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A B S T R A C T   

It is challenging to estimate winds accurately from higher altitudes using VHF-MST radar. The 
current study introduces the Adaptive-Bayesian Deterministic Stochastics Technique (ADStoch), 
which implements an Empirical Bayesian 1D prediction method using stochastics to analyze radar 
signals. A new and robust estimator for empirical wavelet shrinkage with Gaussian prior of the 
nonzero mean for wavelet coefficients is presented, which makes the current prior different from 
other priors. The mean parameters and the prior covariance hyperparameters follow a pseudo 
maximum likelihood method for computation. Details on the implemented algorithm developed 
from scratch using C# are also presented. This technique outperforms contemporary techniques 
discussed in this context that can recover signals buried in noise established based on the analysis 
of moment and quality. The estimated Wind is cross-validated for accuracy with the observed 
wind from the GPS radiosonde operated simultaneously. This technique can consistently extract 
3D wind that can reach the range of 25.5 km–28.2 km, improving the conventional maximum 
altitude of 21.2 km in real time for the MST radar. It is concluded that the ADStoch analysis 
technique can effectively obtain VHF-MST radar signals at significantly higher altitudes, which is 
helpful in various scientific investigations.   

1. Introduction 

The VHF radars operating at around 50 MHz are potential tools to deliver three-dimensional winds essential for understanding 
various atmospheric dynamic processes. These are the only tools to date that can provide all the components of winds (zonal, 
meridional and vertical) with high temporal resolutions. The refractive index fluctuations observed in temperature and water vapour 
in the troposphere, temperature gradients from the lower stratosphere, electron density gradients, and turbulence from mesospheric 
altitudes within the inner and outer scales of turbulence primarily cause radar returns at these frequencies. Theoretically, these scales 
of turbulence extend up to 29.5 km in the lower atmosphere (Hocking, 1985) [1]. However, existing retrieval techniques, primarily 
relying on FFT, could yield moments and winds up to a typical range of 21.2 km because of the low signal-to-noise ratio in the lower 
stratosphere, where signals are frequently buried under noise. Obtaining information from these radars up to 30 km is useful 
particularly for understanding the process of energy exchange between stratosphere and troposphere (STE) (Das et al., 2020) [2], as 
part of background circulation and stratospheric influence on tropospheric weather and climate. Obtaining valuable signals from the 
upper troposphere (10–14 km) is also challenging from the retrieval techniques currently being used in the context of MST Radar 
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(Ravindrababu et al., 2014) [3], as the refractive index is mainly due to temperature gradients alone, which are generally weak. Many 
authors have presented several techniques exploring the older configuration of MST radar (Rao et al., 1995), [4]. Recent architectural 
changes (Durga et al., 2020) [5] allow continuous mode observation using this radar. The older references predominantly based on 
signal processing techniques may not hold well now with evolving signal and noise characteristics provided by the new configuration 
of MST radar. Thus, there is a need to implement new analysis techniques to utilize radar-backscattered signals for various scientific 
investigations effectively. 

Several data processing techniques earlier implemented on MST radar dataset for signal enhancement by noise suppression include 
the Bi-spectral process (Rao et al., 2008) [6], Principal component analysis (Rao et al., 2014) [7], Semi Parametric sparse Iterative 
Covariance-based Estimation (SPICE) technique (Eappen et al., 2015) [8], non-parametric and semi-parametric spectral techniques 
(Raju et al., 2019) [9]. These techniques could deliver a maximum altitude coverage of 20–21 km using the old MST dataset, which was 
discontinuous across incoherent integrations. The peak associating technique using Viterbi Data (VDA) (Bhatta et al., 2020) [10] has 
tried to predict peaks in higher ranges without carrying out signal enhancement. However, VDA could deliver a higher altitude of 21 
km, similar to the radar’s typical maximum standard range of 20–21 km. All these techniques have analyzed results based on only one 
data frame with SNR and noise parameters on an older MST radar dataset. The results need verification in terms of consistency, with 
several moments and quality parameters. Later, with the inclusion of the continuous mode of observation in MST radar during 2020, 
the signal enhancement with denoising using the adaptive ABlockJS technique was carried out by (Padhy et al., 2023). ABlockJS uses a 
non-Bayesian mixture model with a non-predictive scenario that could derive 3D Wind with moments and quality verified for con-
sistency, which can cover a higher altitude range up to 25.2 km, thus improving the conventional maximum observable range of 20–21 
km in real-time using MST Radar. The denoising techniques undermine the valid signal peaks in lower SNR scenarios in higher-altitude 
regions. This current study implements a Bayesian mixture model in a predictive scenario of parametric and non-parametric tech-
niques that learn from data, eliminating the inconsistency that could arise with the exclusive use of parametric models. It establishes 
that the developed Adaptive-Bayesian DStoch (ADStoch) technique can effectively deliver winds from a much higher altitude range of 
up to 28.2 km from MST radar backscattered signals. This method compares results from other relevant techniques, where the signal 
enhancement could be possible, keeping a uniform scale of reference towards Moment and Quality parameters. 

A model that does not contain any random component is known to be deterministic, which can be obtained by direct calculation. 
Initial conditions, parameter values, and relationships determine the deterministic model outputs. However, the stochastic model 
recognizes the random nature of the input components, accounting for the uncertainties caused by the varying behavioural charac-
teristics and thus delivering distributions of relevant results for varying scenarios when run many times with the same input. Usually, 
stochastic models are more complex in computation. The results of stochastic models are difficult to interpret when compared to those 
of deterministic models. 

The traditional technique for the MST radar data analysis uses FFT-based algorithms such as TFFT . Recent studies have used 
Principal Component Analysis (PCA) and Iterative Adaptive Approach (IAA) (Uma et al., 2014, Raju et al., 2018) [7,11], group 
shrinkage overlapping Discrete Wavelet Transform (DWT) and wavelet-denoising (Babu et al., 2019, Thatiparthi et al., 2009) [12,13] 
covering lower altitudes up to 18 km using the old MST radar configuration. Also, the older analytic references may not hold well 
within a new set of signal and noise characteristics that have covered a single-cycle analysis, achieving relatively lower altitude 
coverage on the older MST radar, evaluating results mostly with SNR and noise with a single-cycle wind correlation. However, 
adaptive techniques are prone to fail due to a lack of adaptivity in a more extended dataset, raising inconsistency in estimating the 
moment and quality parameters and posing a challenge to establish the technique for efficient usage. Though the Bayesian approaches 
are relatively complex, they theoretically give an edge over non-Bayesian techniques. Meanwhile, in addition to FFT, several advanced 
methods have been implemented in this manuscript, such as the Hidden Markov Model (HMM), Covariance, Pseudospectrum, and 
YuleWalker, to find a suitable process that can work in real-time while covering higher altitudes. The set of ‘Other Techniques’ 
(THMM,TCoV ,TPsS,TYW,TFFT), implicates methods covered in the manuscript beside TADS, that constitute the set of ‘All Techniques’. 

The THMM encapsulates a Markov process with hidden states using the 1d-HMM with Expectation Minimization (Crouse et al., 
1998), [14]. The TCoV technique uses an autoregressive estimate of PSD. The TPsS, estimates the pseudo-spectrum from a signal using 
Schmidt’s Eigen-space analysis method (Marple et al., 1989) [15], which uses a correlation matrix to estimate its frequency content, 
suitable for signals that are the sum of sinusoids with additive white Gaussian noise. The TYW, uses autocorrelation to minimize the 
forward prediction errors in the least squares sense (Hayes, 2009), [16]. Though TYW may slightly bias the frequency estimates of 
sinusoids in noise within applicable limits that do not affect the accuracy of estimating Wind. The TFFT, calculates the power spectrum 
using FFT, following traditional MST Radar spectral analysis (Rao et al., 1995), [4]. The TADS is a Bayesian adaptive deterministic 
stochastic technique. 

Standard wavelet has signal denoising application. Few studies have devised wavelet shrinkage methods that reconstruct signals 
from noisy data and recover anonymous information by a piecewise smoothing of noisy data (Donoho et al., 1995), [17]. The Bayesian 
Wavelet Shrinkage method is still an advanced approach that assumes a prior distribution with zero mean. Further, it is more realistic 
to use an estimator for the prior and follow the Empirical Bayes approach with the Bayesian shrinkage formulas to obtain more reliable 
results. Some of the previous studies have followed the Bayesian deterministic approach (Huang and Cressie, 2000) [18], and with 
independent prior (Chipman et al., 1997), [19]. Abramovich has used the squared error loss method with a loss function Bayesian 
approach rather than a shrinkage rule (Abramovich and Sapatinas, 1998), [20]. Donoho and others have reported that Decomp-Shrink 
is useable both for deterministic and stochastic signals, which is adaptive to the smoothness of the signal regardless of whether the 
signal has a sparse wavelet representation. An eBayes approach has been attempted to derive wind on a sparse noise peak condition 
that follows an empirical Bayesian model with Cauchy prior, using median thresholding rule, with a different posterior construct 
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without using Stochastics (Padhy et al., 2023), [21]. It may be noted that the assumed models, the priors (Gaussian vs. Cauchy), the 
procedure of estimating posterior, algorithm implementation and detailed software, pictorial demonstration of the process, thresh-
olding rules, final results (posteriors), test dataset resolution and generation are quite different between the present study and earlier 
study [21]. 

The MST radar dataset has many nonzero wavelet coefficients in the higher-range range bins. Thus, the dataset’s underlying signal 
in all these range bins can be assumed to contain deterministic components that are piecewise smooth and stochastic components with 
zero mean. Hence, it is necessary to use an adaptive mixed model scenario with a deterministic and a stochastic part for better noise 
suppression and, thus, signal enhancement. The implemented nonzero mean Gaussian prior towards the noisy signals can catch those 
signal components with both small or large wavelet coefficients based on a prior covariance. The implemented Bayesian-Adaptive 
DStoch technique TADS, is capable of recovering weak signals, particularly at higher altitudes, which predicts signals from noisy 
datasets optimally and efficiently. 

2. The experiment 

2.1. Description of experimental specification (base dataset) 

The MST Radar was operated on April 29, 2022 for about 2.5 h. The specifications include a pulse width (PWD) of 16μs, baud 
length (Baud) of 1μs, and inter-pulse period (IPP) of 320μs, giving a duty of 5.12%. The number of coherent integrations (NCI) and 
frequency sample points (nFFT) used were 256 and 256, respectively. Thus, the Doppler frequency and Doppler velocity range from 
− 6.103 Hz to +6.103 Hz and − 17.27 m/s to +17.27 m/s, respectively. The 2.7 km–29.5 km range, covered through 180 range-bins, 
has a 150 m resolution incorporating 5-non-coplanar beams (East, West, Zenith, North, and South), with 10 o tilt. The experiment has a 
frequency resolution of 0.047 Hz and a velocity resolution of 0.135 m/s. Thus, if ±2 frequency samples can be allowed in the analysis 
on the segmented dataset of 256 samples, the maximum expected error would be ±0.27 m/s. The dataset comprised 17 observation 
cycles. Each cycle has five beams, and every beam has five incoherent integrations in a segmented dataset of 256 IQ samples. It results 
in 425 frames, where each frame has 180 range-bins, and each range-bin has 256 IQ samples. We have also launched GPS radiosonde 
simultaneously during the above experiment to compare the winds with independent measurements. It has an accuracy of 0.5 m/s with 
a 5–6 m vertical resolution, later interpolated to 150 m to match the MST radar observations. 

2.2. The preparation of data (collated dataset) 

By averaging k independent random variables, the variance is reduced by a factor of k. A collated dataset prepared uses data across 
5-incoherent integrations with 1280 (256nFFT /frame x 5NCI) sample points for each of these 5-beam. Every rage-bin comprising 1280 
samples forms r segments of L samples each, which overlap, where L ≤ nFFT. Due to measurement inaccuracy, the sinusoid amplitude 
in a frequency bin is often reflected in the adjacent frequency bin(s). With L ≤ nFFT, the segment is zero-padded to nFFT samples 
during periodogram calculation to improve the estimate. Thus, the dataset now becomes xr[n] = x[rR + n] ∗ W[n],n = 0..L − 1 and r =

1,2..k. This segmented data is further processed to eliminate bias and artefacts in the IQ data. A collated data sequence of 1280 samples 
across five incoherent integrations per beam has been created. The sequence is divided into 12 segments of 508 samples each. Each of 
these 12 segments is padded with four zeros to constitute a 512 IQ samples segment dataset x. Thus, the segmentation process improves 
the (frequency, velocity) resolution from (0.047 Hz, 0.135 m/s) to (0.0235 Hz, 0.067 m/s), also improves the estimation accuracy of 

±2 frequency samples from ±0.27 m/s to±0.135 m/s. The de-trending process eliminates DC bias in the segmented raw data. The data 
is then reshaped with a Kaiser window with optimized kβ of 5.85 to get the desired peak, main lobe width, and side lobe. 

3. Methodology 

In the following, we elaborate on the procedure to estimate the Normal mean using the ADStoch (TADS) while the methods for 
estimating PSD using the ‘Other Techniques’ is elaborated in section S.1 in the supplementary file. Similarly, section S.2 elaborates on 
the moment and quality parameter while section S.3 explains the methods for estimating Wind for ‘All Techniques.’ (i.e. TADS,THMM,TCoV ,

TPsS,TYW,TFFT). To derive the Normal mean using TADS , this technique starts with implementing the wavelet shrinkage method, which 
has been following three steps. 

In the first step, the discrete wavelet transform transforms the data while yielding the empirical wavelet coefficients covered in 
Section 3.1. In the second step, the empirical wavelet coefficients are shrunk toward zero. This process is evaluated to suppress noise 
based on the shrinkage rule explained in section 3.2. The wavelet shrinkages are carried out by thresholding the wavelet coefficients. 
The thresholding process involves zero value replacement for the wavelet coefficients that have an absolute value below a prespecified 
threshold value. Finally, Section 3.3 transforms the processed empirical wavelet coefficients to the parent domain using the inverse 
wavelet transform in the third step. 

3.1. Basic wavelet shrinkage 

In the wavelet space, most energy tends to be concentrated in only a few coefficients. Suppose that we observe Y( •) at a discrete 
number n = 2 J points; that is, we have data Y = (Y1,…,Yn), sampled uniformly in time, where Yi = Y(ti) and ti = i/ n; i = 1, . . .,n. 
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The discrete wavelet transforms of Y is given by w ≡ ((w∗
J0
)
′
,w′

J0
, ..,w′

J− 1)
′
≡ WnY, where Wn is an orthogonal matrix and w∗

J0 
=

(w∗
J0 ,0 ,…,w∗

J0 ,2J0 − 1 )
′
, which is a vector of scaling function coefficients and wj ≡ (wj,0,…,wj,2j− 1 )

′ is a vector of wavelet coefficients at the 
j th scale j ≡ J0,…,J − 1. The conventional wavelet-shrinkage approach transforms data using the discrete forward wavelet transform 
Wn, resulting in a decomposition. The data model incorporates measurement error, as in 

w= β + ε, 1  

where w ≡ WnY, signal β ≡ WnS, which is not observed due to the noise contamination ε, and ε ∼ Gau(0,σ2I), where σ2 , represents 
noise variance. 

Consider a model (M.1) ω
⃒
⃒β, σ2 ∼ Gau(β, σ2 I) in our case, where the signal β ≡ ((β∗

J0
)
′
, β′

J0
, .., β′

J− 1)
′ 
with an assumed prior dis-

tribution is represented as (M.2) β|μ, θ ∼ Gau(μ,
∑

(θ)), where μ ≡ ((μ∗
J0
)
′
, μ′

J0
, .., μ′

J− 1)
′ 

and suppose it has a deterministic mean 
structure where 

∑
(θ) is an n X n covriance matrix structure constructed with user input θ, which describes the variability and the 

correlations in the signal. Initially, it can be assumed that. (μ′
J0
,…, μ′

J− 1 )
′
≡ 0. The μ is the deterministic component to be computed 

using prior on the user input segmented dataset, represents the large-scale variation in β depicted in equation 1 makes, 

β= μ + η 2  

where μ is the deterministic component, η is the stochastic component, and η ∼ Gau(0,
∑

(θ)) represents the small-scale variation. 
Thus, the hyperparameters μ,σ2,θ, requires to be dealt with in a Bayesian model. 

3.2. Noise suppression using wavelet shrinkage 

To suppress noise, the empirical wavelet coefficients wj are “Shrunk” towards 0 based on a shrinkage rule. Usually, thresholding is 
done by replacing 0 for the values in wj which are under a specified threshold value. The processed empirical wavelet coefficients are 
transformed to the parent domain using the inverse wavelet transform W′

n. In practice, the above w∗
J0 

scaling-function coefficients are 
not shrunk. The unknown noise parameter σ can be estimated using: 

σ̃ = Median Absolute Deviation MAD
{

ωj− 1,k,
}
≡ median

{⃒
⃒ωj− 1,k − median

{
ωj− 1,k

}⃒
⃒
}/

0.6745 (3) 

The Bayesian wavelet shrinkage rule is obtained by specifying aprior for both β and σ2 of equation 1. 

3.3. Empirical Bayesian wavelet shrinkage 

It is a procedure that requires a Bayesian hierarchical model as in M.1 to estimate Noise Parameter σ, mean parameter μ and 
stochastic parameter η. Let S = (S1…Sn) be the sample space of one segment. Let the optimal predictor of β be E(β,ω), which we would 
like to transform back to the original dataspace. The inverse transform of Wn is Wn

′, since Wn is an orthogonal matrix, equation 1 now 
becomes Wn

′w = Wn
′β + Wn

′ε, because Wn
′ε, is the white-noise measurement error in the data space S ≡ Wn

′β, represents the signal that 
we need to predict. Due to the linearity, the optimal predictor of S = (S1…Sn) is E(S|Y) = E(Wn

′β|ω) = Wn
′E(β|ω). Hence, after finding 

E(β|ω), the signal S can be optimally predicted. As in our case, we have assumed M.1 and M.2 as Gaussian, thus ̂β(μ,σ2,θ) ≡ E(β|ω). This 

is an empirical approach, and it offers improvements over the apriori specification of (μ′
J0
,…, μ′

J− 1 )
′
≡ 0 and other methods for 

estimating σ2.

Using deterministic and stochastic components, μ and η, allow it to recover a wider variety of signals by piecewise-smooth using a 
non-parametric regression model. In contrast, non-smooth signals often appear in time series. Nearby data tend to be more similar than 
distant data, making the stochastic description more acceptable than the deterministic description. Although it is possible to separate μ, 
η components asymptotically with some assumptions on μ and η from finite data, it is very difficult to distinguish between them. 

Further, equation 2 can be achieved with high precision using an optimal predictor of β, such as E(β|w) = μ+
∑

(θ)(
∑

(θ) + σ2I)− 1
(w − μ). Based on estimates σ̂2, an empirical Bayesian Decomp-Shrink rule is used, denoted by, 

β̂ = μ̂ +
∑

(θ̂)
(∑

θ̂ + σ2I
)− 1

(w − μ̂). 4 

Thus, the empirical Bayes predictor of S ≡ W′
nβ can be obtained using Ŝ ≡ W′

n (μ̂ +
∑

(θ̂)(
∑

θ̂ + σ2I)− 1
(w − μ̂) ). For our dataset, 

hard thresholding fits well for a wavelet coefficient wj,k and a threshold level λ, which is represented by TH(ωj,k) = ωj,k if
⃒
⃒ωj,k

⃒
⃒ > λ, ’0’ 

otherwise.

3.3.1. Estimation of noise parameter σ 
The MAD estimator in equation 3 performs well whenever the signal is represented as a sparse wavelet by a piecewise smoothing of 

the deterministic signal. However, whenever the signal has stochastic components, the MAD estimator tends to overestimate the true 
value of σ. This overestimation of σ removes noise along with some essential and valid signal peaks. A new robust estimator for 
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estimating the noise variance based on Huang and Cressie [18] performs better than the Donoho-based estimator [17] for our dataset 
when used with Gaussian prior of the nonzero mean of Gaussian wavelet coefficients. This estimator 

σ̂2 ≡ (MAD{Yt})
2
, 5  

is implemented for estimating σ, which is reliable when the signal β is either deterministic with 
∑

(θ) = 0, or the signal β is stochastics. 

3.3.2. Estimation of the deterministic mean parameter μ 
The μ is not a user-defined parameter, which needs to be estimated. The Mean Parameter μ̂∗

J0 
is estimated from ŵ∗

J0
, which rep-

resents the large-scale features of the signal using 

μ̂∗

J0
= ŵ∗

J0
, 6  

assuming that its stochastic counterpart η∗J0
≡ 0, and declaring the scaling function coefficients w∗

J0 
to be purely deterministic. For the 

wavelet coefficients of the jth level, the deterministic trend μj could be considered as coming from components that are potential 
outliers in the normal probability plot of wj. The slope of the fitted line for the normal probability plot is 

T̂ j ≡ median{|ωj,k|}
/

0.6745. 7 

For k = 0, 1,…,2j − 1, let qj,k be the corresponding normal quantile of ωj,k and let 

rj,k ≡ ωj,k − T̂ jqj,k 8  

be its residual. Thus, the estimate μj,k for k = 0, 1,…,2j − 1 is given by 

if
⃒
⃒ωj,k

⃒
⃒> λj then μ̂j,k =

r2
j,k

r̂2
j + r2

j,k

ωj,k, ’0’ otherwise, 9  

where the threshold parameter λj is determined by 

λj ≡ T̂j × max
{⃒
⃒qj,k

⃒
⃒ :

⃒
⃒ωj,k

⃒
⃒< T̂ j

⃒
⃒qj,k

⃒
⃒
}
. 10 

If {ωj,0,ωj,1,…,ωj,2j− 1} are normally distributed, either the threshold value λj becomes large, or the residuals {rj,0,rj,1,…, rj,2j− 1} be-
comes small. Therefore, only a few points are estimated as deterministic trend components, but, importantly, these values are small. 
On the contrary, a signal with a large μj,k typically have a large ωj,k and rj,k, and the corresponding μj,k is hardly shrunk. Finally, the 
estimate of μ implemented as 

μ̂ ≡
((

μ̂∗

J0

)′
,
(

μ̂∗

J0

)′
, . . .,

(
μ̂∗

J− 1

)′)
′
, for j= J0,…, J − 1, μ̂j ≡

(
μj,0, μj,1, . . ., μj,2j − 1

)′
. 11  

3.3.3. Estimation of the stochastics component η 

The Prior Covariance 
∑

(θ) is modelled with the corresponding stochastic component η ≡ ((η̂∗
J0
)
′
, (η̂∗

J0
)
′
, . . ., (η̂∗

J− 1)
′
)
′
. The vector of θ 

is estimated by maximum likelihood based on the marginal distribution of the data w, with the values σ̂2 and μ̂2 obtained from 

equations 5 and 11, respectively. Using a zero-mean scale-independent model, the pseudo MLE of (θ ≡ σ2
J0
,…, σ2

J− 1)
′ is given by 

σ̂2
j =max

{
1
2j

(
Wj − μ̂j

)′( Wj − μ̂j
)
− σ̂2, 0

}

, For j= J0,…, J − 1 . 12  

The level-dependent wavelet shrinkage rule is developed based on equation 4, for j = J0,…, J − 1, k = 0, 1,…,2j − 1 results into 
the following equation: 

β̂j,k = μ̂j,k +
σ̂2

j

σ̂2
j + σ̂2

(
ωj,k − μ̂j,k

)
, 13  

w here σ̂2 is given by equation 5, {σ̂2
j } are given by equation 12 and {μ̂j,k} are given by equation 9. 

3.4. Selection of model parameter(s) 

For the ADS model, gaussian QMF, unlike Sym8 wavelet coefficients at level 3 with level independent noise estimation using Hard 
threshold rule with enhanced adaptivity, is configured for the best performance. The Covariance and YuleWalker are configured with 
an order of 64. The PseudoSpectrum is configured with an order of 64 with a 128-length non-overlapping window. Finally, for HMM 
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model is configured without any parameter. 

3.5. Application on segment dataset 

Using the above models and segment data, the result obtained from the estimation process represents an independent segment of 
data, reducing variance by 1/k for averaging the k segments, each with the modified-nFFT length of 512 rather than FFT length of 256. 
Typically, non-overlapped segments ascertain maximum data independence. The bias reduces with increasing segment length 
(L≤ modified nFFT of 512). Using more segments during segmentation relatively reduces the noise variance, which is further reduced 
by windowing each segment using the Kaiser window. Thus, the bias depends not exclusively on segment length and windowing but 
also on the selected technique among ‘All Techniques’. 

3.6. Estimation of power spectral density (PSD), quality, moments and wind 

The estimation of PSD using TADS is covered in section 3.1. The estimation of PSD using ‘Other Techniques’ 
(THMM,TCoV ,TPsS,TYW,TFFT) covered in Supplementary-Section-S1a:S1e. The method for estimating Moments, SNR, average band 
power, SINAD-ratio, Noise-Distortion content, SFDR, and Spur-power is elaborated in Supplementary-Section-S2a: S2e. The method for 
estimating Wind is elaborated in Supplementary-Section-S3. 

4. Algorithm and software 

Supplementary-Section S.4 details the algorithm for estimating wind from the raw IQ comprising 19 steps that implement the 
complete mixture model to derive wind from the raw data using equations by equation 12:13 as depicted in sections 3.1 to 3.3. The link 
to the implemented software source developed in C#.NET is made available in the code availability section. The pseudocode for 
implementing TADS from the segmented data is presented below. 

5. Results and discussion 

The base dataset depicted in section 2.1 generates a collated data sequence, as explained in section 2.2. The dataset is analyzed 
separately using ‘All Techniques’ for all beams and all cycles. The evaluation of outputs uses moments, quality, and wind, focusing on 
the highest altitude coverage that could be validated using GPS radiosonde data. The results show the measurement accuracy and the 
result consistency via 17 cycles of observations. The minor traceable signal differences, particularly in the higher ranges, may require 
good zoom on the figures covered in the results section. 

5.1. Candidate Frame Analysis 

The frame-normalized-PSD in Fig. 1 shows the presence of a signal at a higher range along with the variation in the signal strength, 
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which is a function of range and Doppler-frequency. The range-normalized-PSD depicts altitude coverage more prominently, allowing 
peak of individual range as a function of range and Doppler-frequency (demarcated by blue line). All the sub-figures represent 
maximum altitude coverage up to 25.5 km–28.2 km (established with correlation later), demarcated by a red dotted line. The sup-
plementary Fig-S1:S5 represents the same when analyzed using ‘Other Techniques’, which also depicts similar results with corre-
sponding maximum altitude coverage of 25.2 km, 25.0 km, 22.9 km, 21.7 km, and 21.4 km, respectively. After that, the trace smears 
significantly up to 29.5 km. The RTI variation in TADS visually exhibits better SNR (Fig. 2), and is less noisy, especially noticeable at 
higher range. Similar characteristics observed in other beams are depicted in supplementary Fig-S6 : S9. 

5.2. Moments analysis 

The RTI variation of MFSNR in East beam using TADS depicted in Fig. 3a1 exhibits higher FSNR than ‘Other Techniques’ depicted vide 
Fig-3a2:3a6. Similarly, MDopplerWidth using TADS depicted in Fig. 3b1 exhibits consistency in a scale up to 1.6 Hz than using ‘Other 
Techniques’ depicted vide Fig. 3b2:3b6. However, when compared with the FFT technique (TFFT), a slight overestimate has been 
observed in THMM,TADS,TPsS,TCoV,TYW in sequence, especially in the lower range, where the SNR is usually high. The MSignalPower appears 
highest using TFFT as depicted in Fig. 3c6 than TADS. However, in contrast, TFFT exhibits poor noise performance in Fig. 3d6 than TADS 
depicted in Fig. 3d1, which appears pretty clean. As the signal power and noise cannot be separated, TADS can be treated better than 
‘Other Techniques’ due to the consistency, particularly in the higher altitudes demarcated by white dotted lines in Fig. 3. The sup-
plementary-Fig-S10 : S13, represents similar results when analyzed for the other beams, making TADS, a better technique than all ‘Other 
Techniques’. 

5.3. Quality Analysis 

The supplementary Fig. S14 shows RTI variation of quality (QABP,QSFDRR,QSP,QSINADR,QSINADN,and QSINADP) from the East Beams 
using ‘All Techniques’. Though, QABP is observed to be highest while using TFFT in Fig. S14a6, but it suffers significantly in QSFDRR, 
QSP,QSINADR,QSINADN,QQSINADP in Fig. S14b6:4f6. The QSFDRR is observed to be best in TPsS as it is a pseudo spectrum and noise approaches 
0, unlike the spectrum in Fig. S14b4. The dynamic range is almost uniform in TADS,THMM,TCoV depicted vide Fig. S14b1:b3. The QSP is 
low and almost uniform, using TCoV ,TPsS,TYW depicted in Fig. S14c3:c5 but with less altitude coverage. The QSP is also uniform using 
TADS,THMM but covers higher altitudes as depicted in Fig. S14c1:c2. The evaluation of QSINADR shows best using TADS as depicted in 
Fig. S14d1. The QSINADN is evaluated to be uniform in all advanced techniques except in traditional techniques TFFT as shown in 
Fig. S14e1:e5. The QSINADP is best among ‘All Techniques’, as depicted in Fig. S14f1. The supplementary Fig. S15:S18 represent similar 
results when analyzed for West, Zenith, North, and South beams. This RTI visual comparison reveals that the TADS performs better than 
‘Other Techniques’ for ‘Quality’. 

5.4. Gain analysis 

The average gain from Fig. 4 tabulated in Table. ST1, compares the quality obtained using TADS with the ‘Other Techniques’ (THMM,

TCoV ,TPsS,TYW and TFFT), which is calculated for MFSNR (5.07 dB, 3.14 dB, 3.04 dB, 1.91 dB, 3.87 dB), QBP (4.08 dB, 2.40 dB, 2.19 dB, 
1.29 dB, 2.30 dB), QNP (− 0.02 dB, − 0.08 dB, − 0.31 dB, − 0.06 dB, − 3.77 dB), QSINADR (5.07dBc, 3.14dBc, 3.04dBc, 1.91dBc, 3.87dBc), 
QSFDRR (0.27dBc, 0.56dBc, 1.75dBc, 0.71dBc, 1.78dBc), QSINADP (− 1.00 dB, − 0.94 dB, − 1.21 dB, − 0.94 dB, − 4.77 dB), QSP (− 1.16 dB, 
− 1.19 dB, − 1.95 dB, − 1.26 dB, − 8.27 dB). The supplementary Fig. S19 : S22, represents similar results when analyzed towards the 
rest of the beams, making TADS, a better technique as it quantifies with better average gain than the ‘Other Techniques’. The comparison 
quantifies better FSNR, relatively more band power, less Noise power, better SINAD ratio, good SFDR, lowest SINAD distortion power, 

Fig. 1. (E1,W1,Z1,N1,S1) and (E2,W2,Z2,N2,S2) represent the frame and the range normalized PSD using Adaptive Deterministic Stochastic 
technique (TADS), for ‘All Beams’ (East, West, Zenith, North and South) of the 5th cycle on Apr. 29, 2022 during 21:59:35 IST to 22:07:58 IST. 
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and lowest Spurious power. 

5.5. Wind analysis 

Fig. S23 shows the RTI variation of ’Wind’ (UZonal,VMeridional,WVertical),WSHW (Horizontal Wind Speed) and WDHW (Wind Direction) 
for 17-cycles derived using ‘All Techniques’. The ’Wind’, WSHW, WDHW, has consistent variation below the maximum altitude 
(demarcated with white dotted lines), above which the estimation is inconsistent. Fig. 5 compares the mean of 17-cycles in WSHW, 
UZonal,VMeridional derived using ‘All Techniques’ with that of the WSHWGPS,UZonalGPS,VMeridionalGPS. The marginal root mean square difference 
observed between the MST wind and the GPS Wind, demarcated in red, resulted from the variation in the Wind during 2.5 h of observation. 

5.6. Wind validation 

Fig. 6a1:6a3 shows the mean correlation of WSHW,UZonal,VMeridional, derived using TADS, with that of the WSHWGPS from 2.7 km to 

Fig. 2. (a1:a6), (b1:b6) represent the frame and the range normalized PSD using ‘All Techniques’ (TADS,THMM,TCoV ,TPsS,TYW and TFFT), respectively, 
for the East Beam of the 5th cycle on Apr. 29, 2022 during 21:59:35 IST to 22:00:59 IST. 

Fig. 3. (a1:a6), (b1:b6), (c1:c6), (d1:d6) represent the Fundamental Signal to Noise Ratio (MFSNR), Doppler-width MDopplerWidth, Signal Power 
MSignalPower, and Noise-level MNoiseLevel using ′All Techniques′ (TADS,THMM,TCoV ,TPsS,TYW and TFFT), respectively, for the East Beams of 1:17 cycles on 
Apr. 29, 2022 during 21:24:37 IST to 23:45:50 IST. 
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25.5 km with R = 0.95 from 25.5 km to 28.2 km with R = 0.79, from 28.2 km to 29.5 km with R = − 0.01, UZonalGPS from 2.7 km to 25.5 
km with R = 0.96, from 25.5 km to 28.2 km with R = 0.85, from 28.2 km to 29.5 km with R = − 0.53 and VMeridionalGPS from 2.7 km to 
25.5 km with R = 0.87, from 25.5 km to 28.2 km with R = 0.68, from 28.2 km to 29.5 km with R = − 0.40 shows good measurement 
accuracy for the estimated wind while using TADS. Similarly, the supplementary Fig. S24 depicts the correlation of wind derived using 
‘All Techniques’ for the possible altitudes. Fig. 6b1:6b3 shows the cumulative correlation of WSHW, UZonal,VMeridional ([2.7 km–17.5 km]: 
[2.7 km–29.5 km]) derived using TADS, with that of the WSHWGPS,UZonalGPS,VMeridionalGPS. If the cutoff for WSHW,UZonal,VMeridional, can be 
assumed to be 0.9, 0.9, 0.85 (demarcated with red line), then the maximum altitude shows a sharp fall in coefficient of correlation 
beyond maximum altitude in this context corresponding to ‘All Techniques’, i.e. (25.5 km:28.2 km, 25.2 km, 25.0 km, 22.9 km, 21.7 km, 
21.4 km). The blue-dashed line in Fig. 6b1:6b3 up to an altitude of 25.5 km has a good correlation, and the blue-solid line at 28.2 km 
with a reduction in correlation shows that the TADS, can be better trusted to range coverage up to 25.5 km, beyond which it depends 
upon the need for measurement accuracy. Beyond 28.2 km TADS completely fails with a negative correlation. This confirms better 
performance of ADS over ‘Other Techniques’. 

5.7. Analytical study of TADS technique 

An analytical study has been carried out that compares and demonstrates the results of one sample segment, which are analyzed 
using the ADS technique with Huang and Donoho-based noise variance estimators while using Gaussian prior with Gaussian wavelet 
coefficients annexed in the Supplementary Analysis Section SAS (SAS 1: SAS 9). 

Fig. 4. (a1:a7) represent the mean variation in the 1:17 cycles of the Fundamental Signal to Noise Ratio (MFSNR), Band Power (QBP), Noise Power 
(QNP), Signal to Noise and Distortion Ratio (QSINADR), Spurious Free Dynamic Range Ratio (QSFDRR), Signal to Noise and Distortion Power (QSINADP), 
and Spurious Power (QSP) using ‘All Techniques’ (TADS,THMM, TCoV , TPsS, TYW and TFFT), respectively for the East Beams on Apr. 29, 2022. during 
21:24:37IST to 23:45:50IST. 

Fig. 5. (a1:a6), (b1:b6), (c1:c6) represent the WSHW (Horizontal Wind Speed), UZonal,VMeridional using ‘All Techniques’ (TADS,THMM, TCoV , TPsS,

TYW and TFFT), respectively for 1:17 cycles on Apr. 29, 2022 during 21:24:37IST to 23:52:49IST. 
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6. Summary and conclusions 

The current study is the first to develop and use the Adaptive-Bayesian DStoch (ADStoch) technique with a predictability-based 
hybrid model to derive high-resolution 3D-wind components from MST radar raw IQ data. The manuscript details this approach, 
including its advantages over five ‘Other Techniques’ and its distinctiveness. The key findings of this investigation are summarized 
below.  

1. It employs a novel collating concept based on incoherent integration, leveraging the continuous observation mode of the new MST 
radar, which was impossible in the earlier configuration of MST radar. The introduced segmentation concept enhances signal 
strength even further.  

2. The technique is well evaluated based on various signal and noise Quality parameters such as average band power, SFDR, spurious 
power, SINAD, SNR, distortion power, and full band noise power.  

3. ADStoch outperformed ‘Other Techniques’ at higher altitudes, as evidenced by Candidate Frame Analysis, Moment Analysis, and 
Quality Analysis. The Gain Analysis reveals a gain of 5dB–8dB using ADStoch, which is quite significant, especially at higher al-
titudes. The accuracy of wind computed using ADStoch is relatively high, as demonstrated by a comparison with independent GPS 
radiosonde winds.  

4. The study demonstrates and concludes that the Adaptive-Bayesian DStoch (ADStoch) approach can reliably derive 3D-wind, 
covering a minimum higher altitude of 25.5 km, depending on the demand for measurement accuracy up to 28.2 km, which en-
hances the usual new MST radar’s conventional maximum altitude coverage up to 21.2 km in real-time. It is highly beneficial to 
various scientific research using VHF radars. 

However, there are a few limitations to using this technique in real-time. One needs a good computing facility, as we have currently 
done in our case. The inter-cycle delay is sufficient to carry out the predictive Bayesian data analysis before the completion of the 
current data cycle. As the data is collected onboard in digital receivers in a double buffer, the analysis in the computer is treated in real- 
time for the current data collection. 

Code availability 

The related data and code are available for anonymous downloading at the Datacenter public repository Link: https://www.narl. 
gov.in/datacenter/BayesianADStoch comprising the color versions of the figures and the supplementary figures in this article and data 
in. nc format. The related code is available at the public repository https://github.com/manasnarl/BayesianADStoch/. 

Fig. 6. (a1:a3) represents the correlation of MST Wind (WSHW , UZonal,VMeridional) with that of GPS Wind (WSHWGPS UZonalGPS,VMeridionalGPS) respec-
tively, using Adaptive Deterministic technique from (2.7 km–25.5 km, 25.5 km–28.2 km, 28.2 km–29.5 km). (b1:b3) represent the cumulative 
correlation (from 2.7 km to 29.5 km) for the Mean (1:17 cycles) of MST Wind (HWS, U, V) with that of GPS Wind (HWS, U, V), respectively, using 
‘All Techniques’ (TADS,THMM,TCoV ,TPsS,TYW and TFFT). 
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