cPLA2 (PDB code 1CJY) and
COX-2 (PDB code: 6COX). The crystal structures were downloaded from the Brookhaven Protein Data
Bank (http://www.rcsb.org). The pdbqt format of the compound and enzyme were obtained using
AutoDock Tools (ADT) 1.5.4 [34]. Preparation of parameter files for grid and docking was done using
the following parameters: grid box size of 108 × 86 × 78 Å with 0.375 Å spacing that included the whole
enzyme. Autodock vina was used for the docking studies [35]. The docking results were analyzed
using PyMol [36] for possible polar and hydrophobic interactions. Of the different conformations
obtained, the least energetic and most stable conformation was selected.

http://www.chemaxon.com
http://www.rcsb.org
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4. Conclusions

A series of ferrocene-1H-1,2,3-triazole hybrids were investigated for their viability,
anti-inflammatory, and antioxidant effects. X-ray single-crystal structure studies indicated that
the position of the nitro group (ortho or para) controlled the structure of the compound (dimeric or
polymeric) in the solid state. We found that, among all the ferrocene-1H-1,2,3-triazole hybrids, X2–X4
exhibited antioxidant effect on mitochondrial free radicals, and among all, X4 demonstrated the best
anti-inflammatory effect on RMCs. In silico studies confirmed the safety of the compounds and their
ability to bind to the active site of the pro-inflammatory factors. Overall, the results of the present study
indicated that ferrocene-1H-1,2,3-triazole hybrid, X4, can be used as a lead to optimize and develop a
new anti-inflammatory and antioxidant agent.

Supplementary Materials: Supplementary Materials can be found at http://www.mdpi.com/1422-0067/21/11/
3823/s1.
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