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Abstract
Surface-enhanced Raman scattering (SERS) spectra of faecal samples can be obtained by adding AuNP to their methanol 
extracts according to the reported protocol, and display bands that are due to bilirubin-like species but also to xanthine and 
hypoxanthine, two metabolic products secreted by gut bacteria. A total of 27 faecal samples from three different groups, i.e. 
coeliac patients (n = 9), coeliac patients on gluten-free diet (n = 10) and a control group (n = 8), were characterized with both 
SERS spectroscopy and 16S rRNA sequencing analysis. Significant differences are present between SERS spectra of coeliac 
patients and those on gluten-free diet, with a marked increase in the relative intensity of both xanthine and hypoxanthine for 
the latter. Interestingly, these differences do not correlate with bacterial composition as derived from 16S rRNA sequencing.
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Introduction

Metabolomics is a systems biology approach that aims at 
the qualitative and quantitative analysis of small molecules 
(below 1.5 kDa) in biological samples. The most frequently 
explored specimens for metabolomic analyses in humans 
are serum, urine and tissues. More recently, faecal samples 
have become a valuable choice, since they can be obtained 
noninvasively. Human faeces are a very complex biological 
matrix with a broad biochemical composition that repre-
sents a rich source of diverse metabolic compounds derived 
from the host, the gut microbiota and xenobiotics. Over 
the last decade, with the rapid development of microbiome 

sequencing technologies, an integrated omics analysis of fae-
cal material has gained attention as a non-invasive method 
for studying the complex interactions between the human 
gut microbiota (GM) and the host [1]. The human GM is 
characterized by diverse microbial communities of multiple 
phyla of bacteria, archaea, viruses and microbial eukaryotes 
[2], which perform many essential protective, structural and 
metabolic functions for human health, including food pro-
cessing, digestion of complex indigestible fibres, pathogen 
displacement and synthesis of many compounds responsible 
for regulating the activity of distal organs (e.g. the brain [3]). 
The influence of the GM in regulating metabolic activity 
is now recognized with increasing evidence. For instance, 
the faecal microbiome and metabolome are simultaneously 
found to be disordered in colorectal cancer [4], systemic 
lupus erythematosus [5], metabolic syndrome [6], asthma 
[7] and central nervous system disorders [8]. In these set-
tings, the faecal metabolic profiles complement sequencing-
based approaches to provide a functional readout of the gut 
microbiome and gain insight for improving the diagnosis and 
prognosis of several diseases. The most frequent approach 
to study the microbiota composition is to target the bacterial 
16S ribosomal RNA (rRNA) extracted from faecal samples 
[9]. However, this approach is typically laborious and expen-
sive for application on small batches of samples, as it is 
common in clinical practice; moreover, factors that influence 
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microbial RNA stability can produce a significant variation 
in the gut microbiome composition. On the other hand, the 
current state-of-the-art technology in faecal metabolomics is 
the hyphenation of high-resolution mass spectrometry–based 
techniques (HRMS) with high-performance chromatogra-
phy. HRMS is a universal detection technique that presents 
a very high selectivity and sensitivity offering simultaneous 
structural and quantitative information. However, quantita-
tive information can be only gathered via the analysis of 
calibration standards for the compounds of interest. More 
importantly, HRMS–based techniques are expensive and 
time consuming and require specialized personnel, making 
them unsuitable for many health-care routines. Thus, new 
versatile, cost-effective and fast alternatives for the accurate 
identification of faecal metabolites, rapid acquisition and 
detection methods are needed.

Surface-enhanced Raman scattering (SERS) spectros-
copy is an emerging analytical technique for metabolomic 
analysis applied to clinical needs, due to its non-destructive 
nature and single-molecule detection ability [10, 11]. The 
amplification of the inelastic scattering of light by mole-
cules in close proximity to electromagnetic “hotspots” on 
the plasmonic nanostructures (i.e. the SERS substrates) 
allows for the transduction of compounds at low concen-
tration  to measurable spectral signals. SERS spectra can 
be easily obtained from solutions by minimally trained 
personnel, with relatively inexpensive instrumentation and 
without complex sample preparation. In label-free SERS, 
each spectrum contains information about the molecules 
that freely adsorb on the substrate’s surface. SERS spectra 
depend on the relative concentration of the metabolites pre-
sent in a biofluid as well as on their chemical affinity for the 
substrate’s surface, the latter factor being the most relevant. 
Containing information mainly due to low-molecular-weight 
metabolites, label-free SERS spectra of biofluids provide 
a “biochemical snapshot” of potentially clinically relevant 
information about the metabolic status of a subject, espe-
cially in cases where little is known about the biomolecular 
species responsible for the studied condition.

Therefore, the aim of the present study was to develop a 
fast and sensitive method that yields reliable SERS spectra 
from human faeces, and characterize them in terms of the 
amount/quality of information obtainable from that specific 
matrix, using a simple protocol and a compact and port-
able instrument. Additionally, as a case study, we applied 
the developed SERS method to faecal samples collected at 
diagnosis from paediatric patients with coeliac disease (CD) 
following a gluten-containing diet as well as from coeliac 
patients following a gluten-free diet (GFD). CD is an auto-
immune condition, secondary to an immunological response 
to ingested gluten, in genetically susceptible individuals. 
Once the diagnosis is achieved, the only existing treatment 
is a lifelong GFD. Clinical manifestations of untreated CD, 

such as anaemia, depression, infertility and osteoporosis can 
improve with a GFD [12]. Thus, strict adherence to a GFD 
is critical to reduce symptoms, avoid nutritional deficien-
cies and increase quality of life. Moreover, GFD compliance 
should be monitored to avoid cumulative damage. Although 
not yet exhaustive, the current literature suggests an asso-
ciation between CD, gut microbiota and the metabolome 
[13–15].

To the best of our knowledge, this is the first SERS study 
on the faecal profiling of the biochemical perturbations that 
accompany coeliac children under GFD.

Experimental section

Reagents

Methanol used to obtain faecal extracts, hypoxanthine, 
xanthine and bilirubin, and all the chemicals and solvents 
used in the synthesis of AuNP were purchased from Merck 
(Merck KGaA, Darmstadt, Germany). E.Z.N.A® Stool 
DNA kit (Omega Bio-Tek) was used to extract stool DNA. 
AccuStartII PCR ToughMix 2X (Quanta Bio) plus Eva-
Green™ 20X (Biotium) was used in real-time amplifica-
tion. Mag-Bind®TotalPure NGS (Omega Bio-Tek) was 
used to purify PCR products. A Qubit dsDNA HS Assay 
Kit (Thermo Fisher Scientific) was used to quantify PCR 
products. Ion PGM™ Template Hi-Q OT2 400 View, Ion 
PGM™ Enrichment Beads and Ion PGM™ Hi-Q™ view 
Sequencing Kit (Thermo Fisher Scientific) were used for 
sequencing.

Faecal samples

Samples were collected by IRCCS Burlo Garofolo from 
subjects instructed to collect and keep a sample of stools 
at − 20 °C. Sample characteristics are reported in Table 1 
and in Supplementary Fig. S1. Specimens were delivered 
and kept at − 20 °C until analysis. Once thawed, the sam-
ples were homogenized and two aliquots were prepared 
for SERS and genomic analysis. Written informed consent 
was obtained from the parents of the children enrolled, 
and the study was approved by the hospital’s independent 

Table 1  Number, sex and age characteristics of the stool sample 
donors enrolled in the study. For details, see Supplementary Fig. S1

F M Total Median age (quartiles)

CTR 3 5 8 7 (5.75–10)
CD 7 2 9 10 (4–14)
GFD 7 3 10 12.5 (12.0–15.5)
Total 17 10 27
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ethical committee (CEUR-2019-Os-157). Samples from CD 
patients were collected at the time of diagnosis, and from 
patients in GFD from at least 1 year.

SERS substrates

The aqueous colloidal dispersion of gold nanoparticles 
(AuNP) used as SERS substrates was synthesized accord-
ing to the method of Turkevich et al. [16], involving the 
reduction of Au(III) salts with sodium citrate. All solutions 
were prepared with ultrapure water, MilliQ (Millipore, 
USA), and all the glassware was cleaned with a Nochro-
mix® (Godax Laboratories, Inc.) solution (with  H2SO4), 
aqua regia (1  HNO3:3 HCl, vol.), and finally thoroughly 
rinsed with MilliQ water before use. Operatively, 10.6 mg 
of  NaAuCl4·2H2O (sodium tetrachloroaurate dihydrate) was 
added to 25 mL of water in an Erlenmeyer flask and heated 
to boiling. Then, 750 μL of sodium citrate tribasic dihydrate 
aqueous solution (1%, 1 g/100 mL) was rapidly added, and 
the solution was kept boiling for 20 min under vigorous stir-
ring and reflux using a water-cooled condenser. Ultimately, 
the colloidal dispersion was left to cool down to room tem-
perature. Nanoparticles were characterized by UV–visible 
spectroscopy (Cary100, Agilent, Santa Clara, USA) and 
transmission electron microscopy (EM 208, Philips, Amster-
dam), and had an average/median size of 53.6 nm. The 
UV–visible extinction spectrum, TEM micrograph and size 
distribution (as calculated from TEM images) are reported 
in Supplementary Information (Fig. S2).

SERS measurements

Aliquots of 125 mg of faeces were dispersed in 5 mL of 
methanol and vortexed for 30 s to obtain a methanol fae-
cal extract. Twenty-microlitre aliquots of this faecal extract 
were micropipetted into 1.5-mL Eppendorf tubes containing 
180 µL of the colloidal dispersion of AuNP, and mixed by 
repetitive pipetting. Fifty microlitres of these mixtures was 
then deposited as a drop onto a  CaF2 microscope slide, ready 
to be measured by SERS. Methanol solutions of bilirubin 
(20 µM), hypoxanthine (10 µM) and xanthine (20 µM) were 
prepared by a direct dilution of stock solutions in aqueous 
NaOH (0.1 M for bilirubin, 1 M for xanthine and hypox-
anthine) with methanol. For SERS measurements, AuNP 
were added to a 1:9 ratio to the methanol solutions of these 
metabolites (following the same protocol for faecal extracts). 
The spectra collection was performed in air at room temper-
ature with an i-Raman Plus portable system (BWS465-785S) 
through a compatible Raman video microscope (BAC151B) 
and with the BWSpec software (version 4.03_23_c), by 
B&W Tek (Newark, DE). Excitation was obtained with 
a 785-nm laser with an output power of about 400 mW. 
Laser light delivery to the sample and scattering collection 

occurred through an optical fibre probe connected to a com-
patible Raman video microscope. The instrument spectro-
graph had an average spectral resolution of 2.4  cm−1. The 
laser spot diameter at the sample was 105 µm, obtained by 
using a 20 × Olympus objective (N.A. 0.25, working distance 
8.8 mm). Spectra collection was performed by averaging 3 
accumulations of 10 s CCD exposure each (30 s in total), 
and with a laser power at the sample of 120 mW (30% of the 
maximum laser output). For pure metabolites (i.e. bilirubin, 
hypoxanthine and xanthine), a laser power at the sample of 
40 mW (10% of the maximum laser output) was used for 
xanthine and bilirubin, and 80 mW (20% of the maximum 
laser output) for hypoxanthine. For bilirubin, a single accu-
mulation with a 30-s CCD exposure was used. Using these 
experimental conditions, no substrate photo-degradation was 
reported. To check the spectrometer wavelength calibration, 
paracetamol was used as a standard reference sample dur-
ing every measurement session. To check for measurement 
repeatability, 5 aliquots for each methanol extract (i.e. for 
each faecal sample) were measured and compared (see Sup-
plementary material, Fig S4): since in all cases the spec-
tra from the same extract were identical, only 1 spectrum/
extract was considered for data analysis.

SERS data preprocessing and analysis

Spectra have been entirely processed using the R environ-
ment for data analysis [17]—version 4.1.0 (2021–05-18). 
In particular, the package hyperSpec [18] was used for data 
import and visualization. The preprocessing steps included 
(i) Raman shift range selection (300–1800  cm−1), (ii) base-
line correction (package baseline [19], method “als”, lambda 
parameter = 4) and (iii) vector normalization. Examples 
of baselines are shown in Fig. S3 of the Supplementary 
information. Principal component analysis (PCA) was per-
formed using the prcomp function, centering but not scal-
ing data. The cumulative proportion of explained variance 
for the first 19 principal components of the dataset is avail-
able as Supplementary information (Fig. S5). The Welch’s 
unequal variances t test with correction for false discovery 
rate for the scores of the first principal component was 
performed by using the pairwise.t.test function (p.adjust.
method = “BH”, pool.sd = FALSE). Spearman’s correlation 
coefficients between scores of the first principal component 
and operational taxonomic unit (OTU) relative abundances 
were computed by using the cor.test function, to measure 
the strength of association between these two variables [20]. 
For each correlation coefficient, the chance that the corre-
lation is due to chance was estimated by calculating the p 
value (retuned by the cor.test function as well). The p values 
obtained were corrected by estimating the false discovery 
rate (FDR) by using the p.adjust function, according to the 
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Benjamini–Hochberg method [21]. All figures were prepared 
using the R environment for data analysis [17].

Genomic analysis 

Library preparation and sequencing were performed at the 
DNA sequencing facility of the Department of Life Sci-
ences of the University of Trieste [22]. Genomic DNA was 
extracted using the E.Z.N.A® Stool DNA kit (Omega Bio-
Tek) following the manufacturer’s instructions. DNA quality 
and quantity were assessed with a NanoDrop 2000 Spectro-
photometer (Thermo Fisher Scientific). An extraction blank 
was performed as a control to monitor for contamination of 
environmental bacteria DNA. The extracted DNA was used 
as a template for the amplification of the V4 hypervariable 
region of the 16S rRNA by PCR primers 515F/806R [23]. 
Primers were tailed with two different GC-rich sequences 
enabling barcoding in a second amplification. For each sam-
ple, three technical replicates were performed in 20 µL of 
volume reaction containing 10 µL AccuStartII PCR Tough-
Mix 2X (Quanta Bio), 1 µL EvaGreen™ 20X (Biotium), 
0.8 µL 515F (10 µM- 5′ tailed CAG GAC CAG GGT ACG 
GTG ), 0.8 µL 806R (10 µM- 5′ tailed with CGC AGA GAG 
GCT CCGTG-) and 50 ng of DNA template. The amplifica-
tion was performed in a CFX 96™ PCR System (Bio-Rad) 
with a real-time limited number of cycles (94 °C for 20 s, 
55 °C for 20 s, 72 °C for 60 s). A second PCR amplifica-
tion (outer PCR) is required to label each sample uniquely 
and was performed using a forward primer composed of the 
“A” adaptor, a sample-specific 10-bp barcode and tail 1 of 
the primary PCR primers, and a reverse primer composed 
of the P1 adaptor sequence and tail 2. The reactions were 
performed in 25 µL volume containing 12.5 µL AccuStartII 
PCR ToughMix 2X (Quanta Bio), 1.25 µL EvaGreen™ 20X 
(Biotium), 1.5 μL barcoded primer F&R (10 µM), 1 μL of 
the first PCR product (pool of the three technical replicates) 
with the following conditions: 8 cycles of 94 °C for 10 s, 
60 °C for 10 s, 65 °C for 30 s and a final extension of 65 °C 
for 2 min. All the amplicons were checked for their quality 
and size by agarose gel electrophoresis, purified by Mag-
Bind®TotalPure NGS (Omega Bio-Tek), quantified with the 
Qubit Fluorometer (Thermo Fisher Scientific) and pooled 
together in equimolar amounts. The library was finally 
checked by agarose gel electrophoresis and quantified in 
the Qubit Fluorometer. For sequencing, the library was first 
subjected to emulsion PCR on the Ion OneTouch™ 2 system 
using the Ion PGM™ Template Hi-Q OT2 View according 
to the manufacturer’s instructions. Then ion sphere particles 
(ISP) were enriched using the E/S module. Resultant live 
ISPs were loaded and sequenced on an Ion 316 chip in the 
Ion Torrent PGM System (all ION instruments and reagents 
are from Life Technologies).

Genomic data preprocessing and analysis

The CLC Microbial Genomics Module as a part of the CLC 
Genomics Workbench 20.0 (QIAGEN Digital Insights, 
Aarhus, Denmark) was used to analyse alpha and beta diver-
sity, and the composition of the bacterial community [22]. 
Raw sequencing reads were imported into the CLC environ-
ment, and subjected to quality control, primer and adapter 
sequence removal and minimum size cut-off of 150 bp. 
The OTUs were picked by mapping sequences against the 
SILVA 16S v132 97% database [24] at the same identity 
percentage to observe OTU at the species level. Next, the 
OTUs were aligned using multiple sequence comparison by 
log-expectation and used to construct a “maximum likeli-
hood phylogenetic tree” followed by alpha and beta diversity 
analyses. We estimated the effect size and significance on 
beta diversity for grouping variables with PERMANOVA 
[25]. PERMANOVA is an acronym for “permutational mul-
tivariate analysis of variance”, and it is a semi-parametric 
multivariate statistical test used to compare groups by test-
ing the null hypothesis that the centroids and dispersion of 
the groups as defined by a distance measure (in our case 
the Bray–Curtis dissimilarity) are the same for all groups. 
PERMANOVA applied to our OTU dataset returned pseudo 
f-statistic values [25] and p values (Bonferroni corrected) 
[26, 27]. For a detailed description of the meaning of the 
pseudo f-statistic (or pseudo f-ratio), see [25]. Differential 
abundance analysis [28] was performed by modelling each 
OTU as a separate generalized linear model (GLM), where 
it is assumed that abundances follow a negative binomial 
distribution. The Wald test was used to determine the sig-
nificance of group pairs.

Results and discussion

SERS spectra can be readily observed from methanol fae-
cal extracts upon mixing with Au nanoparticle dispersions 
(Fig. 1). Extraction with methanol is widely used in fae-
cal metabolomics [29], and the protocol used in this study, 
involving the extraction with methanol and the addition to an 
aqueous dispersion of Au nanoparticles, has been optimized 
to maximize the repeatability of SERS spectra. Although 
normal Raman spectra of faecal samples were reported in lit-
erature [30], to the best of our knowledge, these are the first 
SERS spectra obtained from faecal samples. A detailed com-
parison between our SERS data and the normal Raman data 
in literature is difficult, since normal Raman bands were not 
labelled, and the wavenumber axis labelling in the figures of 
that paper does not allow for a precise estimate of the Raman 
shifts of bands maxima. However, the two spectral profiles 
appear to be very different, with no similar bands. While the 
SERS data present some variability, all spectra share some 
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common features (Fig. 1). The bands at 722 and 1724  cm−1, 
present with variable intensity in all spectra, are attributed 
to hypoxanthine on the basis of a direct comparison with the 
SERS spectrum of this metabolite (Fig. 1).

Most of the other bands common to all spectra in the 
dataset appear to be related to a bilirubin-like species. These 
bands are consistent with bilirubin SERS spectra reported by 
other authors upon 785-nm excitation [31, 32]. A better and 
more complete description of the SERS dataset and its vari-
ance can be achieved by performing an exploratory analysis 
such as principal component analysis (PCA). The first prin-
cipal component of the spectral dataset explains more than 
half of the spectral variance (55.3%). The second and third 
principal components explain only 14.9% and 10.1% of the 
variance, respectively, much less than the first one (Fig. S5 
in the Supplementary). The loadings of the first principal 
component (Fig. 2) show that most of the variability in the 
SERS spectra of the dataset is due to hypoxanthine bands as 
well as to other bands which can be attributed on the basis 
of a direct comparison to xanthine, another purine metabo-
lite. Different from xanthine and hypoxanthine, the bands of 
bilirubin-like species do not play a major role in the spectral 
variability of the dataset (Fig. 2), and they only appear in 
the second principal component (the loadings of the first six 
principal components are shown in Supplementary material, 
Fig. S6).

While bilirubin and bilirubin-related species, as prod-
ucts of the heme catabolism, are expected to be found in 

faeces [33], xanthine oxidase converts hypoxanthine to 
xanthine and then to uric acid, which is predominantly 
excreted with urine [34, 35]. On the other hand, around 
60% of faecal mass consists of bacteria [36], and bands 
due to hypoxanthine and xanthine, along with those due 
to other purine metabolites, have been reported in SERS 
spectra of several bacteria [37–40], corroborating our 
interpretation of the bands observed from faecal extracts. 
Recently, Scott Lee et al. reported hypoxanthine and other 
purines in faeces of mice, whereas no purines could be 
detected in germ-free mice, suggesting that these faecal 
metabolites are indeed produced by bacteria [41]. These 
evidences suggest that the hypoxanthine and xanthine 
bands observed in the SERS spectra of faecal extracts 
reported in this paper are not metabolic products of the 
host, but metabolites due to the bacterial component of 
faeces.

Convincing evidence from previous SERS studies [39] 
indicates that purines due to the metabolic degradation of 
nucleic acids and nucleotides are secreted by bacteria into 
extracellular regions, where they can interact with the metal-
lic SERS substrates. Thus, the xanthine and hypoxanthine 
bands observed in SERS spectra of faecal extracts are likely 
due to those purine metabolites secreted from faecal bacteria 
into the solvent. Although a recent study shows that metha-
nol might cause bacterial cell lysis after hours of incubation 
[42], this is not the case for the few minutes involved in 
sample preparation for SERS measurements, supporting the 

Fig. 1  All 27 SERS spectra of the dataset (normalized, overlaid). 
SERS spectra of bilirubin (dark red) and hypoxanthine (light blue) 
are reported for comparison. Excitation wavelength 785  nm, AuNP 
used as SERS substrate

Fig. 2  Loadings of the first principal component of the SERS data-
set (black), showing which spectral features are responsible for most 
of the variance. SERS spectra of xanthine (green) and hypoxanthine 
(light blue) are reported for comparison. Excitation wavelength 
785 nm, AuNP used as SERS substrate
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hypothesis that the metabolites detected are not due to the 
content released by lysed cells.

As expected, mass spectrometry data from previous 
SERS studies on bacteria also showed that many other types 
of metabolites were present in high concentrations in the 
bacteria supernatant [39]. Nevertheless, only bands due to 
purines were observed in SERS spectra, where the affinity 
for the metal surface selects which analytes are detected and 
which are not [39]. Heterocyclic aromatic molecules such as 
purines strongly interact with Au and Ag surfaces, yielding 
intense SERS spectra even when a large number of other 
compounds are present. Despite the presence of thousands 
of other metabolites, purines such as uric acid and hypox-
anthine, for instance, dominate the SERS spectra of many 
biological fluids, such as blood serum, plasma and tears [43]. 
Thus, an analogous effect is probably occurring also in the 
case of SERS spectra of faecal extracts, which are known to 
contain hundreds of metabolites [44, 45].

The scores of the first principal component of the SERS 
dataset seem to vary among the different groups studied 
(Fig. 3). Interestingly, the gluten-free diet seems to have 
a major effect on the spectra, as inferred from the scores, 
which clearly differentiate the GFD from the other groups. 

When directly comparing the CD and GFD groups, where 
the gluten-free diet is the main variable, the PC1 scores of 
the spectra from samples of the coeliac patients following a 
gluten-free diet are significantly higher than those of coeliac 
patients in gluten-containing diet, implying that the bands of 
hypoxanthine and xanthine, observed as positive loadings in 
Fig. 2, are more intense in the GFD group.

This feature can be appreciated also by simply looking at 
the spectral dataset split in the three groups (Fig. 4), where 
the hypoxanthine band at 722  cm−1 is more intense in the 
GFD group. The median of the spectral differences between 
the spectra from the samples of the GFD and CD groups 
(Fig. 5) confirms these features, highlighting a higher rela-
tive intensity also of a xanthine band, consistently with what 
was suggested by the loadings graph in Fig. 2. On the other 
hand, Fig. 4, in agreement with the PC1 scores of Fig. 2, 
shows that spectral differences between the spectra of the 
CD and CTR groups are much smaller than those between 
the spectra of the CD and GFD groups. A figure reporting 
a direct comparison between spectra of the CTR and CD 
spectrum, analogous to Fig. 5, is shown in the Supplemen-
tary material (Fig. S7).

To check if these spectral differences are reflecting a dif-
ferent bacterial composition of the faecal samples of the 
three groups, a microbiota analysis of all samples was per-
formed by sequencing V4 PCR amplicons from the ribo-
somal 16S RNA genes. Amplicon sequencing produced a 
total of 3,556,159 reads with an average of 107,762 ± 22,119 

Fig. 3  Scores of the first principal component of SERS dataset split 
by group (controls, CTR; coeliac disease, CD; gluten-free diet, GFD). 
The p value was obtained by a pairwise t test (adjusted for false dis-
covery rate with the Benjamini–Hochberg method) with no assump-
tion of equal variances

Fig. 4  Overlaid SERS spectra of the faecal samples for 3 different 
groups (controls, CTR; coeliac disease, CD; gluten-free diet, GFD). 
Excitation wavelength 785 nm, AuNP used as SERS substrate
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reads per sample. Raw sequences (reads) were quality fil-
tered, then trimmed from primers and adapters. The remain-
ing sequences (2,377,022 reads) of 250 bp in length were 

reference-based clustered against the SILVA 16S v132 data-
base with a 97% sequence similarity accounting for 2915 
reference-based OTUs and 1128 de novo OTUs from the 
27 assayed samples. The mean number of reads in OTUs 
was 62,658 ± 7549 for the control, 63,309 ± 11,501 for CD 
and 72,312 ± 17,413 for GFD samples. Rarefaction curves 
calculated for total OTU abundance reached the plateau indi-
cating that sequencing was adequate to analyse the majority 
of phylotypes in all the samples (Supplementary fig. S8).

The analysis of the results at the “family” taxonomic level 
(Fig. 6) showed that Lachnospiraceae, Ruminococcaceae (order 
Clostridiales) and Bacteroidaceae (order Bacteroidales) are the 
most represented families of bacteria in the faecal samples (on 
average, 75% of the total reads), in line with the predominance 
of the Firmicutes and Bacteroidetes phyla previously reported 
in studies on gut microbiome composition [46, 47]. A total of 
79 genera and 26 prokaryotic families are recognized in the 
stool microbiota. A certain variability is observed for each 
group, the GFD group being the most homogeneous.

A PERMANOVA (Table 2) suggests that the three groups 
present significant differences. As in the case of SERS spec-
tra, the GFD seems to have a major effect on the microbiota. 
We have hypothesized that the diet is responsible for the 
spectral and microbiological differences observed between 
the CD and GFD groups. However, this is a descriptive 
case study performed on a small number of subjects with 
ages not perfectly matching in the three groups, so it can-
not be excluded that age variations between CD and GFD 
groups might concur as well to the differences observed. 
An impact on gut microbiota by GFD has been reported in 
a few studies [48, 49], although with no clear consensus on 

Fig. 5  Comparison between medians and interquartiles (shaded areas) 
of the intensity for the SERS spectra of the coeliac disease (CD, red) 
and gluten-free diet (GFD, blue) groups, together with the median 
and interquartile of all the difference spectra (black). SERS spectra 
of xanthine (green) and hypoxanthine (light blue) acquired in the 
same conditions are reported for comparison. Excitation wavelength 
785 nm, AuNP used as SERS substrate

Fig. 6  Composition of bacterial communities at the family level in the 3 different groups. CD: coeliac disease, CTR: control, GFD: gluten-free 
diet
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the results. To better understand which bacteria are respon-
sible for this difference in our dataset, a differential abun-
dance analysis has been performed (Table S9 of the Sup-
plementary Information), showing that three families (i.e. 
an uncultured bacterium from the order of the Mollicutes 
RF39—phylum Tenericutes, Akkermansiaceae—phylum 
Verrucomicrobia and Clostridiaceae 1—phylum Firmicutes) 
are significantly less present in the GFD group than in the 
CD group. Comparison at the genus level highlighted the 
Rikenellaceae RC9 gut group (order Bacteroidales), uncul-
tured bacterium (order Mollicutes RF39) and Akkermansia 
were statistically less represented in GFD CD patients than 
in CD (all with a p < 0.001, Bonferroni corrected). On the 
contrary, Escherichia-Shigella is more represented in the 
former group, although a major difference is shown in the 
GFD-vs-CTRL comparison. Several studies reporting the 
effects of a GFD on the microbiota of coeliac patients were 
unfortunately based on a variety of methods, kind of samples 
(usually deriving from adults) and even different statistical 
approaches for data analysis [48, 49], making a direct com-
parison with our results problematic.

Spearman’s correlation coefficients between the OTU’s 
relative abundances and the PC1 scores of the SERS dataset 
for each sample (Table 3) clearly indicate that there is no 
correlation between SERS data and the occurrence of these 
bacterial families (nor for other families, data not shown). 
The absence of any correlation suggests that SERS spectra 
reflect bacterial metabolism rather than bacterial composi-
tion of faecal samples. While further studies on a larger sam-
ple size planned with a careful study design will be able to 

corroborate our hypothesis, for the moment, it might be rea-
sonable to assume that the products of the metabolism of the 
same bacteria are different depending on the nutrients avail-
able from dietary intake. In other words, the SERS spectrum 
of a bacterium is not a unique fingerprint of that species, but 
rather a probe of its mutable metabolic state. This hypoth-
esis is consistent with the results reported by Weiss et al. on 
SERS spectra of different bacteria upon varying metabolic 
conditions [38]. This could explain why bacterial species 
present in similar amounts in faecal samples of both the 
CD and GFD groups might still show different metabolic 
profiles, which would translate into a different composition 
of faecal extracts and thus in different SERS spectra.

From this perspective, the metabolic information con-
veyed by SERS data is complementary to that of the bacte-
rial composition as given by the 16S rRNA gene, allowing us 
to take a look at the faecal samples from another viewpoint. 
The biochemical reason behind the increased production of 
hypoxanthine and xanthine by the microbiota of the GFD 
group with respect to other groups remains unclear. Some 
SERS studies on bacteria reported an increase in purine pro-
duction upon starvation or physiological stress [37–39, 50], 
but to the best of our knowledge, such metabolic changes 
have never been reported for the microbiota of subjects fol-
lowing a gluten-free diet. As a further layer of complexity 
making the biochemical interpretation difficult, bacterial 
metabolism might also depend on the interaction between 
different species, and a simple reductionist approach might 
be inadequate to represent the complexity of the microbial 
ecosystem of the gut [51–53].

In the present study, such metabolic information appears 
to be limited to just two metabolites, hypoxanthine and xan-
thine, and cannot compete with the wealth of information 
provided by traditional metabolomics approaches. Since the 
information present in SERS spectra depends on the inter-
action between the analytes and the nanostructured metal 
substrates, the number and type of metabolites detected by 
a label-free SERS approach in faecal samples might change 
if other methods (e.g. other solvents or sampling protocols) 
or substrates (e.g. Ag surfaces or Au surfaces with differ-
ent characteristics) are used [54], possibly modifying or 
expanding the metabolic information available. The use of 
solvents with a different polarity, for instance, might change 
the nature and/or concentration of the metabolites present in 
the faecal extracts. The use of more hydrophobic, or perhaps 
positively charged, SERS substrates might increase the affin-
ity of the nanostructured metal surface for bacterial metabo-
lites other than hypoxanthine and xanthine.

On the other hand, by comparing SERS on deposited 
AuNP and MS data obtained from the same bacteria super-
natant fluid, Premasiri et al. clearly showed how these two 
techniques have very different sensibilities toward different 
metabolites, and must be thus considered as complementary 

Table 2  Results from PERMANOVA on Bray–Curtis distances for 
the data obtained from the 16S rRNA gene analysis

Groups Pseudo f-statistics p value

CTR, CD, GFD 1.367 0.040
Group 1 Group 2 Pseudo f-statistics p value p value 

(Bonfer-
roni)

CD CTR 1.231 0.207 0.622
CD GFD 1.664 0.015 0.046
CTR GFD 1.187 0.203 0.609

Table 3  Spearman’s correlation coefficients (and the relative FDR p val-
ues) between OTU’s relative abundances  and PC1 scores of the SERS 
dataset for the bacterial families found by the differential abundance anal-
ysis

Name Correlation coefficient FDR p value

Uncultured bacterium (Mol-
licutes)

 − 0.03 0.98

Akkermansiaceae  − 0.29 0.83
Clostridiaceae 1  − 0.13 0.98
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[39]. Moreover, SERS analysis is much faster and less 
expensive than methods based on HPLC and NMR or MS, 
and might be used for a quick characterization of faecal 
samples. For instance, the SERS approach described in this 
paper, if validated on larger datasets in future studies, could 
be a possible tool for the assessment of the compliance to the 
gluten-free diet, which has been reported as a major practi-
cal clinical problem in CD patient follow-up [55, 56] or as 
an indicator of the restoration of normal villous architecture 
and mucous barrier integrity [41].

Conclusions

SERS spectra can be consistently obtained from faecal 
samples upon addition of AuNP to their methanol extracts. 
The bands observed in these spectra can be attributed to 
bilirubin-like species as well as to purine metabolites (i.e. 
xanthine and hypoxanthine) that are most likely secreted 
from the bacteria present in the gut. Significant differences 
concerning the bands of these two xanthines are observed 
between the spectra of coeliac patients and those of coe-
liac patients following a GFD, suggesting that the purine 
metabolism of the gut bacteria of the two groups is differ-
ent. Moreover, spectral differences do not correlate with 
differences in bacterial composition (at the family level) 
as derived from a genomic analysis, indicating that SERS 
spectra are, presumably, not reflecting the bacterial composi-
tion of faecal samples, but rather the metabolic state of the 
bacterial community. In this sense, SERS appears to be com-
plementary to 16S rRNA sequencing analysis for the char-
acterization of faecal samples. The results reported suggest 
that SERS could be used as a fast and relatively inexpensive 
technique to assess the compliance of patients to the GFD, 
or perhaps the degree of mucosal recovery. A limitation of 
this preliminary study is the small sample size, so that the 
results reported need to be confirmed by further studies on 
a larger sample size, which will also allow us to evaluate the 
accuracy of this approach to assess GFD compliance.
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