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Abstract

Burkholderia caribensis MBA4 was isolated from soil for its capability to grow on haloacids. This bacterium has a
genome size of 9,482,704 bp. Here we report the genome sequences and annotation, together with characteristics
of the genome. The complete genome sequence consists of three replicons, comprising 9056 protein-coding genes
and 80 RNA genes. Genes responsible for dehalogenation and uptake of haloacids were arranged as an operon.
While dehalogenation of haloacetate would produce glycolate, three glycolate operons were identified. Two of
these operons contain an upstream glcC regulator gene. It is likely that the expression of one of these operons is
responsive to haloacetate. Genes responsible for the metabolism of dehalogenation product of halopropionate
were also identified.
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Introduction
Human activities are thought to have great impact on the
environment. While the development of industry has
greatly improved our living condition, it has also escalates
many environmental problems. Pollution has been an issue
for a long time. Halogenated compounds have been used
indiscriminately with the expansion of industrialization.
Many of these compounds are found in the environment as
disinfection by-product [1]. Not only do they cause envir-
onmental problems they also have deleterious impact on
our health [2].
Many bacteria are capable of transforming halogenated

compounds and utilize them as carbon and energy sources.
These bacteria are distinguished by their encoding enzymes
known as dehalogenases which catalyze the breakdown of
halogenated compounds through cleavage of the carbon-
halogen bond [3]. Burkholderia caribensis [4] MBA4 was
isolated for its ability to mineralize 2-haloacids [5]. The
dehalogenase gene, deh4a, together with a downstream per-
mease gene, deh4p, form an inducible operon that mediate
the transformation and uptake of 2-haloacids, respectively,
in MBA4 [6]. The dehalogenase has been purified and

characterized [5, 7, 8]. The permease has also been investi-
gated [9]. Moreover, MBA4 possesses a cryptic dehalogen-
ase with a signal peptide [10, 11]. While proteomic analysis
of the degradation of chloroacetate by MBA4 has been
described, the identities of the differentially expressed pro-
teins were hampered by the lack of a comprehensive
protein database [12]. The acquisition of a complete gen-
omic sequence deems necessary. Here we describe the
characterization of B. caribensis MBA4 and its complete
genome sequence and annotation, with an emphasis on
genomic features and genes related to degradation of
haloacids.

Organism information
Classification and features
Burkholderia caribensis MBA4 (=LMG 28094) is a
Gram-negative, motile, rod-shaped bacterium (Fig. 1)
in the order Burkholderiales [13] and class Betapro-
teobacteria [14]. It grows poorly in traditional Luria-
Bertani broth with NaCl but reasonably fast in LB
at 30 °C. The general features of this bacterium are
shown in Table 1. MBA4 was isolated from forest soil
collected from Chiang Mai, Thailand using monobromoa-
cetic acid as an enrichment substrate [5]. In addition to
MBA, B. caribensis MBA4 is also capable of mineralizing
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monochloroacetate, 2-monobromopropionate and weakly
on 2-monochloropropionate [5]. MBA4 was initially clas-
sified as Pseudomonas cepacia [5] and subsequently as
Burkholderia cepacia [15] based on its biochemical and
phenotypic features. A polyphasic approach involving
phenotypic, genotypic, and phylogenetic analysis was
subsequently conducted to have a refined description. API
20NE and BIOLOG GN MicroPlate analyses were per-
formed. These biochemical and substrate assimilation
tests show that B. caribensis MBA4 failed to reduce
nitrates to nitrites, nor from nitrates to nitrogen, incapable
of producing indole from tryptophan, cannot acidify
glucose and has no arginine dihydrolase nor urease. The
bacterium possesses β-galactosidase but no α-glucosidase
nor protease. It is able to assimilate glucose, arabinose,
mannose, mannitol, N-acetyl-glucosamine, gluconate, cap-
rate, malate and weakly on phenyl-acetate but not on
maltose, citrate and adipate. Moreover, MBA4 is able to

Fig. 1 Micrograph of Burkholderia caribensis MBA4

Table 1 Classification and general features of Burkholderia caribensis MBA4 according to MIGS recommendations [21]

MIGS ID Property Term Evidence codea

Classification Domain Bacteria TAS [36]

Phylum Proteobacteria TAS [37]

Class Betaproteobacteria TAS [14, 38]

Order Burkholderiales TAS [13, 38]

Family Burkholderiaceae TAS [38, 39]

Genus Burkholderia TAS [15, 40]

Species Burkholderia caribensis TAS [4]

Strain: MBA4 IDA

Gram stain Negative IDA

Cell shape Rod IDA

Motility Motile IDA

Sporulation Non-sporulating IDA

Temperature range 30 °C IDA

Optimum temperature 30 °C IDA

pH range; Optimum Not determined IDA

Carbon source Haloacids, Pyruvate, Glycolate, Lactate IDA

MIGS-6 Habitat Soil IDA

MIGS-6.3 Salinity Not determined IDA

MIGS-22 Oxygen requirement Aerobic IDA

MIGS-15 Biotic relationship free-living IDA

MIGS-14 Pathogenicity Unknown IDA

MIGS-4 Geographic location Chiang Mai, Thailand IDA

MIGS-5 Sample collection 1984 IDA

MIGS-4.1 Latitude 18°47' IDA

MIGS-4.2 Longitude 98°59' IDA

MIGS-4.4 Altitude 310 m IDA
a Evidence codes - IDA Inferred from Direct Assay, TAS Traceable Author Statement (i.e., a direct report exists in the literature), NAS Non-traceable Author
Statement (i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence).
These evidence codes are from the Gene Ontology project [41]
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oxidize Tween-40, Tween-80, N-acetyl-D-galactosamine,
adonitol, D-arabitol, D-fructose, L-fucose, m-inositol, L-
rhamnose, D-sorbitol, D-trehalose, acetate, methylpyruvate,
cis-aconitic acid, formic acid, D-galactonic acid lactone, D-
galacturonic acid, D-glucosaminic acid, α-hydroxybutyric
acid, β-hydroxybutyric acid, p-hydroxyphenylacetic acid, α-
ketobutyric acid, α-ketoglutaric acid, α-ketovaleric acid,
D,L-lactic acid, malonic acid, propionic acid, quinic acid, D-
saccharic acid, bromosuccinic acid, alaninamide, D,L-ala-
nine, L-alanyl-glycine, L-asparagine, L-aspartic acid, L-
glutamic acid, L-histidine, hydroxy-L-proline, L-leucine, L-
ornithine, L-phenylalanine, L-proline, L-pyroglutamic acid,
L-serine, L-threonine, D,L-carnitine, γ-aminobutyric acid,
2-aminoethanol, glycerol, D,L-α-glycerolphosphate and
glucose-6-phosphate and weakly on dextrin, glycogen, psi-
cose, mono-methylsuccinate, succinic acid, succinamic acid,
glucuronamide, D-serine and phenylethylamine. While
whole cell fatty acid and whole cell protein SDS-PAGE
profiles showed that MBA4 is closely related to certain
Burkholderia species, BOX-PCR fingerprinting analysis [16]
showed that the genomic structure of MBA4 is consider-
ably different from other Burkholderia species [17]. Phylo-
genetic analysis using 16S rRNA gene as a marker
indicated that MBA4 is most closely related to B. caribensis,
followed by B. hospita [18] and Burkholderia terrae [19]
(Fig. 2). DNA-DNA hybridization values [20] were deter-
mined by the Belgian Coordinated Collections of Microor-
ganisms using B. caribensis LMG 18531T and B. hospita
LMG 20598T as references. Hybridizations were conducted
at 50 °C and the values are the mean of four or more tests.
A DNA homology value of 74 and 62 % was obtained be-
tween MBA4 and LMG 18531T, and LMG 20598T, respect-
ively [17]. It is thus concluded that MBA4 is a strain of B.
caribensis.

Chemotaxonomic data
The whole cell fatty acid profile of B. caribensis MBA4
(cells grown on tryptic soy agar) was determined by
Department of Biology, The Chinese University of Hong
Kong with a Sherlock® Microbial Identification System
(Microbial IDentification Inc) using four replicates. The
relative abundance for the fatty acids were 14:0 (4.5 %),
16:0 (19.9 %), 16:0 2-OH (1.5 %), 16:0 3-OH (4.2 %),
16:1 2-OH (1.6 %), 17:0 cyclo (12.5 %), 18:0 (1 %), 19:0
ω8c cyclo (6.1 %), summed feature 2 (14:0 3OH, 16:1 iso

Fig. 2 Phylogenetic tree highlighting the relative position of B.
caribensis MBA4 in the Burkholderia genus. The phylogenetic tree
was constructed with MEGA6 [34] based on analysis of 16S rDNA
sequences. The evolutionary distances were computed using the
Maximum Composite Likelihood method [35] and are in the units of
the number of base substitutions per site. Numbers at nodes are
bootstrap values inferred from 500 replicates. The GenBank
accession number and the bacterial species are illustrated
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I, unidentified fatty acid with equivalent chain length
value 10.928, 12:0 ALDE, or any of these combination,
6.3 %), summed feature 3 (16:1 ω7c, 15 iso 2OH, or any
of their combination, 14.2 %), and summed feature 7
(18:1 ω7c, 18:1 ω9t, 18:1 ω12t, or any of these combin-
ation, 26.4 %).

Genome sequencing information
Genome project history
The genome of MBA4 was selected for sequencing in
order to unravel the genetic background of the bacter-
ium to utilize haloacids. MBA4 has a genome larger than
most Burkholderia species with a size of more than 9.4
Mbp. Preliminary pulsed-field gel electrophoresis ana-
lysis showed that it contains three replicons with sizes of
ca. 2.6, 3.5 and 3.7 Mbp (unpublished observations). The
high-quality draft genome sequences with annotation
were achieved and presented for public access in January
2014. Annotation was updated for the contigs in April
2014. The draft genome sequences was deposited in
DDBJ/EMBL/GenBank under the accession number
AXDD00000000. The three replicons of the complete
genome sequence of MBA4 were finished in October
2015 and have been deposited in GenBank under acces-
sion numbers: CP012746, CP012747 and CP012748.
Table 2 shows the project information and its associ-
ation with MIGS version 2.0 compliance [21].

Growth conditions and DNA preparation
MBA4 was cultivated in 2 ml LB with shaking at 30 °C.
The culture was harvested at late exponential phase with
an OD600 value of ca. 1.8. The cells were collected by cen-
trifugation at 4000 rpm, 4 °C for 25 min. Genomic DNA
was isolated with G-spin™ Genomic DNA extraction kit
(iNtRON Biotechnology) according to the manufacturer’s

protocol. The yield was about 40 μg and the 260/230 and
the 260/280 ratios were 1.9. The concentration of the
DNA used for library preparation was 258 ng/μl.

Genome sequencing and annotation
The genome of MBA4 was sequenced using Illumina
HisSeq 2000, 454 GS FLX Titanium and PacBio System.
Four sets of Illumina paired-end libraries (insert sizes:
100, 300, 500, and 2000 bp), a set of 454 library and a
set of PacBio long read library were constructed. Collect-
ively, the data furnished a coverage of about 850-fold.
The raw reads for 500- and 2000-bp paired-end data
were obtained from Beijing Genomics Institute while the

Table 2 Project information

MIGS ID Property Term

MIGS 31 Finishing quality Finished

MIGS-28 Libraries used Four Illumina paired-end libraries, one 454 library, one PacBio 10–20 kb library

MIGS 29 Sequencing platforms Illumina HisSeq 2000, 454 GS FLX Titanium and PacBio RS II

MIGS 31.2 Fold coverage 850×

MIGS 30 Assemblers GLC Genomic Workbench 6.0.1, SMRT Analysis v2.3.0 HGAP.2

MIGS 32 Gene calling method RAST and PGAAP

Locus Tag K788

GenBank ID CP012746, CP012747, CP012748

GenBank Date of Release November, 2015

GOLD ID Ga0082378

BIOPROJECT PRJNA197459

MIGS 13 Source Material Identifier MBA4

Project relevance Biotechnological, environmental

Table 3 Genome statistics

Attribute Value % of Totala

Genome size (bp) 9,482,704 100.00

DNA coding (bp) 8,209,808 86.58

DNA G + C (bp) 5,922,869 62.46

DNA scaffolds 3 100.00

Total genes 9151 100.00

Protein coding genes 9056 98.96

RNA genes 80 0.87

Pseudo genes 15 0.16

Genes in internal clusters Not determined Not determined

Genes with function prediction 7327 80.07

Genes assigned to COGs 6596 72.84

Genes with Pfam domains 6737 74.39

Genes with signal peptides 824 9.10

Genes with transmembrane helices 2008 22.17

CRISPR repeats 10
aThe total is based on either the size of the genome in base pairs or the total
number of protein coding genes in the annotated genome
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100- and 300-bp paired-end data and the 454 reads were
obtained from Centre for Genome Sciences (previously
Genome Research Centre), The University of Hong
Kong. The PacBio long reads were obtained from Gro-
ken Bioscience. Bar codes were trimmed and low quality
reads were filtered using the commercial software CLC
Genomic Workbench 6.0.1 (CLC bio, Aarhus, Denmark).
After trimming and filtering, Illumina paired-end and
454 reads were de novo assembled through CLC Gen-
omic Workbench 6.0.1 with default setting. Scaffolds
were then generated from the contigs with SSPACE
basic 2.0 [22] using information derived from the
paired-end reads. De novo assembled transcripts from
nine sets of RNA-seq paired-end raw data were mapped
to the scaffolds to remove some of the internal gaps and
ambiguous bases, and to join the scaffolds together.
Standard PCR and Sanger-sequencing technology were
employed to fill the gaps inside the scaffolds. Multiplex
PCR was used to amplify unknown regions between scaf-
folds, and some scaffolds were linked after subsequent clon-
ing and sequencing. Clean PacBio reads were assembled by
SMRT Analysis v2.3.0 HGAP.2 with pre-assembled high-
quality draft genome as reference sequences. Ambiguous

base and inserted/deleted regions between PacBio-
assembled and preassembled high quality draft sequences
were manually corrected using consensus sequences de-
rived from nine sets of transcriptome data.
A draft genome was annotated automatically with the

Rapid Annotations using Subsystems Technology server
[23–25] and the Prokaryotic Genomes Automatic Anno-
tation Pipeline from NCBI [26]. Subsequent annotation
of the complete genome was based on the annotated
draft sequences. Minor corrections were conducted
manually.

Genome properties
The complete genome is represented by three replicons.
The total size of the genome is 9,482,704 bp with a GC
content of 62.46 % [27]. A total of 9151 genes were
predicted for the genome, including 15 pseudo genes. As
for RNA genes, 18 rRNA and 62 tRNA genes were identi-
fied. About 80.07 % of the total genes are protein coding
with known function while 1729 genes were annotated as
hypothetical protein [27]. Among the total, 6596 genes
were assigned to COGS. The properties and the statistics
of the genome are described in Table 3. The distribution

Table 4 Number of genes associated with the general COG functional categories

Code Value %agea Description

J 215 2.37 Translation, ribosomal structure and biogenesis

A 1 0.01 RNA processing and modification

K 809 8.93 Transcription

L 215 2.37 Replication, recombination and repair

B 4 0.04 Chromatin structure and dynamics

D 44 0.49 Cell cycle control, Cell division, chromosome partitioning

V 65 0.72 Defense mechanisms

T 528 5.83 Signal transduction mechanisms

M 470 5.19 Cell wall/membrane biogenesis

N 159 1.76 Cell motility

U 180 1.99 Intracellular trafficking and secretion

O 224 2.47 Posttranslational modification, protein turnover, chaperones

C 611 6.75 Energy production and conversion

G 625 6.90 Carbohydrate transport and metabolism

E 816 9.01 Amino acid transport and metabolism

F 110 1.21 Nucleotide transport and metabolism

H 246 2.72 Coenzyme transport and metabolism

I 356 3.93 Lipid transport and metabolism

P 359 3.96 Inorganic ion transport and metabolism

Q 253 2.79 Secondary metabolites biosynthesis, transport and catabolism

R 931 10.28 General function prediction only

S 615 6.79 Function unknown

- 2460 27.16 Not in COGs
aThe total is based on the total number of protein coding genes in the genome
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of the genes in COG functional categories [28] is shown
in Table 4. Circular genome maps, showed in Fig. 3, were
generated using CGview [29] based on ORFs with COG
information, tRNA, rRNA and GC content.

Insights from the genome sequence
The haloacid utilizing operon, comprising dehalogenase
deh4a and permease deh4p genes, was found in replicon
CP012747. Besides deh4a, eight other genes are annotated
as haloacid dehalogenase or haloacid dehalogenase-like
protein for the whole genome. However, in previous

studies, when MBA4 was grown in medium containing
MCA as the sole carbon and energy source, only Deh4a
was detected. A BLASTN analysis showed that these other
genes have relatively different nucleotide sequences and
which suggested that they are not homologs of deh4a. It
would be interesting to investigate whether these putative
dehalogenases have similar function as Deh4a. When
MCA is taken into the cell and processed by Deh4a hy-
drolytically, glycolate will be produced. Further transform-
ation of glycolate will be mediated by glycolate oxidase, an
enzyme that consists of three subunits, viz GlcD, E and F.

Fig. 3 Genome maps of B. caribensis MBA4. The outer circle indicates the location of all ORFs. All ORFs were colored according to their COG
functional groups. Light venetian red and medium rose colored arrows indicate tRNA and rRNA genes, respectively. GC content is in black and
GC skew + and – is in green and fuchsia, respectively. The sizes of the replicons are not drawn to scale

Fig. 4 Schematic representation of the genomic organization of three glycolate oxidase genes in B. caribensis MBA4. Glycolate oxidase genes
comprising glcDEF were identified in replicons CP012746, CP012747 and CP012748. In replicons CP012747 and CP012748, a glcC regulator gene
was also discovered. In replicon CP012747, a glcB gene, encoding malate synthase, was found downstream of glcDEF
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The genes encoding for glycolate oxidase are clustered as
an operon. In MBA4, three glycolate oxidase operons were
identified. One of these is located downstream of deh4a,
in replicon CP012747. This operon has a downstream
malate synthase gene, glcB, and an upstream regulator
gene, glcC, in the opposite strand. Another glcDEF, also
containing an upstream glcC, was discovered in replicon
CP012748. A third glycolate oxidase operon, located in
replicon CP012746, has neither glcC nor glcB in the neigh-
borhood (Fig. 4). It is apparent that glycolate could be
utilized in three ways after transformation to glyoxylate by
glycolate oxidase. Whether these three glycolate oxidases
are responsible for three different courses awaits further
investigation.
For other features of the genome, 612 tandem repeats

were found in the genome by Tandem Repeats Finder
[30]. There are at least 58 genomic islands being pre-
dicted by IslandViewer [31]. On-line CRISPRFinder [32]
has identified ten CRISPR regions with one confirmed
and nine questionable CRISPRs. Four incomplete and
one questionable prophage regions were identified using
PHAST [33].

Conclusions
In this study, we report the complete genome sequence of
Burkholderia caribensis MBA4 which was isolated for its
ability to utilize haloacetates. Examination of genes such
as dehalogenases and glycolate oxidases have provided
insight on the metabolism of the bacterium in transform-
ing haloacetates for carbon and energy source. Further
analysis on genes related to conversion of halopropionate
would be fruitful.
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