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ABSTRACT
Circular RNAs are highly stable molecules present in all eukaryotes generated by 

distinct transcript processing. We have exploited poly(A-) RNA-Seq data generated in 
our lab in MCF-7 breast cancer cells to define a compilation of exonic circRNAs more 
comprehensive than previously existing lists. Development of a novel computational 
tool, named CircHunter, allowed us to more accurately characterize circRNAs and to 
quantitatively evaluate their expression in publicly available RNA-Seq data from breast 
cancer cell lines and tumor tissues. We observed and confirmed, by ChIP analysis, 
that exons involved in circularization events display significantly higher levels of the 
histone post-transcriptional modification H3K36me3 than non-circularizing exons. This 
result has potential impact on circRNA biogenesis since H3K36me3 has been involved 
in alternative splicing mechanisms. By analyzing an Ago-HITS-CLIP dataset we also 
found that circularizing exons overlapped with an unexpectedly higher number of 
Ago binding sites than non-circularizing exons. Finally, we observed that a subset of  
MCF-7 circRNAs are specific to tumor versus normal tissue, while others can distinguish 
Luminal from other tumor subtypes, thus suggesting that circRNAs can be exploited as 
novel biomarkers and drug targets for breast cancer.

INTRODUCTION

Circular RNAs (circRNAs) are transcript isoforms 
arising from a particular version of alternative splicing, 
where the 3ʹ-end of an exon is spliced back to the 5ʹ-end of 
a preceding exon (or itself) in the linear primary transcript 
[1]. This phenomenon is called “Back-Splicing” (BS) 
and, exactly as other forms of alternative splicing, it may 
depend on the permanence of unspliced exon borders 
during co-transcriptional processing. Mechanisms of RNA 
circularization not involving canonical splice sites also 
exist and recently a large collection of intronic circRNAs 
was published [2]. CircRNAs have been described in 

all Eukaryotes, in all tissues examined, both normal and 
pathological, including tumors, and in different stages of 
development, and show marked cell-specificity [3, 4].

Since not all the genes, and not all the exons within 
a gene, are capable of giving rise to circular forms the 
question of which feature(s) may distinguish circRNA 
host from non-host genes is an important issue. Albeit 
some distinctive traits of host genes were reported, such 
as for example increased intron length, the enrichment of 
RNA editing events [5] and the presence of inverted SINE 
repeats in introns flanking circularizing exons, leading to 
possible intron pairing, there is no definitive answer to 
this question [6]. Some proteins have also been related 
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to biogenesis of circRNAs like ADAR1 [7] or Quaking 
[8]. As far as their function is concerned, in view of their 
elevated stability their role as competing endogenous 
RNA (ceRNA) for miRNA was proposed, at least for 
some circRNAs [9]. It was demonstrated that circRNA 
can also function in gene regulation by competing with 
linear splicing [10]. In addition, more recently several 
reports testifying translation of ORFs re-created by the BS 
mechanism were published [11, 12].

The biogenesis of circRNAs is very slow in the cells 
[13], but since they are extremely resistant to degradation, 
due to the absence of free ends, the levels of expression 
of a number of circRNAs in various tissues, like brain, 
is relatively high [14]. Resistance to exonucleases also 
makes them long living in the extracellular environment, 
and many groups are trying to establish the potential value 
of circRNAs as disease markers in body fluids [15, 16].

One critical issue in seeking information on circRNAs 
is the usability of the large amount of public data available 
from normal tissues, cell lines and tumors. Many data were 
obtained using poly(A)-selected RNA, where circRNAs 
are almost absent [17]. Instead, poly(A)+ RNA depletion 
or linear RNA digestion with exonuclease R should be 
employed as enrichment strategy to detect circRNAs [2]. 
Total RNA-Seq data can be used to detect circRNAs using 
the reads overlapping BS junctions, even though the reads 
mapping to BS junctions are a tiny fraction of total reads 
commonly detected in RNA-seq experiments.

These limitations apply also to Breast Cancer (BC), 
where despite the high number of cases in databases, very 
few of them have the features required to detect circRNAs. 
Studies have been published reporting pilot analysis of 
few samples [18] or directly addressing circRNAs in body 
fluids / exosomes [19]. One study reported circRNAs 
expression specific to BC subtypes, but since the source 
was The Cancer Genome Atlas (TCGA) data, which were 
obtained mainly from poly(A)+ preparations, the number 
of circRNAs detected in this study was very low [20]. A 
low number of differentially expressed circRNAs was also 
reported comparing tumors to adjacent tissues [21].

In BC, despite extensive molecular characterization 
[22], both novel potential drug targets and circulating 
biomarkers are eagerly awaited. This is especially true 
in the case of the so-called “triple-negative” subtype, 
where no specific driver alteration has been identified so 
far and, consequently, no specific treatment is available. 
However, also in the case of the generally less aggressive 
“luminal” subtype, which is approached with endocrine 
treatments quite successfully, non-invasive markers able to 
predict the occurrence of pharmacological resistance may 
significantly reduce the risk of relapse.

In this work, we describe a large set of circRNAs 
expressed in MCF-7 BC cells and present an extensive 
characterization and integration of data available from 
other cell lines, as well as breast tumor tissues, thanks 
to the implementation of a novel algorithm to detect and 

quantitate rigorously BS junctions. Our results illustrate on 
one side novel findings potentially important to understand 
the biogenesis mechanism and possible functions of 
circRNAs. On the other side, several circRNAs expressed 
in tumor tissues and cell lines display features of 
biomarkers distinguishing the different subtypes of BC. 

RESULTS

A comprehensive prediction of circRNAs 
expressed in the MCF-7 BC cell line

The MCF-7 BC cell line is the most widely used in 
vitro model system to represent the estrogen-dependent, 
invasive luminal A breast tumor subtype. To extend the 
collection of circRNAs expressed in this cell line, we 
analyzed twelve datasets relative to a high-depth RNA-
seq analysis of poly(A-) preparations from MCF-7 
cells cultured in four different culture conditions, each 
in triplicate, obtained in our laboratory (Materials and 
Methods). The RNA-seq data were analyzed using the 
CIRI algorithm [23]. Among 14,624 circRNAs predicted 
by CIRI, 3,271 candidate circRNAs were selected 
after the application of several filters (Materials and 
Methods). The final set of 3,271 circRNAs, thereafter 
indicated as CM7 (Circular RNAs expressed in MCF-7), 
was subjected to further analysis (Figure 1A). Note that 
79.4% of CM7 were predicted also by the CircExplorer 
[24] or by the find_circ [1] algorithms (Supplementary 
Figure 1A). 

To confirm that this list may be more comprehensive 
than other available, we run the CIRI algorithm with the 
same setting as above on re-mapped ENCODE RNA-seq 
datasets relative to total RNA, poly(A+) and poly(A-) 
preparations from MCF-7 cells, obtaining 1,119 (74.5% of 
overlap with respect to CM7), 161 (50.1% of overlap with 
respect to CM7), and 244 (55.7% of overlap with respect 
to CM7) predictions, respectively (Figure 1B). Thus, 
we concluded that our poly(A-) RNA-seq data possess 
definitely deeper circRNAs detection power.

CM7 BS sequences were supported on average by 
4.52 reads, and 289 of them were supported by more than 
10 reads (Figure 1C and Supplementary Table 1A). 2,723 
circRNAs (83.2%) in our set are annotated in the public 
circRNA databases circBase [25] and circRNADb [26], 
confirming that our predictions are widely reproducible 
(Figure 1D, Supplementary Table 1B). Noteworthy, 548 
CM7 circRNAs have not been described previously 
in breast or other tissues. However, it should be noted 
that these predictions were supported on average by a 
low number of reads (1.28) (Supplementary Table 1B). 
Some novel circRNAs were confirmed also by Sanger 
sequencing (Supplementary Data 1). 

To accurately characterize circRNAs we developed 
a novel tool, namely CircHunter, allowing accurate 
annotation, characterization, and expression quantification 
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of a circRNA set, given a reference set of transcripts (see 
Materials and Methods for details). The CircHunter-
based annotation of our circRNA set revealed a primary 
involvement of multi-exonic BS (2,614 circRNAs, 
79.9%) with minor number of intronic (163 circRNAs, 
4.9%) and intergenic BS events (184 circRNAs, 5.6%) 
(Supplementary Figure 1B). We reported also special 
cases, including mono-exonic circRNAs (178 circRNAs, 
5.4%), and circRNAs in which BS does not involve exon 
boundaries but is predicted within exons (134 circRNAs, 
4.1%). 

Given the extensive heterogeneity of circRNA 
annotations, we defined a nomenclature for circRNAs. 
This nomenclature reports the name of the genes involved 
in the circularization (thereafter indicated as “host genes”) 
and the rank of exons involved, for each circRNA. 
Then, considering the average number of BS reads as a 
proxy of the level of circRNA expression, we identified 
Circ_CDYL_4 (283.64 reads), Circ_MAN1A2_2-5 
(239.45 reads), Circ_ATXN7_3-4 (229.25 reads), Circ_
SLC38A1_2-5 (153.85 reads), and Circ_HIPK3_2 (137.81 

reads) as the most abundant circRNAs in our set (Figure 
1E and Supplementary Table 1B).

To experimentally validate CM7, we selected 30 
circRNAs covering a range of expression levels reflecting 
the reads distribution of CM7, and run qRT-PCR analysis 
using divergent primers designed around the BS junction. 
The corresponding normal linear mRNA was measured 
using the forward primer within one exon involved in BS 
and the reverse primer in the closest exon not involved in 
circularization. Treatment of RNA preps using RNase R 
confirmed resistance to exonuclease in 28 circRNAs. As 
reported in Figure 1F, these circRNAs showed different 
degree of RNase R resistance, with Circ_ZMYND8_2-10 
and Circ_NCOA3_4-9 characterized by the lower 
susceptibility to RNAse R degradation. The two cases 
that were completely degraded by RNase R were intronic 
circRNAs and are not shown in the Figure since in this 
case no linear control was available. Expression levels 
of the 28 validated circRNAs measured by qRT-PCR 
in MCF-7 were highly correlated with the expression 
levels measured by our RNA-seq experiments (Pearson 

Figure 1:� (A) Schematic representation of the computational pipeline applied for our prediction of CircRNAs expressed in MCF-7 cell 
lines (CM7). BS = back-splicing. (B) Bar plot represents the number of circRNAs predicted in ENCODE MCF-7 Poly(A)+, Poly(A)-, Total 
RNA-seq, and in this study (CM7). The dark red color represents the fraction of circRNAs predicted belonging to the CM7 set. (C) Box plot 
showing the log2 average number of BS reads supporting the circRNAs selected (red) or filtered (pink) in our analysis. (D) Venn diagram 
shows the overlap between circRNAs predicted in this study and the annotations from circBase and circRNAdb. (E) Manhattan plot shows 
the number of circRNAs predicted on individual human chromosome. The identifiers of circRNAs supported by more than 100 reads are 
reported. (F) Bar plot represents the RNase R resistance of a set of circRNA predicted in our analysis (red) and of the linear transcripts 
generated from the corresponding host gene (blue). Standard deviations are computed from five independent biological replicates. p-value 
from Student t test. *** = p-value < 0.001; *= p-value < 0.01; **= p-value < 0.05.
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r = 0.7611). To verify circRNAs localization in the cell, 
we performed a cell fractionation experiment. 26 out of 
the 28 circRNAs tested were enriched in the cytoplasm 
and only two circRNAs (Circ_ZNF124_4-2 and Circ_
ZMYND8_2-10) in the nuclear fraction (Supplementary 
Figure 1C). These results are consistent with previously 
published evidence on circRNAs being prevalently found 
in the cytoplasm [27].

Genomic circRNAs characterization 

We examined the general genomic features of 
circRNA host genes. As reported in Figure 2A, most 
host genes generate only one circRNA, even though 
we observed extreme cases as the TRIM37 gene, which 
generates 27 different circRNAs. Considering each 
circRNA-host gene pair, we did not observe a correlation 
between their normalized expression level (r = 0.05). 
The capacity of generating circRNAs did not appear 
randomly distributed, since gene ontology analysis of the 
circRNA host genes showed significant enrichment of 
terms related to chromatin modification, DNA repair and 
cell-cycle, while a set of control genes with no evidence 
of circular RNA forms (control gene set) was enriched in 
more general processes including gene expression and 
translation (Supplementary Table 2A–2B, respectively). 

Considering the main transcript isoform of each host 
gene, we investigated their genomic and transcriptomic 
features using CircHunter. Considering the relative 
exon rank, we observed that the upstream exon involved 
in circularization (5ʹ Circularizing Exon, 5ʹCE) is more 
frequently at the beginning of the transcript, whereas 
the downstream exon (3ʹ Circularizing Exon, 3ʹCE) has 
a more uniform distribution (Figure 2B). We observed 
that the majority of multi-exonic circRNAs involve two 
(635 circRNAs, 19.4%) or three exons (637 circRNAs, 
19.5%) (Supplementary Figure 1D). Exons taking part in 
the BS events are more frequently the 2nd and 3rd (1,073 
and 624 circRNAs respectively) (Supplementary Figure 
1E), as previously reported [28]. Also in this analysis, we 
observed exceptions like Circ_DYNC1H1_17-56, in which 
the circularization event involved 40 exons. Furthermore, 
intronic regions can be retained in the circRNA structure. 
To verify intron retention in the circRNAs, we mapped 
the corresponding paired-end read of each BS-overlapping 
read in our RNA-Seq. Interestingly, 477 out of 3,164 
circRNAs for which it was possible to map the paired read 
contained intronic sequences (Supplementary Figure 1F), 
thus demonstrating incomplete splicing of the intervening 
exons in a number of cases.

To the purpose of identifying further genomic 
features of CM7, we then collected three sets of control 
genes: the first (named control set) followed these 
criteria: i) no BS events detected in our RNA-seq nor 
annotated in circBase; and ii) similar level of expression 
when compared to the linear isoforms in MCF-7 cells 

(Supplementary Figure 1G). The second was a subset 
of control set displaying intron length similar to CM7 
host genes (named Control-I set). Finally, a set of 1,000 
random protein-coding genes was selected (named 
Random set). The comparison among CM7, control and 
random genes led us to conclude that circRNA host genes 
were significantly longer (Figure 2D) and annotated to a 
higher number of isoforms (Figure 2E). Furthermore, host 
genes were associated with a higher number of exons and 
longer mature RNA transcripts (Supplementary Figure 
1H-1I). Moreover, we confirmed that the first intron is 
significantly longer in circRNA host genes than in control 
genes (Figure 2C), as previously reported [4]. 

It has been observed that BS events can be enhanced 
by the presence of inverted intronic Alu sequences [6]. 
We analyzed the Alu annotations mapped in the introns 
flanking the Exons involved in BS and observed that 
circRNAs host genes were significantly enriched in Alu 
elements as compared to controls (Supplementary Figure 
1J), with 718 host genes (21.95%) harboring a divergent 
pair of this elements as compared to only 7.65% of non-
host control genes.

Thus, the genomic features of CM7 appear in line 
with those reported for circRNAs characterized in other 
cell lines and tissues. 

A specific chromatin signature at circularizing 
exons

Alternative splicing has been linked to 
epigenetic histone modifications that may result in 
tighter nucleosome positioning on exons, leading to 
relenting RNA Polymerase (RNAPII) (the “exon-
bump” hypothesis) [29] and/or to the recruitment of 
splicing factors in the proximity of alternative exons 
[30]. Therefore, we overlapped BS exons to a library 
of 15 chromatin states of the MCF-7 epigenome [31] 
and discovered that they are mostly characterized by 
the “transcribed gene” state, i.e. high H3K36me3 and 
RNAPII occupancy (Supplementary Figure 1K). Next, we 
analyzed the ChIP-Seq signal of H3K27ac, H3K36me3, 
H3K4me3 and RNAPII in a window of +/- 1 kbp centered 
on the 5ʹBS site (the 5ʹ-end of 5ʹCE) or the 3ʹBS site (the 
3ʹ-end of 3ʹCE), using public MCF-7 ChIP-Seq data. 
Interestingly, we observed a significant increment of the 
H3K36me3 signal downstream of the 5ʹ BS sites while 
a local peak of this mark was observed at 3ʹ BS sites 
(Figure 2F). Then, considering only exonic circRNAs, 
we compared the increment of H3K36me3 ChIP-Seq 
signal among the first four exons of host genes and 
control set, observing that a significantly higher number 
of H3K36me3 ChIP-Seq reads cover exons of host genes. 
Interestingly this higher signal was also observed when 
comparing host genes with the control-I set, suggesting 
that the enrichment is independent on the intron preceding 
the 5ʹCE (Figure 2G). To identify circRNA host genes 
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enriched in H3K36me3 signal at 5ʹCEs, we computed a 
score based on the ratio between the H3K36me3 signal 
at 5ʹCEs and at their upstream exon. Ranking circRNA 
host genes using this score revealed interesting examples 
of genes in which the H3K36me3 signal increases 

dramatically at 5ʹCEs, as in the case of ZKSCAN1 (Figure 
2H, Supplementary Table 3).

These novel findings are very interesting, especially 
because the involvement of H3K36me3 in alternative 
splicing has been reported [30]. To validate our 

Figure 2:� (A) Histogram shows the distribution of the number of circRNAs produced by the circRNA host gene identified in our analysis.  
(B) Density plot shows the relative rank of exons involved in circularization. Dark red color represents the 5ʹ Circularizing Exon (5ʹCE) 
while light red the 3ʹ Circularizing Exon (3ʹCE). (C) Box plot shows the gene length distribution of host genes (red), control genes (blue), 
and random set genes (grey); p-value by Wilcoxon Rank-Sum test. *** = p-value < 0.001. (D) Box plot shows the number of isoforms of 
host genes (red), control genes (Ctrl, blue), random genes (Rnd, grey), and control genes paired with host genes by the first intron length 
(Ctrl-I, cyan); p-value by Wilcoxon Rank-Sum test. *** = p-value < 0.001. (E) Box plot shows the length of the first intron of host genes 
(red), control genes (blue), and random set genes (grey); p-value by Wilcoxon Rank-Sum test. *** = p-value < 0.001. (F) Line plot represents 
the MCF-7 H3K36me3, Pol II, H3K4me3, and H3K27ac ChIP-seq signal profile measured in a genomic window of +/- 1 kb centered the 
5ʹ BS junction (left) and the 3ʹ BS junction (right). (G) Box plot shows the number of normalized H3K36me3 ChIP-Seq reads counted in 
the first four exons of host (red) and control genes (blue); p-value by Wilcoxon Rank-Sum test. *** = p-value < 0.001. (H) Genome Browser 
representation of the genomic regions involved in the formation of Circ_ZKSCAN1_2-3 circRNA. The H3K36me3 genomic coverage is 
reported in red. The coverage values are reported as read per million sequenced reads. (I) Bar plot represents H3K36me3 ChIP enrichment 
at the selected exons of five circRNA host genes. In red, the exon involved in the circularization is represented while the flanking exons 
are represented in blue. The HSDP gene was used as representative control gene since it was characterized by a similar level of expression 
in MCF-7 compared to the five analyzed circRNA host genes. The exons two, three, and four were selected for this gene. Bars indicate 
standard deviation from three independent biological replicates; ** = p-value < 0.01 and * = p-value < 0.05. 
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observations by a more direct approach, we used ChIP-
qPCR to measure the level of H3K36me3 in five circRNA 
host genes in MCF-7, by comparing the 5ʹCEs with the 
upstream and the downstream exons not involved in 
circularization and to a control gene (HSDP). As shown in 
Figure 2I, significantly higher levels of H3K36me3 were 
confirmed in all cases. H3K36me3 enrichment at 5ʹCE is a 
novel finding that emphasizes the link between alternative 
splicing and circRNA biogenesis. 

CircHunter tool to search and quantify BS 
events in CM7 

Due to the extension of CM7, we judged it very 
relevant to see if these circRNAs may represent, or 
contain, a signature specific to luminal BC. Therefore, 
we set out to analyze circRNAs expression in external 
data from BC cell lines and tumor tissue samples. 
To simplify and speed-up this analysis, we develop 
HashCirc, a module of CircHunter, which applies a two-
steps procedure to count the number of reads supporting a 
putative BS junction.

Briefly, in the first step HashCirc decomposes two 
sets of sequences s1 and s2 into sub-sequences (k-mers), 
which are then directly compared using a hash-function. 
In the second step, the s2 sequences associated with a 
threshold of k-mers shared with at least one s1 sequence 
are then selected for an alignment performed by the 
Smith-Waterman algorithm (see Materials and Methods 
for details). Given the high efficiency of the hash-based 
sequence comparison, a high number of s2 sequences 
is screened for possible match with the s1 sequences 

to be confirmed afterward using a more accurate (but 
computationally demanding) alignment method. 

To use HashCirc starting from the CM7 detected 
by CIRI we defined a sequence set comprising a window 
of -35 to +35 nucleotides of each BS. Running HashCirc 
on our 12 RNA-Seq datasets (s2) we found that 3,262 
circRNAs of our set (99.6%) are associated to at least one 
read, confirming that HashCirc is able to detect almost all 
CIRI defined circRNAs using a reduced length sequence. 
Subsequently, HashCirc was applied on Poly(A+), 
Poly(A-), and total RNA-Seq data from the ENCODE 
project (as described in the first section) showing a neatly 
higher number of BS reads detected in total RNA-seq data, 
as compared with experiments based on Poly(A)+ RNA 
(Supplementary Data 2).

We applied HashCirc to examine circRNAs expression 
in publicly available total RNA-seq data of BC cell lines and 
tissues. Analysis of CM7 BS junction sequences in data 
from total RNA-seq analysis of five BC cell lines and one 
non-tumorigenic breast cell line (GSE52643) revealed that 
2,037 circRNAs (62.3%) were detectable in at least one 
cell line; of these, 36 were Differentially Expressed (DE) 
when comparing ER+ versus ER- cell lines (Figure 3A 
and Supplementary Table 4). Notably, they included four 
circRNAs deriving from the ESR1 gene and one from the 
PGR (progesterone receptor) gene, which are among the 
genes defining luminal subtypes. To validate this finding, 
we analyzed by qRT-PCR the expression of the 28 validated 
circRNAs (Figure 1F) in a panel of cell lines including six 
BC and two non-tumorigenic breast cell lines, chosen to 
comprise wide phenotypic variability. We confirmed that 
CircRNA_GFRA1_5-7, Circ_IGF1R_2, Circ_ATXN7_3-

Figure 3:� (A) Heat map represents the normalized number of BS junction reads of circRNAs differentially expressed in ER+ versus ER- 
BC cell lines. (B) Heat map represents the expression level of a set of 28 validated circRNAs. The expression level was measured by qRT-
PCR and is relative to the lowest expressed circRNA in each cell line and is reported in light-to-dark blue color-scale.
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4 and Circ_NCOA3_4-9 were prevalently expressed in 
MCF-7 cells (Figure 3B), in parallel with its linear isoforms 
(data not shown). Remarkably, a set of circRNAs (Circ_
CDYL_2, Circ_MAN1A2_2-5, Circ_SMARCA5_15-16, 
Circ_FOXP1_8-11, and Circ_HIPK3_2) were more abundant 
than their corresponding linear isoforms, suggesting an 
accumulation of these molecules in BC (Supplementary 
Figure 2A). 

Given the observation of widespread expression 
of CM7 in BC cell lines, we analysed by HashCirc the 
total RNA-Seq datasets from primary breast tumors and 
normal tissues [32]. Specifically, we directly searched for 
circRNA BS junction sequences in 20 RNA-Seq datasets 
from Triple Negative (TN), ER positive (ER+), HER2 
amplified (HER2+), and Normal Breast Organoids (NBO) 
(GSE52194). We detected 3,004 circRNAs (91.2%) 
expressed in at least one sample, including 139 circRNAs 
detected in all the samples analyzed (Supplementary Table 
5). To identify luminal-specific circRNAs, we performed a 
DE analysis using the read counts provided by HashCirc. As 
shown in Figure 4A, we detected 113 DE circRNAs in ER+ 
versus TN tumors, 58 DE circRNAs in ER+ versus HER2+ 
tumors and, noteworthy, 622 DE circRNAs in ER+ versus 
NBO. As expected, the ESR1 circRNAs were among the 
most significant DE circRNAs when comparing ER+ to ER- 
tumors and, similarly, Circ_ERBB2_7-11 was significantly 
overexpressed in HER2+ tumors (Supplementary Figure 
2B). Interestingly, when comparing luminal tumors against 
NBO, the differential expression of linear isoforms did not 
correlate with corresponding DE of circRNAs, while this fact 
was much less evident in other comparisons between tumor 
subtypes (Figure 4B). In this analysis, we identified other 
interesting DE circRNAs including Circ_HIPK3_3, which 
was highly expressed in all tumor samples analyzed; Circ_
GFRA1_5-7, which was significantly overexpressed in ER+ 
tumors only; and Circ_RPPH1_1 as an extremely abundant 
circRNA in HER2+ tumors (Figure 4C). This circRNA 
derives from the gene encoding the RNA component of 
RNase P, and clearly it is not produced by a canonical splicing 
event since this gene does not contain introns.

Expression of nine circRNAs arbitrarily selected 
among those showing the highest expression in tumors was 
also examined by qRT-PCR in a series of 42 tissue samples 
from primary BC patients. Results were then evaluated by 
hierarchical clustering and we observed that these circRNAs 
were able to distinguish samples of the luminal subtype 
from the other subtypes, with only three misclassified 
samples (accuracy = 0.92) (Figure 4D, left). Noteworthy, 
the expression of their corresponding linear isoforms (Figure 
4D, right) performed slightly worse as classifier to separate 
luminal from non-luminal BC subtypes, based on clustering 
analysis (accuracy = 0.88). Some CM7 resulted thus 
more efficient in clustering BC subtypes than their linear 
counterparts, including hormone receptor genes.

Statistical analysis of the expression of these nine 
circRNAs with patient clinical data highlighted a significant 

correlation between the immuno-histochemical ER status 
and Circ_ESR1_3-4 expression (p-value = 3.95E-09), 
whereas the correlation with ESR1 linear isoforms was 
definitely less pronounced. The immuno-histochemical 
PR status was also correlated to Circ_PGR_2-7 expression 
(p-value = 2.95E-03), as expected. Interestingly, Circ_
IGF1R_2 expression was significantly related to the 
mitosis score (p-value = 4.49E-03) and, furthermore, Circ_
RELL1_4-6 and Circ_CDH1_9-10 expression was positively 
correlated with lymph node invasion (p-value = 5.64E-03 
and p-value = 9.30E-03 respectively) (Supplementary 
Table 6).

Analysis of Ago-HITS-CLIP data on CM7 exons

The availability of an Ago-HITS-CLIP dataset from a 
published study in MCF-7 cells [33] prompted us to assess 
the possible enrichment of Ago binding in CM7 exons, as 
well as within the BS sequences. First, using Ago-HITS-
CLIP data we found that 53% of CM7 exons overlapped an 
Ago HITS-CLIP peak (Supplementary Table 7A). Then, we 
computed the intensity of Ago binding around a genomic 
region of 1 kbp centered on the circRNA exon boundaries, 
as compared to the boundaries of exons 2 and 3 of control 
genes. Interestingly, the number of Ago-associated reads is 
significantly higher around BS exons than in the control set 
(Figure 5A–5B). These results show that AGO binding is 
higher in circularizing exon, as exemplified in Figure 5C, 
even though it is not possible to discriminate how binding 
concerns linear and circular isoforms. 

Circularization events create novel sequences 
that are not present in the linear isoforms. Therefore, we 
studied whether some of them could align with Ago-HITS-
CLIP sequencing reads. Using the HashCirc module of 
CircHunter, we searched for CM7 BS sequences (-35; +35) 
in the raw Ago-HITS-CLIP data and found 127 overlapping 
sequences. As control, we generated 100 sets of randomly 
permuted BS sequences, obtaining definitely lower numbers 
(p-value < 0.001, Figure 5D). Thus, HITS-CLIP reads 
contain sequences that are exclusive to BS junctions. We 
also counted the HITS-CLIP reads mapping to BS, and 
found that they were significantly higher than reads counted 
on 100 sets of randomly permuted BS sequences or on a 
set of BS created by shuffling single nucleotides within BS 
sequences (see Materials and Methods section for details) 
(Figure 5E). Note that only few CM7 BS sequences were 
associated with high number of HITS-CLIP reads, e.g. 
Circ_RPPH1_1, Circ_FUT8_8-10 and few others (Figure 
5F and Supplementary Table 7B).

One important point was to understand whether 
these “novel” HITS-CLIP reads mapping to BS are 
due to the re-created BS sequence or to the state of 
circRNAs per se. In attempt to answer this question, we 
examined in more detail the circRNAs showing at least 
6 HIST-CLIP reads over the BS sequence. Following 
the scheme shown in Figure 5F we counted the HITS-
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CLIP reads mapping to the BS junction and to linear 
splicing junctions (both upstream and downstream the 
circularization event), and internal to it (when involving 
at least two exons). Results show that, while the internal 

junctions are negative in almost all cases, the read 
counts found at BS junction are reproduced either at the 
upstream or downstream linear junction (Figure 5F). 
Mapping of the reads on these junctions, indeed, showed 

Figure 4:� (A) Heat map represents the number of BS junction reads of circRNAs significantly Differentially Expressed (DE) in ER+ 
tumors versus Normal Breast Organoids (NBO) (left), ER+ tumors versus HER2 amplified tumors (middle), or ER+ tumor samples versus 
Triple Negative (TN) tumors (right). (B) Bar plot shows the log2 Fold Change of the ten most significant upregulated or downregulated 
DE circRNAs in each DE analysis performed (red). In blue are represented their correspondent linear genes. In bold circRNAs whose host 
genes are known to be DE in a specific condition. (C) Radar plot represents the number of BS reads of three representative DE circRNAs, 
counted by HashCirc in 20 total RNA-Seq datasets from primary tumor specimens (ER =  ER+ tumors; HER2 =  HER2 amplified tumors; 
NBO = Normal Breast Organoids). (D) Heat map represents the expression level of ten selected circRNAs measured by qRT-PCR in 42 
different tumor samples, (left) and the level of expression of the corresponding host genes (right). The tumor molecular subtype and the 
positivity to ER expression or HER2 amplification is reported on top of the heat maps, accordingly to clinical data. 
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Figure 5:� (A) Line plot shows the normalized number of Ago-HITS-CLIP reads counted in a genomic window of +/- 500 bp centered 
on each circRNA BS sites (left) or at corresponding linear splicing sites of genes from the control gene set (right). Data of all the three 
biological replicates of the experiment are reported. CE, Circularizing exon. (B) Box plot represents the number of Ago-HITS-CLIP reads 
counted within a genomic region of +/- 100 bp centered on each circRNA BS sites (red) or control gene splicing sites (blue). p-value by 
Wilcoxon-Rank Sum Test. ***, p-value < 0.001. (C) Washu Genome Browser representation of the circRNA predicted at ZNF91 gene. The 
normalized genomic coverage of the three Ago-HITS-CLIP experiments is reported at the bottom. The signal was normalized on the total 
number of reads sequenced in each experiment. (D) Histogram representing the number of sequences overlapped with Ago-HITS-CLIP 
reads considering the  CM7 BS junctions (red) and 100 sets of 3,271 sequences generated by random permutation of CM7 BS sequences 
halves (blue). (E) Box plot representing the log10 average reads in three different datasets: 127 AGO-overlapped back-splicing sequences 
(red), 100 sets of random sequences generated by randomly permuting 127 randomly selected from the 3,271 CM7 back-splicing sequence 
halves (Permuted Set 1, blue) and 100 sets of random sequences generated by permuting the 127 back-splicing sequences overlapped with 
AGO (Permuted Set 2, blue) p-value by Wilcoxon-Rank Sum Test. ***, p-value < 0.001. (F) Bar plot showing the average normalized Ago 
reads overlapped with the top 10 CM7 BS junction (red) and a set composed of linear mRNA splicing sequences in between of the two 
exons involved in the circularization (light blue). The internal junction was defined by considering the 5’ CE and the following exon in 
the linear transcript. For Circ_RPPH1_1, mapped on a monoexonic gene, no control junction was available. For the monoexonic circRNA 
Circ_EXO5_3 no internal junction was available. The number of reads counted on the linear mRNA splicing sequences involving the CE 
and the flanking exon at the 5’ (cyan) and the flanking exon at the 3’ (blue) were also reported.
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a very asymmetrical distribution, with the peak clearly 
within the CE (Supplementary Figure 2C). 

In conclusion, our data show that there is a clear 
increase of AGO-HITS-CLIP reads in exons involved 
in circularization, whereas no evidence of novel HITS-
CLIP sequences within the BS junctions was obtained. 

DISCUSSION

In this paper, we present a collection of circRNAs 
expressed in the MCF-7 BC cell line, which is by far the 
deepest published to date. We present the new pipeline of 
analysis CircHunter, for the precise circRNAs annotation, 
and the new tool HashCirc (manuscript in preparation) 
for quantitative analysis of circRNAs expression in public 
data from tumors and cell lines, showing that a subset of 
MCF-7 circRNAs can neatly distinguish luminal subtype 
tumors from other subtypes.

Using both external data and in-house validation, 
we discovered that circularizing exons contain higher 
levels of H3K36me3 as compared to other exons, with 
important implications in the biogenesis mechanism. At 
the RNA level, we also show elevated Ago occupancy in 
circularizing exons.

The number of circRNAs detected in our Poly(A-) 
RNA-Seq was higher compared to circRNAs predicted from 
ENCODE. Possible explanations are the high sequencing 
depth of our RNA-Seq data and the fact that samples derived 
from MCF-7 cells in four different culture conditions, thus 
enhancing the possibility of detection not only for DE genes, 
but also from the probabilistic point of view. 

During last years, many circRNA prediction 
algorithms have been developed with different 
characteristics and performance [34–37]. Among the 
published algorithms for circRNA prediction, CIRI was 
selected for its overall good performance and low false 
negative rate in an independent comparative study of 
circRNA prediction algorithms [34]. Despite in Hansen 
and co-workers CIRI was associated with a high false 
positive rate, we were able to confirm that 79.4% of CIRI 
predicted circRNA were predicted by at least another 
algorithm. Furthermore 83, 2% of circRNA were already 
annotated in circBase. Furthermore, recently in Zhang 
and co-workers CIRI was associated with the highest 
precision and sensitivity confirming it as a good balanced 
algorithm for our porpoise to define a comprehensive 
set of circRNAs for MCF-7 cells. All the algorithms 
incorporated a filter on the GT-AG definition of 5ʹ and 
3ʹ-splice sites, thus essentially limiting detection to exonic 
circRNAs. Conversely, a recent study conducted on 
poly(A)-depleted and RNase R-treated preparations found 
an impressive number of circRNAs deriving from introns 
(non-exonic) [2]. Albeit interesting, the undefined and 
variable junctions in these circRNAs made the evaluation 
in our dataset unfeasible. It is noteworthy that we found a 
small number of intronic circRNAs in our set, due to the 

fact that they featured junctions flanking AG, GT borders 
by chance. However, we were unable to confirm these 
non-exonic circRNA by RNase R treatment in two cases 
selected at random. 

The search and quantitation of circRNAs in multiple 
RNA-seq data is computationally demanding. To improve 
this task, we developed a pipeline that defines a set of BS 
sequences and then uses an alignment-free method to 
compute the matching with RNA-seq data. Alignment-free 
methods were largely used in genomic data analysis given 
their inherent low computational cost and their independence 
from a reference genomic sequence [38]. This method 
was implemented in the first step of HashCirc, making the 
algorithm faster and well performing as shown for example in 
the case of circRNAs expressed in breast tumor tissues. CM7 
were clearly differentially expressed among tumor subtypes 
and, even more interestingly, a large number of them were 
differential in tumors versus normal tissue. Even though this 
conclusion was suggested already by other authors [18–20], 
to our knowledge, our circRNAs set is the largest reported to 
date at least for the luminal subtype breast tumors. Nair and 
co-workers also reported several tumor- and subtype-specific 
circRNAs in BC. However, this study was conducted using 
poly(A)+ RNA-seq data, thus strongly limiting the detection 
of circRNAs, which do not present poly(A)+ tails. The 
risk of introducing a bias toward circRNAs contaminating 
poly(A+) RNA preparations to variable degrees, as well as 
toward circRNAs containing poly(A) stretches by chance, 
discouraged us from examining data from TCGA or other 
sources not produced using total or RNase R-resistant RNA 
preparations. It is clear that more studies and larger patient 
cohorts are needed to reach a robust conclusion on this point. 

In the analysis of clinicopathological data we 
noticed that circRNAs generated by ESR1 and PGR genes 
show higher correlation with ER and PgR protein level 
than their corresponding protein-coding isoforms. The 
interesting hypothesis that this circRNAs may positively 
influence the translation or stability of their cognate 
protein is currently under investigation. 

When considering the epigenetic status of genes 
hosting circRNAs, we observed that exons involved 
in circularization display an unexpected increase of 
H3K36me3. While H3K36me3 is generally observed within 
transcribed gene body [39], enrichment at circularizing 
versus non-circularizing exons is a completely novel 
finding, to our knowledge. This is particularly interesting 
when the mechanism of biogenesis is considered. In fact, 
assuming that circRNAs formation takes place during 
“normal” co-transcriptional processing, one should admit 
that the upstream intron-exon border and the downstream 
exon-intron border involved in circularization should be in 
unspliced form, i.e. the region involved (exons+introns) is 
“skipped”, in some sense. Luco and co-workers. reported 
that the H3K36me3 is read by the chromodomain-
containing MRG15 protein, which in turn binds the splicing 
repressor PTB [30]. It should be extremely interesting to 
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see whether a similar mechanism should take place in the 
case of circRNAs, i.e. the permanence of one or several 
unspliced intron-exon borders due to H3K36me3-mediated 
splicing repressor recruitment. 

We have explored evidence of AGO binding not only 
for its role in post-transcriptional regulation, but also for 
its reported role in transcription and splicing [40]. Indeed, 
Ago1 binding to intronic enhancers in association to HP1α 
and CTCF has been correlated to exon skipping [41, 42], 
making it possible that Ago1 may associate to circRNAs at 
this level.  While it is clear that BS creates novel sequences 
and some of them could be found in the AGO-HITS-CLIP 
raw data library, read distribution over circularizing versus 
linear junctions demonstrated that peaks are inside exons, 
thus excluding their dependency on sequences recreated by 
circularization. Nevertheless, AGO reads are quantitatively 
more abundant at BS junction than random or permuted 
sequences: this may result from circularization being linked 
to specific RBP complexes that are not present in linear 
isoforms, or to higher stability. The same considering the 
higher density of AGO-HITS-CLIP reads at circularizing 
versus non-circularizing exons.  

As far as the possible involvement of microRNA 
targeting is concerned, target prediction in circularizing 
exons unravelled interesting cases that are currently being 
studied in more detail in our lab. The first is Circ_ZNF91_4, 
which contains 25 potential MREs for miR-23b-3p and 
24 MREs for miR-23a-3p (Supplementary Table 7C). It is 
worth of note that Circ_ZNF91_4 is up-regulated in ER+ 
tumors compared to NBO and ER- tumors. The second case 
is miR-193b-3p, which was predicted targeting a number of 
highly expressed circRNAs, among which Circ_HIPK3_2, 
which shows high expression in tumors as compared to 
normal, and as compared to HIPK3 linear isofoms. Among 
other predicted targets we noticed Circ_CDYL_4, Circ_
SPECC1_4, Circ_PTK2_3-5, Circ_PIK3R1_2, and also 
Circ_ESR1_2-3. It should be stressed, however, that reports 
suggesting a role of circRNAs as competing endogenous 
RNA (ceRNA) have been so far anecdotic and that all 
these predicted interactions have to be verified in the lab. 
In this work, we did not address the possible regulation of 
circRNAs by estrogen. Along with the slow turnover of 
circRNAs, a serious problem to evaluate regulation consists 
in the development of robust methods to compare the rates 
of circRNA biosynthesis and decay with those of their 
cognate linear isoforms. All these issues are currently being 
investigated in our lab. 

In conclusion, along with data that are simply 
suggestive on the mechanisms regulating circRNA 
biogenesis, the data presented here set a solid ground 
for further studies on the role of circRNAs in tumors. 
The extended collection of circRNAs expressed in MCF-
7 cells and the new tool for external data analysis will 
enable exploration of circRNAs expression in data from 
tumor tissues as soon as they become available. Notably, 

due to the reported stability of circRNAs in serum, the 
subtype-specific set we report here will represent the 
basis for development of non-invasive biomarkers in 
Breast Cancer.

MATERIALS AND METHODS

RNA isolation, RNAse enrichment and 
quantitative Real-time PCR (qRT-PCR)

RNA was isolated from MCF-7, MDA-MB-231, 
SK-BR-3, T-47D, T-47D-sfRON, ZR-75–1, HTERT-
HME1, MDA-MB-453 and MCF-10 cells as reported in 
[43]. RNase R (Epicentre Biotechnologies) treatment (3U) 
was performed on total RNA (1µg) at 20°C for 15 min. 
Cellular RNA fractioning was performed as described 
in [43]. The qRT-PCR analyses were performed using 
the SYBR-green method (iTaq Univers SYBR Green, 
Biorad, 1725124). Real-time PCR primers for human 
18S (QT00199367), ERα (QT00044492), GREB1 
(QT00080262), GUSBP1 (QT00085204) and RELL1 
(QT01662647) RNAs were purchased from Qiagen 
(QuantiTect@ Primer Assay). Custom expression-primer 
pairs are reported Supplementary Table 8.

Sanger sequencing

The PCR products were subjected to electrophoresis 
in 0.8% agarose gel. The fragments were purified and 
quantified. The Sanger sequencing of PCR products was 
performed by Bio-Fab research s.r.l. (Rome, Italy) and 
reported in Supplemental Data 1.

Chromatin immunoprecipitation assay (ChIP)

MCF-7 cells were grown in serum enriched 
medium (full medium) and ChIP experiments were 
performed as described in [44]. In this assay was used an 
antibody against H3K36me3 (Active Motif, cat. 61101, 
lot. 32412003) and Normal Rabbit IgG (Millipore, 
cat. 12-370). Custom ChIP-primer pairs are reported in 
Supplementary Table 8.

Small interfering RNA (siRNA)

MCF-7 cells were reverse transfected 
with siRNAs (20nM final concentration) using 
Lipofectamine 2000 (Thermo Fisher Scientific, 11668-
019). Stealth RNAi from Thermo Fisher Scientific 
were used to target ERα mRNA (Thermo Fisher 
Scientific ESR1HSS103376, ESR1HSS103377, 
ESR1HSS176619). Stealth RNAi™ siRNA Negative 
Control Med GC was used as a control (siCTR; Thermo 
Fisher Scientific, 12935–300). Cells were harvested 48 
hours after siRNA transfection. 
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Starting RNA-Seq datasets and initial prediction 
of circRNAs in MCF-7

The starting RNA-seq datasets were obtained 
from libraries generated with the TruSeq stranded library 
preparation kit (Illumina) using RNA depleted of both 
poly(A+) and ribosomal RNAs fractions. Libraries were 
analyzed with the DNA 1000 chip (Agilent) using Agilent 
2100 Bioanalyzer and quantified using the Qubit DNA 
HS kit (Lifetechnologies). Pool of 12 libraries (pooled at 
equimolar concentration) was generated, quantified and 
run on the HiSeq2000 (Illumina) sequencer in 50 nt paired-
end sequencing mode following manufacturer instruction. 
A total of 12 datasets, with an average depth from 30.7 to 
116.1 million paired-end reads were obtained, composed of 
triplicates of four MCF-7 culture conditions: i) hormone-
deprived (HD) media ii) HD+ 17β-estradiol (6h) iii) medium 
added of FBS 10% iv) double-stranded RNA complementary 
to ESR1 mRNA (siRNA) (48h). Raw data are deposited at 
GSE101410. CIRI v. 1.2 [23] circRNA prediction analysis 
was performed aligning RNA-Seq reads with BWA v. 0.6.1 
[45] with option bwasw and -T = 15. Gencode v19 was used 
as reference transcriptome dataset while hg19 as human 
reference genome assembly. CIRI algorithm applied in 
default settings with -P and -low option.

CircRNA prediction with CIRCexplorer v. 1.0.6 
was performed as proposed in [24]. RNA-Seq reads were 
aligned using Tophat v. 2.0.0 [46] with options -bowtie1, -a 
= 6, -m = 2 -microexon-search -no-novel-juncs. Unmapped 
reads were analyzed with Tophat-Fusion with options 
-fusion-search -keep-fasta-order -bowtie1 -no-coverage-
search. CircRNA prediction analysis with find_circ v. 1.2 
[1] was performed by aligning reads using Bowtie v. 2.0 
[47] with options -very-sensitive -phred33 -mm -D = 20 
-score-min = C,-15,0. Unmapped reads were used as input 
for the find_circ pipeline following the procedure proposed 
in [1]. For each analysis, the number of BS reads reported 
by each algorithm was normalized using DESeq2 v.1.14.1 
R package [48]. On each set of circRNA predicted by the 
three algorithms, the circRNAs predicted in at least two out 
of the three biological replicates in each culture condition 
and associated with an average number of BS supporting 
read > 2 were selected. Using this threshold 3,271, 1,811, 
and 2,797 circRNAs were predicted with CIRI, find_circ 
and CircExplorer, respectively. CIRI algorithm was applied 
with the same settings to predict circRNA from ENCODE 
MCF-7 RNA-Seq experiments performed using total RNA 
(GSM2072571, GSM2072572), poly(A)+ (GSM767851), 
and poly(A)- (GSM765388) RNA selection protocols. Only 
circRNAs identified in both the biological replicates of the 
experiments were considered for the analysis.

CircHunter tool

CircHunter is a new tool designed for the post-
discovery analysis of circRNA predictions.  CircHunter 

is composed by three modules (i) circRNA classification, 
(ii) BS sequence reconstruction, and (iii) BS sequence 
quantification in deep sequencing datasets. 

In the circRNA classification module the algorithm 
considers the annotation from a reference transcriptome, 
which in our analysis was Ensembl v85. Initially, genomic 
coordinates of each Ensembl exon are overlapped against 
circRNA genomic coordinates using bedtools [49] 
intersect function. Then, the genomic coordinates of each 
exon annotation are tested for the overlap against circRNA 
BS site position. Each overlap is classified based on the 
number and the position of the BS within the transcript 
annotations. Each circRNA/transcript overlap is classified 
to five possible criteria (Supplementary Figure 1B):

-  multiexonic, when two exons are mapped to each 
splice site of the circRNA;

-  monoexonic, when a single exon spans the entire 
region involved in the circularization;

-  putative exonic, when there is no precise match 
between the circRNA BS sites and the exon 
boundaries but BS sites is mapped within exon 
genomic coordinates;

-  vintronic; when at least one intron is mapped to a 
circRNA BS site;

-  intergenic; when at least one circRNA BS sites 
exceeds the boundaries of the associated gene.

This analysis provides a transcript-level 
classification of circRNA-overlapping transcript. Then, 
a single circRNA can be associated with multiple 
classifications when overlapped on multiple transcripts. 
To obtain the univocal classification of each circRNA, 
the main isoform of the circRNA host genes is considered 
by selecting the Ensembl transcript identified with the 
suffix “001”. If none main isoform is overlapped with a 
circRNA, the other isoforms are evaluated following the 
order provided by Ensembl. 

The circRNA nomenclature applied in this work 
was based on the isoform considered for the univocal 
classification. Specifically, each circRNA name was 
composed by the prefix “Circ” followed by the host 
gene symbol and ended with the rank of 5ʹ and 3ʹ exons 
involved in the circularization. Intergenic circRNAs were 
named based reporting their genomic coordinates while 
intronic circRNAs were distinct by the “I” suffix. The 
univocal classification was considered in the analysis 
of the number and rank of the exons involved in the BS 
event.

The circRNA BS sequence reconstruction module 
applied a python script which select two set of genomic 
coordinates starting from the BS sites and involving a portion 
of BS exon selected by the user (default length is 35 bp). An 
R script is then applied to convert the genomic coordinates in 
R GRanges objects. Then, the BS sequence is reconstructed 
using the function getSeq and xscat. These functions were 
applied respectively to extract and to concatenate properly 
the two sequences composing the BS junction.
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The BS sequence quantification in deep sequencing 
datasets module is performed by HashCirc. HashCirc is 
organized on three steps: in the first and second steps an 
alignment-free prediction method is exploited to identify 
the set of putative sequencing reads mapped on the 
sequences of interest; while in the third step the selected 
putative reads are aligned against the sequences of interest 
(i.e. circRNA BS junction sequences) to generate the 
corresponding counting table (i.e. the counting of the 
number of reads aligned with each sequence). 

Step 1: Significant k-mer generation. In this step, the 
entire set of sequences is scanned and a set of substrings 
with length k, namely k-mers, is generated using a sliding 
window approach. 

For instance, given a string ATCCCGTC the 
following k-mers with length three are generated: ATC, 
TCC, CCC, CCG, CGT and GTC.

Then, a hashing is exploited to build the function 
isPresent: {A,C,G,T}k → [0,1] which, for each k-mer, 
returns one if it appears in any sequence otherwise 0.

A k-mer α is considered significant and therefore 
selected if isPresent(α) = 1. These selected k-mers will be 
used to identify the putative reads in the next step.

Step 2: read selection. In this step hashing is still 
used to build function check:{A,C,G,T}k →{0,1}, which 
for each k-mer returns 1 if it is a selected k-mer otherwise 
0. Then, the function check is applied on all the k-mers 
of a read so that a read is selected as putative one if it 
contains more than N k-mers for which check function 
returns 1.

Step 3: read counting. The derived set of putative 
reads are hence aligned w.r.t the sequences. For each 
read, its best alignment with respect to all the sequences 
is identified and used to generate the sequence counting 
table. In the CircHunter tool suite, the HashCirc module, 
is composed of two C++ applications for each step of the 
data processing:

The first step takes as input a set of sample reads, 
the set of sequences and the threshold N, and returns 
the corresponding set of putative reads which contain 
at least N k-mer shared with the set of sequences. The 
k-mers generated by the sequences are stored in RAM 
exploring an ad-hoc C++ hash table class implementation 
to optimize the trade-off between the memory utilization 
and the execution time.

The second step takes as input the set of putative 
reads for each sample, it counts the frequency of a set of 
reference sequences (i.e. pre-defined BS sequences). For 
this step, the Smith-Waterman algorithm provided by 
SIMD Smith-Waterman C++ library is used.

To perform the HashCirc analysis, sequences of 70 
bp representing the hypothetical circRNA BS junctions 
were extracted from the circRNA predictions using 
CircHunter. Two set of genomic coordinates spanning 
+35/-35 bp from the junction point respectively were 
generated using this algorithm and circRNAs shorter than 

70 bp were splitted in two halves used for the junction 
reconstruction. The efficiency of HashCirc in circRNA 
quantification was evaluated by Pearson correlation 
analysis between the number of reads counted by 
HashCirc with the reads reported by CIRI. ENCODE 
MCF-7 RNA-Seq experiments were also considered for 
analysis of the algorithm sensitivity in circRNA detection. 
For this analysis data from Poly(A)+ (GSM767851), 
Poly(A)- (GSM765388), and total RNA-Seq datasets 
(GSM2072571, GSM2072572) were analyzed by setting 
the k-mer length (k) to 26, the minimum number of 
matched k-mer (N) to 21, and the minimum number of 
matches (M) equal 40. A set of 75-bp simulated paired-end 
reads from [50] was considered as circRNA negative set 
since it was generated from linear mRNA annotations. A 
ratio between the reads counted by HashCirc in the PolyA- 
and the simulated read datasets was computed to evaluate 
the rate of false positive count. The results of these testing 
analyses are reported in Supplementary Data 1.

To make easy the use of this new pipeline a 
Graphical User Interface (GUI) based on Java Swing Class 
was developed too. Moreover, the pipeline was integrated 
into a Docker container to facilitate its distribution and 
installation. It can be downloaded at https://github.com/
carlo-deintinis/circhunter.

Public RNA-Seq analysis

The public RNA-Seq experiments were analyzed 
by reads alignment against Gencode v19 annotations and 
Hg19 genome using Tophat v. 2.0.0 in default settings. 
Read count was performed using the featureCount 
algorithm v.1.5.0-p1 [51] and read count table normalized 
using DESeq2 v.1.14.1 R package. Normalized read 
counts were then converted in Fragment Per Kilobase 
exon per Million mapped reads (FPKM) considering the 
length of the longest isoform and the million number of 
read counted by featureCount.

circRNAs host genes genomic characterization

The Control gene set was defined by selecting 
genes lacking circRNA predictions considering the union 
between circBase [25], circRNADb [26] annotations and 
circRNAs predicted in this study. To select control genes 
expressed in MCF-7, a public Poly(A)+ MCF-7 RNA-
Seq experiment performed in full medium (GSE48213, 
[52]) was re-analyzed and genes with a FPKM > 1 were 
considered as expressed. Using these criteria 5,583 
control genes were selected. The not significant difference 
between host and control genes expression was confirmed 
by Wilcoxon Rank-Sum test (p-value = 0.796). Another 
control set was defined by selecting a subset of control 
genes paired with circRNA host genes by considering 
the first intron length. Specifically, a python script was 
designed to pair each circRNA host gene with a randomly 
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selected control gene with similar intron length. The 
pairing was performed 1,000 times. This control set was 
called Control-I. The Random gene set was composed 
by 1,000 sets of 1,761 genes randomly selected from 
Gencode v19 annotations.

Enrichment analysis of circRNA host gene and 
the Control gene set was performed using Enrichr web 
tools [53]. The comparison of gene/transcript length, the 
number of exons and isoforms between circRNA host 
genes and control set was performed using the Ensembl 
annotations. Data of the main gene isoforms (reported with 
suffix “001” by Ensembl) were used in this analysis.  
Analysis of candidate circRNA intronic retention events 
was performed by considering reads paired with each 
BS spanning read. The genomic coordinates of these 
reads were retrieved from BWA alignment outputs using 
BS read identifiers provided by CIRI. Then, the reads 
genomic coordinates were mapped against Ensembl exon 
genomic coordinates. Only perfectly matched reads were 
considered for this analysis.

Alu annotations were downloaded from UCSC 
using the RepeatMasker track and their coordinates were 
overlapped with an intronic region of 500 bp flanking the 
circRNA BS junctions as previously performed [6]. 

Analysis of the epigenetic status of circRNA 
genomic regions

The epigenetic status at the genomic region 
involved in the BS events was evaluated by overlapping 
the BS genomic coordinates with 15 chromatin states 
defined for the MCF-7 epigenome in full medium culture 
condition [31]. Data of ChIP-Seq experiment against 
H3K27ac (GSM1383859), H3K36me3 (GSM970217), 
H3K4me3 (GSM1383862) and RNAPII (GSM1276019) 
were also analyzed to measure the ChIP-Seq genomic 
signal profile around 5ʹ or 3ʹ BS sites. Specifically, 
ChIP-Seq reads were aligned against hg19 human 
genome using Bowtie2 in default settings. The genomic 
signal profile was then computed using seqMINER 
algorithm v1.3 [54] considering a genomic region of 
+/- 1 kbp centered on the BS sites. The genomic signal 
normalization was then normalized using NormChIP 
algorithm [31]. The number of H3K36me3 read covering 
the first five exons of circRNA host genes, the control set, 
or the control-I set were counted using the coverageBed 
function of bedtools.

Ago-HITS CLIP data analysis and MRE 
prediction

Raw Ago-HITS-CLIP data and Ago-HITS-CLIP 
peaks were retrieved from GSE57855. The raw sequencing 
reads were aligned using Bowtie2 algorithm in default 
settings and reads aligned within a genomic region of 
+/- 1 kbp centered on circRNA BS sites were counted. As 

control the corresponding splicing sites of exon 2 and exon 
3 from genes were analyzed.

MRE prediction was performed on the reconstructed 
sequence of exonic circRNAs composed of one two, or three 
exons. MRE prediction was performed using the Miranda 
algorithm [55] in default settings and considering mirBase 
v20 annotations. Overlap with circRNA exons and Ago-
HITS-CLIP was performed using coverageBed function of 
bedtools. To analyze miRNAs expressed in MCF-7 cells, 
processed data from small RNA-Seq experiments from 
GSE78168 were considered. Only miRNAs associated with 
an average Read Per Million Mapped reads (RPPM) > than 
100 in E2 untreated cells were considered. 

HashCirc was applied on Ago-HITS-CLIP to identify 
Ago-RNA binding generated by BS events. Given the 
smaller length of Ago-HITS-CLIP reads the algorithm was 
applied with settings k = 21, N = 17, and M = 30. Read count 
normalization was performed using DESeq2 algorithm. 
MRE prediction was performed on the reconstructed BS 
sequence of circRNA subset associated with an Ago-HITS-
CLIP signal as defined by HashCirc analysis. Different 
control sets were defined for this analysis: 1) 100 sets of 
3,271 sequences generated by randomly permuting the 3,271 
CM7 BS sequences; 2) 100 sets of sequences generated by 
randomly selecting and permuting 127 CM7 BS sequences; 
3) 100 sets generated by randomly permuting the 127 BS 
sequences overlapped with the Ago-HITS-CLIP datasets; 4) 
100 set of sequences generated by randomly shuffling the 
3,271 CM7 BS sequences. 

Considering the CM7 BS sequences overlapped 
with more than six averaged read of the Ago-HITS-CLIP, 
the overlap with the splicing junction of the linear mRNA 
sequences was evaluated. The overlap was performed 
by selecting the splicing junction sequence in between 
of the exons involved in the circularization and also by 
considering the junction formed between the circularizing 
exons and the external 5ʹ and 3ʹ flanking exons. Direct 
sequence alignment between Ago-HITS-CLIP reads and 
the splicing junctions was performed using Bowtie2 
algorithm with local option. The read coverage was 
computed using Samtools pileup function.

CircRNA expression analysis in public total 
RNA-Seq experiments

The analysis of circRNA expression in five BC cell 
lines and one non-tumorigenic cell line was performed 
considering total RNA-Seq experiments from GSE52643. 
The reads aligned against the circRNA BS junction were 
counted using HashCirc with settings k = 21, N = 17, and 
M = 30. For the analysis of circRNA expression in primary 
tumor tissues (GSE52194), total RNA-Seq data of 20 BC 
samples and 3 NBO were analyzed with HashCirc with 
settings k = 22, N = 18, and M = 33. The different settings 
were selected based on the different length of the RNA-
Seq reads analyzed.
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The read count normalization and the differential 
expression analysis were performed using DESeq2. The 
analysis on cell lines data was performed between ER+ (MCF-
7, T47-D, ZR-75.1) and ER- (BT-474, MDA-MB-231, MCF-
10A) cell lines. The analysis of circRNA expression in tumor 
tissues was performed by comparing ER+ tumors against 
NBO, HER2+ amplified tumors, or Triple Negative (TN) 
tumors. A circRNA was considered significantly Differentially 
Expressed (DE) if associated with a p-value < 0.05.

Radar plot representation of candidate circRNAs 
expression in tumor tissues was performed using the fmsb 
R package.

Detailed material and methods are reported in 
Supplementary Material and Methods section.
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