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ABSTRACT
Objectives: To determine the combined effect of fatigue cyclic loading and thermocycling 
(CLTC) on the shear bond strength (SBS) of a resin cement to zirconia surfaces that were 
previously air-abraded with aluminum oxide (Al2O3) particles at different pressures.
Materials and Methods: Seventy-two cuboid zirconia specimens were prepared and 
randomly assigned to 3 groups according to the air-abrasion pressures (1, 2, and 2.8 
bar), and each group was further divided into 2 groups depending on aging parameters 
(n = 12). Panavia F 2.0 was placed on pre-conditioned zirconia surfaces, and SBS testing 
was performed either after 24 hours or 10,000 fatigue cycles (cyclic loading) and 5,000 
thermocycles. Non-contact profilometry was used to measure surface roughness. Failure 
modes were evaluated under optical and scanning electron microscopy. The data were 
analyzed using 2-way analysis of variance and χ2 tests (α = 0.05).
Results: The 2.8 bar group showed significantly higher surface roughness compared to the 1 
bar group (p < 0.05). The interaction between pressure and time/cycling was not significant 
on SBS, and pressure did not have a significant effect either. SBS was significantly higher (p = 
0.006) for 24 hours storage compared to CLTC. The 2 bar-CLTC group presented significantly 
higher percentage of pre-test failure during fatigue compared to the other groups. Mixed-
failure mode was more frequent than adhesive failure.
Conclusions: CLTC significantly decreased the SBS values regardless of the air-abrasion 
pressure used.
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INTRODUCTION

Yttrium oxide-stabilized tetragonal zirconia polycrystal (Y-TZP) is frequently used in 
dentistry due to its outstanding mechanical properties, biocompatibility, and aesthetic 
performance [1-4]. These superior properties made zirconium dioxide ceramics a popular 
high-strength ceramic with a large variety of clinical applications [1-5]. However, its chemical 
inertness challenges establishment of a strong, durable bond with other materials [5-8]. The 
composition and physical properties of zirconia ceramics differ substantially from silica-
based ceramics, and require alternative bonding techniques to achieve strong and durable 
bonding of resin [7,8].

The clinical success of resin bonding procedures for ceramic restorations depends on the 
quality and durability of the bond between ceramic and resin cements. The quality of the 
bond depends on several factors, such as the bonding mechanisms that are controlled by the 
surface treatment, which promotes micromechanical and/or chemical bonding to ceramics 
[8]. Mechanical retention of adhesives to zirconia ceramics can be achieved by air-abrasion 
or tribochemical silica coating before using chemical bonding agents as organosilanes or 
ceramic primers. The aforementioned chemical agents promote better interaction with 
the ceramic surface by increasing the surface energy, and in turn, the wettability of the 
cement [9-14]. Dentin adhesives containing an organophosphate ester monomer, such as 
10-methacryloyloxydecyl dihydrogen phosphate (MDP), 4-methacryloxyethyl trimellitate 
anhydride (4-META), 6-methacryloyloxyhexyl phosphonoacetate (6-MHPA), or 6-methacryl-
oxyhexyl 2-thiouracil-5-carboxylate (MTU-6), were shown to activate zirconia surfaces [14]. 
Consequently, cements containing these monomers have led to higher bond strength when 
used with zirconia, and even higher bond strength when combined with air-abraded zirconia 
[14-17]. However, there is no consensus in the literature regarding the effective air-abrasion 
procedure to improve the resin cement adhesion to the zirconia ceramics [18-21].

Thermocycling has been widely used to simulate thermal stresses commonly occurring in the 
oral environment based on differences in the coefficient of thermal expansion of materials 
[22]. However, thermocycling alone does not precisely mimic oral conditions. Adding fatigue 
cyclic loading may provide better assessment of the clinical performance of adhesive systems 
[23]. Recent meta-analysis studies reported on different protocols that involved subjecting 
test specimens to either thermal stresses or mechanical fatigue in an occlusal direction or 
perpendicular to the adhesive interface, but not a combination of these methods in a shear 
direction [15,18]. One study evaluated the effect of fatigue cycling (i.e., 26 N at 2 Hz for 27,500 
cycles) on the shear bond strength (SBS) of a resin/porcelain system [24]. Considering the 
failure mode that occurs in the oral cavity, the proposed in vitro testing method may provide 
more clinically relevant evaluation of bond strength between zirconia and adhesive cements.

To the best of our knowledge, the effects of different air-abrasion pressures on surface 
roughness and adhesion performance to zirconia ceramic after combining thermal aging and 
mechanical fatigue cyclic loading in a shear direction have not been investigated. Therefore, 
the overall goal of this study was to determine the combined effect of fatigue cyclic loading 
and thermocycling (CLTC) on the SBS of a resin cement to Y-TZP zirconia surfaces prepared 
at different air-abrasion pressures. The null hypotheses tested were: 1) increasing air-
abrasion pressure using aluminum oxide (Al2O3) particles would not affect Y-TZP zirconia 
ceramic surface roughness; and 2) the combined effect of fatigue CLTC would not affect the 
SBS of resin cement to Y-TZP zirconia surfaces prepared at different air-abrasion pressures.
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MATERIALS AND METHODS

Y-TZP surface treatment
Seventy-two cuboid samples (10 × 10 × 2 mm) were sectioned before sintering from a disk-
shaped block of Y-TZP zirconia (Ivoclar Vivadent Inc., Amherst, NY, USA) using Isomet 1000 
(Buehler, Lake Bluff, IL, USA). Specimens were dried in an oven (Cerampress QEX porcelain 
and processing furnace, Dentsply Neytech, York, PA, USA) at 270°C for 1 hour, sintered 
using the Lindberg Furnace (Blue M, Ashville, NC, USA) for 4.5 hours, and cooled down 
overnight [2]. Ceramic specimens were embedded in acrylic resin using a plastic mold to 
aid specimen handling during the experiments (Figure 1A). Specimens were finished and 
polished using silicon carbide papers from 240- to 1,200-grit under running water. The 
embedded Y-TZP specimens were randomly assigned to 3 air-abrasion pressure groups (n = 
24): 1 bar (1b), 2 bar (2b), and 2.8 bar (2.8b). The 2.8b group served as the control [25-29]. 
Each Y-TZP zirconia specimen was air-abraded using airborne-particle abrasion with 50 μm 
Al2O3 for 30 seconds (SandStorm Expert, Vaniman Manufacturing Co., Fallbrook, CA, USA) 
at a 10 mm distance. The surfaces were rinsed with deionized (DI) water for 20 seconds and 
air-dried for 5 seconds [14].

Surface roughness measurement
Two representative specimens from each group were scanned prior to the resin cement 
button preparation via a non-contact 3 dimensional optical profilometer (Proscan 2000, 
Scantron Industrial Products Ltd., Taunton, UK). Using the S5/03 chromatic sensor, 5 scans/
specimen (1 × 1 mm2) were performed to determine surface roughness (step size of 0.01 × 
0.01) [2]. All the scanning was completed at a frequency of 300 Hz with full sensor speed 
(100%). The scans were performed and compared to a non-air-abraded group (control) 
serving as a reference for the roughness measurements.

Resin cement button preparation
Each conditioned Y-TZP specimen was placed on an Ultradent jig (Ultradent Products Inc., 
South Jordan, UT, USA) coupled with a plastic mold that has a cylindrical opening in the 
middle (2.38 mm in diameter and 3.5 mm in height) to build the resin cement button on 
Y-TZP (Figure 1B and 1C). Panavia F 2.0 (PF) resin cement (Kuraray Noritake Dental Inc., 
Okayama, Japan) was bonded to the zirconia samples according to the manufacturer's 
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A B C

Figure 1. Zirconia specimen with resin cement adhered. (A) Zirconia specimen embedded in acrylic resin; (B) Placement of the specimen on the Ultradent jig 
coupled with the semicircular plastic mold; (C) Zirconia specimen after resin cement button fabrication.
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instructions (Table 1). Briefly, equal amounts of paste A and paste B were mixed on a pad for 
20 seconds with a plastic spatula. In order to avoid air bubble entrapment, a syringe and an 
applicator were used to apply the resin cement into the plastic mold. The specimens were 
photo-polymerized for 20 seconds using an LED system (DEMI LED, Kerr, Orange, CA, USA). 
Light irradiance was monitored using a Managing Accurate Light Curing system (MARC, 
BlueLight Analytics Inc., Halifax, NS, Canada). Light irradiance was approximately 1,000 
mW/cm2. OXIGUARD II (Kuraray Noritake Dental Inc.) was then applied around the button 
and allowed to rest for 3 minutes before being rinsed with DI water. The dimensions of the 
resin cement buttons were 2.38 mm in diameter and 3.5 mm in height (Figure 1C).

Fatigue CLTC
The specimens prepared in each air-abrasion pressure group were subdivided into 2 groups 
yielding to 6 groups (n = 12). Each prepared specimen with resin cement button was either 
subjected to SBS testing after 24 hours (1b-24h, 2b-24h, and 2.8b-24h) or to combined fatigue 
cyclic loading and thermocycling (fatigue cyclic loading, CLTC) (1b-CLTC, 2b-CLTC, and 
2.8b-CLTC), and then tested for SBS. Each specimen was loaded on an Ultradent jig, and 
the designated groups were subjected to fatigue cyclic loading and then tested for SBS. The 
fatigue cyclic loading and SBS testing was applied in a shear direction parallel to the adhesive 
interface using an Ultradent semicircular testing fixture (Ultradent Products Inc.) [29]. The 
semicircular fixture loading area was 2.4 mm in diameter, and was positioned flushed with 
the Y-TZP specimen surface contacting the cylindrical bonded resin cement at the zirconia 
and cement interface (Figure 2). The fatigue cyclic loading was subjected to a low load (10 N, 
approximately 2.25 MPa) to prevent loading damage at the zirconia-resin interface for 10,000 
cycles and a frequency of 1.0 Hz using a mechanical cycling machine (ElectroPuls E3000, 
Instron, Norwood, MA, USA) [29]. After completion of the fatigue cyclic loading, the same 
groups were thermocycled for 5,000 cycles between 6°C–48°C (30 seconds dwell time and 10 
seconds transfer time). All groups were then stored in DI water and tested for SBS either after 
24 hours or after CLTC.

SBS test and failure mode analysis
Each specimen was mounted on the Ultradent jig as described earlier and subjected to 
debonding under shear force using a notched (semicircular) edge at a crosshead speed of 
1.0 mm/min (ElectroPuls E3000, Instron; Figure 2). The SBS was calculated through the 
following formula:

SBS (MPa) = Load (N)/area (mm2)
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Table 1. Material, composition, and application procedure for Panavia F 2.0
Material Manufacturer Lot No. Composition Application
PF Kuraray 061288 - -
Components

Paste A - 00571A 10-MDP, hydrophobic aromatic and aliphatic 
photoinitiator, dibenzoyl peroxide dimethacrylate, 
hydrophilic dimethacrylate, silanized silica

Dispense equal amounts of pastes A and B for 20 sec
Apply paste
In this study, paste was applied using a syringe and 
applicator

Paste B - 00284A Hydrophobic aromatic and aliphatic dimethacrylate, 
sodium aromatic sulphinate, N,N-diethanol-p-
toluidine, functionalized sodium fluoride, and 
silanized barium glass

Light cure for 20 sec (LED light)

OXYGUARD II - 00676A - Apply around the margins
Wait for 3 min
Rinse with distilled water

10-MDP, 10-methacryloyloxydecyl dihydrogen phosphate.
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Modes of failure were observed with an optical microscope (Measurescope UM-2, Nikon 
Corporation, Tokyo, Japan) at a magnification of × 40 after SBS testing. The modes of failure 
were classified as follows: adhesive, failure between the Y-TZP ceramic surface and the resin 
cement; cohesive, failure within the resin cement; mixed, failures in which partly adhesive 
and partly cohesive ones were observed coincidently in a fractured surface. Before the resin 
cement preparation, the surface of representative Y-TZP samples from the control and each 
air-abrasion treated specimen were prepared to qualitatively analyze the surface roughness 
under scanning electron microscopy (SEM; JSM 6390 LV, JEOL Ltd., Tokyo, Japan). In 
addition, SEM images were obtained from fractured/debonded representative specimens. 
Specimens were sputter-coated with gold for 90 seconds (Desk II Cold Sputter, Denton 
Vacuum LLC, Moorestown, NJ, USA) prior to SEM imaging.

Statistical analysis
Comparisons between groups for SBS values were performed using 2-way analysis of variance 
(ANOVA), followed by post-hoc comparisons. Specimens with pre-test failures were included in the 
analysis as 0 MPa; the lowest observed value was 1.8 MPa in group 1b-24h. Weibull characteristic 
strengths were compared using parametric Weibull-model survival analysis. Weibull moduli and 
their corresponding standard errors were estimated for each group using the survival analysis, 
and compared pair-wise between groups using z-tests. The differences between the groups for 
type of failure were analyzed using Fisher's exact tests. ANOVA was performed to compare the 
surface roughness between groups, with a fixed effect for the groups and a random effect to 
account for correlations among multiple roughness measurements within one specimen.

RESULTS

Surface roughness measurement
The mean average surface roughness (Ra) is shown in Figure 3. The 2.8b group showed 
significantly higher Ra than that of the control group and 1b (Ra, p = 0.006, p = 0.017, 
respectively). No other statistically significant differences were found between other groups.
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A B

Figure 2. Fatigue cyclic loading and shear bond strength test apparatus. Fatigue cyclic loading was applied in 
a shear direction parallel to the adhesive interface using an Ultradent loading jig with a semicircular loading 
surface (2.4 mm in diameter) in close proximity to the zirconia-resin button interface and subjected to 10 N load 
for 10,000 cycles with a frequency of 1.0 Hz. (A) Frontal-view of the testing apparatus; (B) A close up for the 
testing setup.
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SBS test and failure mode analysis
SBS data indicated that the interaction effect between pressure and time/cycling was not 
significant (p = 0.220, Table 2). Additionally, pressure did not have a significant effect on SBS. 
Mean SBS (p = 0.006) and Weibull characteristic strength (p = 0.012) were significantly higher 
for the 24-hour storage groups compared to the CLTC groups. Also, the 2b-CLTC group had 
significantly lower Weibull modulus than those of the other groups (p < 0.05).

The 2b-CLTC group presented significantly higher percentage of specimens failing during 
fatigue test than those of the 1b-24h (p = 0.037), 2b-24h (p = 0.042), 2.8b-24h (p = 0.042), and 
2.8b-CLTC (p = 0.042) groups. None of the other groups showed significantly different failure 
modes from each other (Table 3). In general, the mixed failure mode was observed more than 
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Figure 3. Mean surface roughness and standard deviations of different groups after air-abrasion. Control group 
represents the zirconia surface before air ab-rasion treatment. 
Ra, average surface roughness; 1b, 1 bar; 2b, 2 bar; 2.8b, 2.8 bar. 
a,bDifferent letters represent significant differences among the air-abrasion pressures tested.

Table 2. Mean and SD of the shear bond strength (in MPa)
Group SBS Weibull characteristic strength Weibull modulus
1b-24h 9.2 ± 3.4a 10.2 (8.3–12.2)a 3.1 (1.7–4.6)a

2b-24h 10.5 ± 3.0a 11.6 (9.9–13.4)a 4.0 (2.3–5.7)a

2.8b-24h 10.7 ± 5.9a 12.1 (8.5–15.7)a 2.0 (1.2–2.9)a

1b-CLTC 8.7 ± 4.2b 9.4 (6.4–12.5)b 1.8 (0.9–2.7)a

2b-CLTC 5.8 ± 5.3b 4.3 (0.0–8.6)b 0.6 (0.3–0.9)b

2.8b-CLTC 7.6 ± 1.9b 8.3 (7.2–9.4)b 4.5 (2.5–6.4)a

Values are presented as mean ± SD or number (95% CI). Mean SBS was significantly higher (p = 0.006) along with Weibull characteristic strength (p = 0.012) for 
24-hour storage compared to CLTC. 2b-CLTC had significantly lower Weibull modulus than the other groups (p < 0.05). 
SD, standard deviation; SBS, shear bond strength; CI, confidence interval; 1b, 1 bar; 2b, 2 bar; 2.8b, 2.8 bar; 24h, 24 hours; CLTC, fatigue cyclic loading and 
thermocycling. 
a,bSuperscript lowercase letters represent significant differences within the same column.

Table 3. Failure mode of the samples
Group Adhesive failure Mixed failure Failed during cyclic loading

No. % No. % No. %
1b-24hb 1 8 11 92 0 0
2b-24hb 3 25 9 75 0 0
2.8b-24hb 4 33 8 67 0 0
1b-CLTCa,b 0 0 11 92 1 8
2b-CLTCa 1 8 6 50 5 42
2.8b-CLTCb 4 33 8 67 0 0
The description of failure modes is follow as; adhesive failure, failure at the interface between Y-TZP zirconia and resin cement; cohesive failure, failure within the 
resin cement; and mixed failure, failure including both adhesive and cohesive failure. 
Y-TZP, yttrium oxide-stabilized tetragonal zirconia polycrystal; 1b, 1 bar; 2b, 2 bar; 2.8b, 2.8 bar; 24h, 24 hours; CLTC, fatigue cyclic loading and thermocycling. 
a,bSuperscript lowercase letters represent significant differences among the groups.
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the adhesive one. Representative SEM images of specimens air-abraded at different pressures 
demonstrated a qualitative increase in surface roughness with increasing pressure (Figure 4). 
Figure 5 shows SEM images of a representative specimen with mixed failure.

DISCUSSION

The main goal of the present study was to investigate whether fatigue CLTC could serve as an 
aging method to evaluate resin bond durability to zirconia. According to the present findings, 
the null hypothesis was rejected as the combined aging method significantly decreased 
resin bond strength to zirconia regardless of the air-abrasion pressure used to condition the 
ceramic surface.

In this study, the fatigue cyclic loading was performed on the bond interface of adhesive 
cement and zirconia in a shear direction. This methodology was devised in an attempt to 
allow the application of cyclic low loads to the bonded interface, which may better mimic the 
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Figure 4. Scanning electron microscopic images (× 2,000) of zirconia surface for control and after different air-
abrasion pressures. (A) Control group (no air-abrasion); (B) 1 bar; (C) 2 bar; (D) 2.8 bar.

A B

Resin cement Zirconia

Resin cement
Zirconia

Figure 5. Scanning electron microscopic images of zirconia surface denoting mixed mode of failure after 
debonding at magnification (A) × 30; (B) × 300.
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fatigue environment occurring in the oral cavity [24,29]. The results of this study show that 
interfacial adhesion of MDP-containing cement—zirconia is indeed susceptible to mechanical 
degradation, although the optimal stress for use in the method needs further investigation.

In the present investigation, the zirconia surface roughness data obtained using non-contact 
profilometry (quantitative) and SEM images (qualitative) after air-abrasion confirm the increase 
in surface irregularities with increasing air-abrasion pressure. Although the surface roughness 
for group 2b was not significantly different from those of 1b and 2.8b, there was a significant 
increase in surface roughness between 1b and 2.8b. These observations are in agreement with the 
results of a recent study in which the SEM images showed differences between 1b and 2.8b [25].

It is well established that the luting agent plays a critical role in the long-term success of 
resin-ceramic bonding. The resin cement used (PF) contained a phosphate monomer (10-
MDP). The phosphate ester monomer in 10-MDP is suggested to enhance bond strength 
due to the chemical P-O-Zr bond formed between zirconia and MDP [8,11,14-21,30]. 
Furthermore, the bond strength between the MDP-containing resin cement and zirconia is 
suggested to be enhanced when the zirconia surface is air-abraded with alumina particles, 
therefore, a 2-fold bonding is produced, namely chemical bonding and micromechanical 
interlocking [30-32]. In this study, PF showed significantly lower SBS after the combined 
CLTC processes. The significantly higher SBS observed for 24-hour storage compared to 
CLTC suggests that CLTC had significant effect on the strength of bonded cement to zirconia. 
Worth mentioning, only 2b-CLTC group showed a large number of specimens failing 
during fatigue-cyclic loading and before shear bond testing. This behavior resulted in the 
significantly lower Weibull modulus for 2b-CLTC.

According to Nemli et al. [33], cyclic fatigue can cause phase transformation of tetragonal 
crystals of Y-TZP to monoclinic crystal structures. Therefore, one would expect that cyclic 
fatigue would lead to some degree of phase transformation. However, the low stress value used 
(–2.25 MPa) may not have resulted in significant transformation. Meanwhile, the association 
between the surface roughness and resin cement is particularly critical when using low air-
abrasion pressure as the topography created may not be deep enough to properly impregnate 
the resin cement in the micro-irregularities on the zirconia surface [19-21]. However, this was 
not supported in this study, where group 1b may have generated sufficient roughness and 
surface morphology for satisfactory bonding to zirconia compared to group 2b.

The proposed testing methodology may give a more relevant evaluation of bond strength 
between zirconia and adhesive cements as it better represents the worst case in the oral cavity. 
Further investigations are needed to validate this testing method by addressing the effect of 
increasing the load and fatigue cycle number, testing different adhesive cements and surface 
treatments. Additional research of the phase transformation and surface flaw geometry that 
occurs during specimen preparation is also worth including in future studies.

CONCLUSIONS

Based on the results of this study, 2.8b air-abrasion resulted in higher surface roughness and 
increased the SBS of resin cement to zirconia. The combined CLTC significantly decreased 
the SBS of resin cement to zirconia regardless of the air-abrasion pressure used to condition 
the zirconia surfaces.
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