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Metabolism is loosely defined as the set of physical and chemical interactions

associated with the processes responsible for sustaining life. Two evident features arise

whenever one looks at metabolism: first, metabolism is conformed as a very complex

and intertwined construct of the many associated biomolecular processes. Second,

metabolism is characterized by a high degree of stability reflected by the organisms

resilience to either environmental changes or pathogenic conditions. Here we will

investigate the relationship between these two features. By having access to the full set of

human metabolic interactions as reported in the highly curated KEGG database, we built

an integrated human metabolic network comprising metabolic, transcriptional regulation,

and protein-protein interaction networks. We hypothesized that a metabolic process

may exhibit resilience if it can recover from perturbations at the pathway level; in other

words, metabolic resilience could be due to pathway crosstalk which may implicate that

a metabolic process could proceed even when a perturbation has occurred. By analyzing

the topological structure of the integrated network, as well as the hierarchical structure

of its main modules or subnetworks, we observed that behind biological resilience lies

an intricate communication structure at the topological and functional level with pathway

crosstalk as the main component. The present findings, alongside the advent of large

biomolecular databases, such as KEGG may allow the study of the consequences of

this redundancy and resilience for the study of healthy and pathological phenotypes with

many potential applications in biomedical science.
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1. INTRODUCTION

Metabolism is defined as the sum of physical and biochemical processes in living organisms that
either produce or consume energy. Metabolic alterations often lead to cellular dysfunction, which is
usually translated into disease (DeBerardinis and Thompson, 2012). Metabolism and disease are so
tightly linked that diseases associated with adjacent metabolic reactions present higher comorbidity
than diseases that have no metabolic links between them (Lee et al., 2008). Also, driver reactions,
defined as the smallest set of reactions that must be controlled to control the activity of all reactions
of the metabolic network, have been proposed as potential therapeutic targets in cancer cells (Basler
et al., 2016). Understanding how the metabolism works, is one of the foundations to understand
human disease.
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The metabolism can be studied through the study of the
relationships between cellular processes which are defined by the
metabolic pathways. A pathway is composed of a set of molecules;
either all proteins, i.e., enzymes, transporters, transcription
factors, and signaling proteins, or all metabolic reactions,
i.e., compounds and enzymes, that are involved in a cellular
process. This representation has been used to find organizational
principles around different cellular processes (Guimera and
Amaral, 2005) or to highlight differentially regulated pathways
associated with disease (Schramm et al., 2010).

There are different kinds of biological networks commonly
used to study specific types of molecular interactions. Metabolic
networks are used to study all metabolic reactions. Protein-protein
interaction networks represent all physical interactions between
proteins. And transcriptional regulatory networks are employed
to study the regulation between transcription factors and target
genes (Costa et al., 2008).

Common topological properties have been characterized for
all of these biological networks in different organisms and even
across several kingdoms of life. The connectivity distribution for
all three kinds of networks usually follows an approximate power
law (Jeong et al., 2000; Yu et al., 2004; Ouma et al., 2018) which
implies that they can be considered as scale-free networks. Scale-
free networks have been shown to manifest small world network
behavior, i.e., any node can be reached from any other node in a
small number of steps. Also, scale-free networks have been shown
to be tolerant to error, but vulnerable to direct attacks, i.e., the
network breaks out when a small fraction of the most relevant
nodes is removed from the system but the structure is very stable
to very high levels of random mutations (Albert et al., 2000).

Integrated approaches to study system level biological
functions, encompassing metabolic, signaling and regulatory
networks have been developed. Some successful efforts were
initially directed toward model organisms, in particular yeast
and bacteria. A work from Palsson’s group (Herrgård et al., 2006)
consisted in the integration of the transcriptional regulatory
and metabolic networks from Saccharomyces cerevisiae.
Careful curation of the literature was used to reconstruct the
transcriptional regulatory network behind nutrient metabolism,
which was coupled with an already curated global scale metabolic
network. This approach allowed the authors to predict changes in
gene expression in response to perturbations. Further integrative
studies continue to be developed, Covert et al. (2008) presented
a comprehensive metabolic, transcriptional regulatory and
signal transduction modeling scheme in Escherichia coli. Their
approach was based on an extension of flux balance analysis.
More recently, the work by Price and his group (Ma et al.,
2015) applied a probabilistic model to study the metabolic
and gene regulatory networks in Mycobacterium tuberculosis,
without including explicitly the role of signaling pathways or
supramolecular protein-protein interaction networks.

In the case of human metabolism, a study presented a
complete reconstruction of a human metabolic network (Duarte
et al., 2007). Such full metabolic model was used to formulate
detailed computational models leading to specific predictions not
only in metabolic activity, but also in gene expression activity.
However, no detailed transcriptional regulatory network for

human phenotypes was available for integration yet. The work by
Kierzek’s group integrated metabolic, transcriptional regulatory
and signal transduction networks in specific contexts for some
human cell types (bile acid homeostasis in human hepatocytes)
(Fisher et al., 2013). Some recent works have integrated the role
of metabolic pathways with other layers of biological regulation
(Guo et al., 2018; Ravikrishnan et al., 2018). However, most
integrative efforts have been circumscribed to comprehensive
metabolic mapping (Cottret et al., 2018; Ravikrishnan et al., 2018;
Shen et al., 2019). Some integrated approaches have been also
developed in the context of particular phenotypes and diseases
(Pirhaji et al., 2016; Bidkhori et al., 2018; Krishnan et al., 2018;
Pandey et al., 2020).

Molecular interactions and functional associations are
systematically stored in specialized databases such as STRING
(Szklarczyk et al., 2019), REACTOME (Fabregat et al., 2018; Jassal
et al., 2020), and KEGG (Kanehisa et al., 2014, 2017). STRING
contains all functional associations between molecules, including
physical, or indirect but functional relations. Importantly,
STRING associations are not assigned to any biological
function in particular. REACTOME and KEGG are databases
of pathways. However, interconversion and integration of
both molecule IDs or biological functions is not easily done
between the different databases. On the other hand, Recon3D,
the most complete reconstruction of the human metabolic
network, contains metabolic and transport reactions along
with 3D structure of metabolites and proteins. Recon3D
goes actually much further than the traditional definition
of a pathway (as presented, for instance, in biochemistry
textbooks and annotated in databases such as KEGG or
Reactome) by introducing the so-called ReconMaps. Such
ReconMaps are precisely-characterized depictions of human
metabolic processes, including detailed information on the
structural and functional, as well as spatial context (even at
the organelle level), in which these processes (in the form of
metabolic reactions and molecular interactions) occur. In this
regard, Recon3D is presented as an unprecedented resource
for future research to characterize biological functionality
in humans.

In this work we built an integrated human network,
including all metabolic reactions, protein-protein interactions,
transcriptional regulation, transport and signaling processes
based on KEGG database. We analyzed its topological properties
and associated them to function when possible. We translated
this molecular interaction network into a pathway network
and studied how molecular perturbations translated into the
disaggregation of the system. We studied different types of
perturbations and applied several statistical and topological tests
based on randomized null models. We found that the system
is very resilient to specific types of molecular perturbations.
This resilience could be caused by the presence of a complex,
highly interdependent network connectivity structure based on
the phenomenon of pathway crosstalk. We advance that further
studies, along these lines, making use of extensive and well-
annotated biological databases will provide a powerful tool to
gain insights on the biomolecular origins of human health
and disease.
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FIGURE 1 | A catalog of molecular interactions. (A) Protein-protein interactions: right side, a protein-complex, left side, a transient physical interaction. (B) Regulatory

interactions. (C) An enzymatic reaction. (D) Metabolic interactions. (E) Two consecutive reactions. We show a molecular model for each type and subtype of

interaction as well as its representation in our network. All proteins are represented by their corresponding gene in our network. Proteins are depicted as by globular

forms, genes by straight ladders and metabolites by polygons. A gene that codifies for a specific protein, is represented as a straight ladder of the same color as the

corresponding globular form. Transcriptional regulation is represented by a square arrow. Arrows represent directed interactions and plain lines represent undirected

interactions. Only the most common subtype of interactions are shown. Figure made using BioRender (Biorender.com).

2. RESULTS

2.1. A Catalog of Molecular Interactions
Molecules can interact in different ways, resulting in a repertoire

of biological responses. Protein-protein interactions (Figure 1A)

occur when two proteins interact by establishing physical

contacts between them; such contacts can be highly stable,

giving rise to a protein complex or they could be transient to
produce a specific short-term response. In a protein-protein

interaction network (PPN), these interactions are represented by

undirected connections between the genes that codify for such
proteins. Another type of interactions, regulatory interactions,
take place when a protein or a protein-complex (namely a
Transcription Factor) regulates the expression of one or more
target genes resulting in an increase or decrease in the activity of
its target genes. In a regulatory network (RN) these interactions
are represented by directed connections between the genes
that codify the TF and the target genes (Figure 1B). At the
metabolic level, metabolites are transformed by enzymes via
metabolic reactions. The metabolic reactions are represented in
a metabolic network (MN). Representations of such interactions

include: bipartite graphs, in which directed connections are
drawn from the substrates to the enzymes and from the
enzymes to the products; and substrate graphs in which directed
connections exist from any substrate to any product. In this
work we will focus on the bipartite graph representation
since it explicitly accounts for all molecules and we will
represent each enzyme as the gene that codify for such enzyme
(Figure 1C). In this work, we retrieved all these interactions from
KEGG database. The most common subtypes of interactions
are shown in Figure 1. Other not so common subtypes as
well as the number of interactions per subtype are shown in
Supplementary Figures 1–5.

Interestingly, there are two other types of interactions.
Metabolic interactions between metabolites and proteins when
a metabolite is known to affect the activity of a protein; or
between two proteins if one of them has a post-translational
effect over the activity of the other. The effect associated with
these interactions could be any of the following: activation,
inhibition, binding/association, missing interaction when the
interaction is known to disappear due to mutation, dissociation,
state change when the interaction represents a state transition,
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indirect effect and unknown. In this work, we did not
include interactions cataloged either as indirect or unknown.
Finally, KEGG contains a last type of interaction: two enzymes
involved in consecutive reactions. Most of these interactions are
redundant with the annotated enzymatic reactions. In this work,
we only included the interactions for which there was no direct
path between the participating enzymes via one metabolite in the
metabolic network.

In this work we will start by analyzing three different types of
very well-defined biological networks: protein-protein interaction
network (PPN), metabolic network (MN), and transcriptional
regulatory network (TRN). Later, we will construct an integrated
network of metabolism by merging all isolated networks and
including the additional interactions previously described. This
is a dimensionality reduction as several layers of biological
processes will be compacted. So, the processes behind a TF
protein, A, that is transcriptionally regulating a target gene, B,
and that forms a protein complex, AB, will be represented by only
one interaction A interacts with B. In a similar way, if protein
A is annotated to interact with protein B, and protein A is also
annotated to post-translationally alter the activity of protein B,
both relationships will be merged into the connection A interacts
with B.

2.2. Analysis of Isolated Networks
We analyzed three different types of very well-defined biological
networks: protein-protein interaction network (PPN), metabolic
network (MN), and transcriptional regulatory network (TRN).
Each molecular network was built based on the explanation
provided in the last section. Each network consisted of 3,918,
2,963, and 916 nodes, respectively; and 34,927, 10,427, and 3,652
edges, respectively. All networks presented a Giant Connected
Component (GCC) composed of more than 90% of nodes and
edges (Supplementary Table 1). A giant connected component
is defined as a connected component of a given network that
contains a significant fraction (more than 50 %) of the nodes
of the network. With regard to the degree distribution of each
network, we found that all of them followed a power law
distribution as well as their respective GCCs. (Jeong et al., 2000;
Yu et al., 2004; Ouma et al., 2018). The goodness of fit statistic is
shown for each network in Supplementary Table 2. The power
law best fit parameters for each network were obtained and are
shown in Supplementary Table 3.

We next investigated some interesting topological and
structural features in each of these isolated networks. We found
that each of these networks has a statistically significant modular
structure (Q = 0.48 and p − value < 1E(−300) for the TRN;

FIGURE 2 | Modular structure and average shortest path length distribution of the isolated networks. (A–C) shows the modular structure for TRN, MN, and PPN,

respectively. The color identifies to which module each node belongs to. (D–F) shows the average shortest path length distribution for the GCC of the TRN, MN, and

PPN, respectively.
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Q = 0.79 and p− value < 1E(−300) for the MN; Q = 0.68 and
p − value < 1E(−300) for the PPN) (Figures 2A–C). We also
found that the average shortest path length distribution behaves
as This phenomenon can be explained by the directed nature
of these networks as a considerable number of nodes present
an in degree higher than zero but out degree equal to zero
(Figures 2D–F).

2.3. The Estrogen Signaling Pathway as a
Case Study
The aggregation of interactions from different biological layers
in an integrated network offers the capability of looking
at whole processes from a global perspective. As a proof
of concept we show the estrogen signaling pathway (KEGG
pathway: hsa04915).

Estrogens are a group of steroid hormones that have long
been known as important regulators of the female reproductive
functions, but also participate in the regulation of skeletal
homeostasis, lipid and carbohydrate metabolism, electrolyte
balance, skin physiology, the cardiovascular system, and the
central nervous system (Vrtačnik et al., 2014). Estrogen mediates
its cellular actions through multiple mechanisms of estrogen
signaling, namely as nuclear-initiated steroid signaling and
membrane-initiated steroid signaling. In the nuclear pathway, the
estrogen binds to nuclear receptors, which in turn translocate
to the nucleus, and interact directly with chromatin at specific
DNA sequences known as estrogen response elements (EREs),
acting as a transcription factor. On the other hand, in the
membrane pathway, estrogen receptors, or G-protein coupled
E2 receptors (GPER) found in the membrane can exert their
action through the activation of second messenger proteins to
relay the estrogen signal and exert physiological changes (Fuentes
and Silveyra, 2019). Furthermore, estrogen signaling is also

tightly connected with other important regulatory entities, i.e.,
epigenetic mechanisms, histone modifications, microRNAs, and
DNA methylation (Vrtačnik et al., 2014).

The regulatory network and the protein-protein interaction
network from this pathway are composed of 41 nodes and
180 edges and 87 nodes and 206 edges, respectively (Figure 3).
Interestingly, no catalytic reactions are annotated as part of
this pathway. And so, this pathway has no metabolic network.
The integrated network for the estrogen signaling pathway
is composed of 133 nodes and 433 edges. We investigated
the crosstalk between the integrated network for the estrogen
signaling pathway and any other human pathway. Crosstalk
between two pathways exist if they share at least one molecule.
We found crosstalk with the steroid hormone biosynthesis
pathway, inositol phosphate metabolism pathway, butanoate
metabolism pathway, purine metabolism pathway, alanine,
aspartate, and glutamate metabolism pathway, arginine and
proline metabolism pathway, and phosphatidylinositol signaling
system. The complete set of these connections is not represented
in any of the isolated networks and could only be studied in an
integrated network such as the one built on this study.

2.4. A Comprehensive Network of Human
Metabolism
In this study, we integrated all types of molecular interactions
in a comprehensive network of human metabolism. We built
an undirected network of human metabolism, including all
molecular interactions reported in the KEGG database (Kanehisa
and Goto, 2000; Kanehisa et al., 2014). We included all
interactions contained in any isolated network. Additionally,
there are some molecular interactions that are not incorporated
in any formalism and that were also included in our integrated
network, e.g., the relation between two enzymes catalyzing

FIGURE 3 | The different subnetworks related to estrogen signaling, regulation and protein interactions. All networks were obtained from KEGG. (A) presents the

integrated network with all three network classes. (B) represents the regulatory network. (C) depicts the protein-protein interaction network. No catalytic reactions are

present in the KEGG pathway.

Frontiers in Physiology | www.frontiersin.org 5 December 2020 | Volume 11 | Article 588012

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Gómez-Romero et al. Large-Scale Structure of Human Metabolism

FIGURE 4 | The human metabolism molecular interaction network the whole set of molecular interactions reported in the KEGG database for humans. It consists of

7,123 non-isolated biomolecules and 49,378 interactions (of diverse types) among them. Network communities are depicted by nodes of the same color. The inset

shows the degree distribution in log-log scale for KEGG metabolism network.

consecutive reactions and the metabolic interaction between
a compound and a protein when the interaction is not part
of an enzymatic reaction (Supplementary Figures 4, 5). Our
network is composed of 10,676 nodes (biomolecules) and
49,378 edges (interactions). Non-interacting nodes were not
taken into account for further calculations because they are
usually not included in topological measures and they do not
participate in pathway crosstalk (3,553 nodes) (Figure 4). The
degree distribution of our integrated network (Figure 4) follows

a power-law distribution with α = 3.17 and σ = 0.13
(Supplementary Table 4).

2.5. Modularity and Community Structure
Modular structure implies that a network can be divided into
modules (also called communities). Network modules are loosely
defined as subnetworks formed by sets of nodes (or vertices)
that are more densely connected among themselves than with
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FIGURE 5 | Topological features of modular structure of the human metabolism network. (A) Newman’s Q distribution for the null models is shown in the histogram

inset. The null models were obtained from community label reshuffling, 1,000 realizations. The dashed line represents the Newman’s Q value obtained from the

network of the human metabolism. (B) Correlation between module size and number of enriched, non-redundant pathways. The linear regression is shown as well as

the confidence intervals [0.95].

the rest of the network. It is generally believed that such semi-
autonomous (but not independent) components of a network
are responsible for functionality in real-life networks (Girvan and
Newman, 2002; Newman and Girvan, 2004; Riolo and Newman,
2020). Often this functionality may be traced back to semi-
mechanistic and/or statistical explanations. Such is the case of the
statistical enrichment analysis performed in this work (Methods).

We determined the community or modular structure of
the human metabolism network using the Infomap algorithm
(Rosvall and Bergstrom, 2007, 2008; Rosvall et al., 2009) and we
calculated Newman’s modularity coefficient, Q (see Methods).
The significance of the modular structure was measured by
random reshuffling of the module labels (1,000 realizations).
We found that the network of human metabolism has a highly
modular structure (Figure 5A),Newman′sQ = 0.68 [p− value <

1E(−300)].
We investigated whether the modular structure was related

to function, in which case we could expect each module to
be enriched in one or several related pathways. To investigate
this phenomenon we obtained the non-redundant enriched
pathways per module (see Methods). Notably, most modules

showed enrichment for one or more non-redundant pathways
(247 out of 321 modules) and the ones that did not present
any enrichment had very few elements (Figure 5B). Pathways
are defined by the annotations in biological databases such
as KEGG. Annotations are based on empirical evidence
(sometimes extremely detailed and refined and sometimes not)
of biomolecular interactions between molecules associated with
biological functions or phenotypes. A pathway is defined as
the database annotation of a set of nodes. Some elements
may or may not belong to the same module. A module is
said to be enriched for a given pathway if it includes more

nodes of the pathway than may be expected by chance alone
(Rivals et al., 2007; Huang et al., 2009).

More than half of the modules presented enrichment for
only one pathway (163 out of 247, 66%). Moreover, in the
cases in which there is an enrichment for more than one
pathway, there tends to be a functional relationship between the
enriched pathways. The functional enrichment for the five biggest
modules is shown in Figure 6. We can observe how the module
that contains the GNAI1 gene is enriched in several nervous
system pathways and signal transductions. By other hand, the
module that contains the metabolite C00020 presents statistical
significant enrichment in almost exclusively pathways labeled as
metabolic. The information for all enrichments can be found
in Supplementary File 1. Nevertheless, we found a correlation
between the size of the community and the number of enriched
pathways [ρ = 0.83, p − value < 2.2E(−16)] (Figure 5B). We
observed the same tendency after repeating the analysis with the
95% trimmed distribution of the data [ρ = 0.35, p − value <

2.2E(−16)].
As a clear exception, we found that the biggest module

(476 nodes) is enriched in only two pathways, this community
is mostly devoted to the olfactory transduction pathway (418
nodes). This is unsurprising, since it is widely known that there
is a plethora of olfactory receptors whose functions and structure
are quite similar (Zozulya et al., 2001).

2.6. Topological and Structural Features of
the Giant Connected Component (GCC)
In the network of human metabolism 6,894 nodes (96.8% of the
total connected nodes, 64.6% of all the annotated biomolecules)
and 48,663 edges (98.6% of the total interactions) form a GCC.
This means that the vast majority of interacting molecules
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FIGURE 6 | Enriched pathways for the five biggest modules. The colored circles represent each of the five biggest modules. The size of the circle is proportional to the

number of nodes in each module. Each module is connected to its enriched pathways. The color of the pathways is related with their function, which was taken from

KEGG’s functional classification. Different tones of blue are associated with organismal systems, different tones of green are associated with metabolic pathways,

different tones of red and orange are associated with human diseases, different tones of pink and purple represents the broad functional category of environmental

information processing. Each module is named as one of the molecules it contains.

(96.8%) and their interactions (98.6%) in the annotated human
metabolism belong to a single interconnected (interdependent)
component. As with the whole interconnected network, we
investigated whether the degree distribution of the GCC follows
a power law (Figure 7A). We found that a power law distribution
with α = 3.17 and σ = 0.13 is the best fit for our data
(Supplementary Table 4).

The shortest path length is defined as the shortest distance
between any two given nodes in a network. This measure usually
correlates with the speed of the information flow throughout any
network. The distribution of the average shortest path length
for the GCC is highly skewed to the left, almost all nodes
can reach any other node in less than 8 steps (Figure 7B).
This result indicates that the network of human metabolism is
highly compact which could be indicative of rapid information
processing throughout the whole GCC.

The edge betweenness statistic describes how relevant is an
edge for communication in the whole network. An edge could
be relevant (i) if it is shared between multiple pathways, or (ii)
if it connects two or more central pathways in the network. In
the GCC we found that 76.98 % of the edges belong to only one
pathway and only 0.96% of the edges belong to more than 10
pathways (Figure 7C). However, we found that there is no linear
correlation between edge betweenness and number of pathways
per edge [Spearman correlation test ρ = −0.09, p − value <

2.2E(−16), see Figure 7D]. This could suggest that the edges
more relevant to transfer information through the network are
the ones that connect central pathways.

Finally, we investigated if the GCC has a core-periphery
structure (Csermely et al., 2013). Core-periphery structure refers
to a certain type of modularization of the network, in which
we can distinguish core nodes which are densely interconnected

within a single or at most a few cores, whereas the so-called
periphery nodes are sparsely interconnected among themselves
and with the main core or cores (Borgatti and Everett, 2000;
Kojaku and Masuda, 2018; Tang et al., 2019).

The closeness centrality statistic measures how central is a
node in a network. So, central and peripheral nodes should have
distinctive closeness centrality values.We calculated the closeness
centrality statistic for every node in the GCC. The closeness
centrality approximately follows a normal distribution; the peak
found at 0.27 corresponds to the nodes annotated as olfactory
receptors (> 400 nodes). We conclude that there is no evident
core-periphery structure as the distribution is fundamentally
unimodal. The core-periphery structure would be evidenced by
the presence of two well-differentiated modes in the closeness
centrality distribution (Supplementary Figure 6).

2.7. Redundancy and Resilience Defined
From a Pathway Perspective
Genetic redundancy exists when there are two or more
genes that perform the same molecular function, and so the
inactivation of one of these genes has little or no effect
on the phenotype (Nowak et al., 1997). Genetic redundancy
produces biological resilience. From a system perspective, a
system is resilient if it continues to function even in the
face of external perturbations (Ungar, 2018). In this work,
we investigated functional redundancy and metabolic resilience
from a pathway perspective. We defined functional redundancy
as the existence of more than one crosstalk between two
pathways andmetabolic resilience as the capacity of the system to
continue to communicate between pathways even in the presence
of perturbations.
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FIGURE 7 | Topological and structural features of the GCC. (A) presents the degree distribution. (B) presents the average shortest path length distribution. (C)

presents the cumulative distribution of pathways per edge. (D) presents the correlation between number of pathways and edge betweenness; a dot for each edge of

the GCC is plotted. The x-axis corresponds to its value of edge betweenness and the y-axis corresponds to the number of pathways in which that interaction exists.

No correlation patterns are apparent [ρ = −0.09, p− value < 2.2E(−16)].

Biological pathways communicate to each other via pathway
crosstalk (Vert and Chory, 2011; de Anda-Jáuregui et al.,
2019). This communication can happen when two pathways
share molecules such as genes or metabolites. In this work,
we built a pathway network (Supplementary Figure 7). We
connected two pathways if they share at least one molecule.
The resulting pathway network is formed by 293 pathways and
13,654 pathway crosstalk interactions. This network is extremely
dense with an average degree of 93 and a network diameter
of 6.

We will investigate if human metabolism presents functional
redundancy, which could be translated into metabolic resilience
to perturbations. From the molecular point of view, this
resilience could be derived from node redundancy, i.e., two
molecules that exist in any two pathways, or from edge
redundancy, i.e., the existence of multiple interactions present
in any two pathways which could bridge over any loss of
function. From the global perspective, a metabolic process may
exhibit resilience if it can recover from perturbations at the
pathway level.

2.8. Analysis of Pathway Network
In order to analyze the extent of resilience of the human
pathway network to perturbations in the metabolism molecular
interaction network, we performed a percolation analysis
(see Methods). The molecular network was perturbed by
removing either (i) edges ordered by descending values of edge
betweenness, (ii) nodes ordered by descending values of node
degree, and (iii) nodes chosen at random. For each iteration, we
created the corresponding pathway network and calculated the
number of components, the number of edges, the mean degree,
the number of nodes (pathways), and the average shortest path
length. All these statistics were calculated taking into account
only non isolated pathways.

We can observe (Figure 8) that the number of edges in the
pathway network (pathway crosstalk) mirrors the number of
edges in the molecular interaction network; it shows either a
linear decrease or an exponential decrease when 100 edges sorted
by edge betweenness are removed or when 20 nodes sorted
by degree are removed, respectively. However, we can observe
that the network is quite stable trough the removal of edges
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FIGURE 8 | Percolation of the GCC. The results for the percolation analysis removing edges ordered by descending values of edge betweenness (A), nodes ordered

by descending values of node degree (B) and nodes chosen at random (C). Each plot shows either the number of edges removed (A) or nodes removed (B,C) from

the molecular interaction network in the X axis and the number of components, the number of edges, the mean degree, the number of nodes (pathways) and the

average shortest path length of the pathway network in the Y axis for each iteration (top to bottom).

sorted by relevance. Removal of the first 20,000 and first 40,000
top edge-betweenness molecular links (õne third and t̃wo thirds
of the molecular links) results in the isolation of only 29 and
129 pathways, from the pathway network, respectively (9.9 and
44% of the pathways). There is a sharp structural breakdown,
reminiscent of a phase transition, at around 45,000 removed
edges (i.e., when 9̃0% of the edges have been removed) as
indicated by the drastic increase in the number of components
and the severe increase in the average shortest path length.

This behavior is also seen when we remove nodes at random;
the pathway network is broken into more than two components
until around 5,000 nodes (out of 7,123, 70%) have been removed,
implying that the pathway network is very resilient to the removal
of random nodes at the molecular level. However, this behavior
is dramatically switched when we remove nodes ordered by
degree. In this case the number of pathways included in the
pathway network decreases linearly and the network collapses
when 2,000 nodes (28%) have been eliminated, as shown by the
increase in the number of components and the increase in the
shortest path length. At the point when 3,000 nodes have been
removed the pathway network has been broken into more than
20 components and when 6,080 nodes have been removed there
is no interacting pathway.

This result indicates that the pathway network is highly
redundant and resilient to random failures at the node level and
even to targeted perturbations at the edge level; however it is
vulnerable to targeted perturbations at the node level.

To test for sensitivity of our results a null model was built
by edge swapping keeping the connectivity distribution fixed.
From these analyses we can see that the general trends, reported
on the resilient behavior of the KEGG-based network, are still
present (Supplementary Figure 14). To account for the effects
of different connectivity distribution and different size we built
three additional null models. For each null model we constructed
the pathway network and performed a percolation analysis.

We tested a random Erdös-Renyí network the same size as
our KEGG network, a scale-free Barabási-Albert network 1.5
times as big as the KEGG network and a scale-free Barabási-
Albert network 2 times as big as the KEGG network. We
can observe that, in general, our results are robust and not-
present in the null models although a size-effect can be noticed
(Supplementary Figures 15–17).

3. DISCUSSION

Metabolism is composed of a series of highly intertwined
processes in which different types of biomolecules interact and
react with each other. The study of the integrated network of
the metabolism is important to shed light into relevant aspects
about the structural organization and information transfer across
this network.

Our study integrates for the first time the three types of
biological networks in human. This integration allows the study
of a more complete network of human metabolism, as it
is evidenced by the estrogen signaling pathway example. In
this example only a fraction of the processes of the pathway
is represented in each isolated network and at least eight
crosstalk between the estrogen signaling pathway and the human
metabolism could not be observed if only isolated networks
were studied.

In a network, modules (also known as communities) are
groups of nodes characterized by a higher number of interactions
between them than with any other group of nodes. In biological
networks, modules have been associated with functional units, in
particular with protein-complexes or dynamic functional units
such as signaling cascades or cell-cycle regulation loops (Ravasz
et al., 2002; Spirin and Mirny, 2003). We found that, in the case
of the integrated network of human metabolism, modules are
also related to function. More than half of the modules show
functional enrichment for only one pathway. Moreover, if a
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module presents a significant enrichment for several pathways,
they tend to be functionally related.

The shortest path length is commonly used as a measure of
information flow efficiency across a network (Ye et al., 2010).
Biological networks have been previously described as small-
world networks for its connectivity distribution approximately
follows a power law (Jeong et al., 2000; Yu et al., 2004; Ouma
et al., 2018). Due to its small-world nature, the average shortest
path length is expected to be quite small compared to the number
of nodes in the whole network and it is expected to slowly
increase as a function of the number of nodes in the network.
In the case of a comprehensive, experimentally-validated, human
protein-protein interaction network composed of 1,613 nodes,
the mean shortest path length was 4.85 (Stelzl et al., 2005). On the
other hand, genomic data was used to reconstruct the metabolic
networks for 80 different organisms; the size of these networks
ranged from 200 to 1,000 nodes. The average shortest path length
for each domain of life was 9.57, 8.50, and 7.73 for eukaryota,
archea, and bacteria, respectively (Ma and Zeng, 2003). In our
integrated network composed of 7,123 nodes we found a mean
shortest path length of 5.6. This number is similar to previous
reports in protein-protein interaction networks and is lower than
the one reported for metabolic networks. However, this is a low
estimate when the number of nodes of the network is accounted
for. The average distance between genes has been proposed
as a proxy for functional relatedness. However, some studies
have shown that the average shortest path length between genes
associated with a specific disease is imposed by the degree of the
chosen genes and it is independent of their function (Embar et al.,
2016).

Edge betweenness is defined as the number of shortest paths
between nodes that run along each edge (Girvan and Newman,
2002). If a high number of shortest paths go trough an edge
that edge will have high edge betweenness (central edges). In
a network, these central edges usually represent bridge-like
connectors between different parts of a network, and they are
the most efficient way to transfer information between different
regions of the network. The removal of the most central edges
has been applied to identify the modular structure of biological
networks (Dunn et al., 2005; Yoon et al., 2006). In metabolism,
a reaction or interaction between two molecules could be
central because that interaction is present in a high number
of pathways bridging all molecules between such pathways or
because that central edge connects pathways that are central in
the metabolism. We found that edge betweenness is not related
to the number of pathways per edge what suggests that the edges
more relevant to transfer the information through the network
are the ones that connect central pathways.

Resilience is an intrinsic feature of biological systems as
living organisms must respond to perturbations efficiently.
Functional redundancy is often used to reach such stability. This
phenomenon can be achieved by different genes performing
the same function or by extensive crosstalk between pathways
which bridges the lack of any specific molecule. The proportion
of genes that can be deleted from an organism without
producing a growth-rate defect has been found to vary
considerably depending on the gene’s pathway. In amassive study
looking for growth defects produced by GAL1 promoter-driven

over-expression only 15% of targets conferred a detectable
growth defect (Sopko et al., 2006), while 25–30 and 76% of
target genes in the case of the cell-cycle pathway and the HOG-
pathway produced a growth retardation phenotype (Moriya
et al., 2006; Krantz et al., 2009). On the other hand, some
studies have found extensive crosstalk between pathways. In a
study involving all the pathways that crosstalk with the estrogen
signaling pathway, 1,400 out of 3,217 molecules involved in
crosstalk events were shared by more than two pathways
(de Anda-Jáuregui et al., 2015). However, how perturbations at
the molecular level are translated into the pathway network has
not been previously studied.

The integration of all network types sums up additional
information in the construction of the pathway network as we
observed in the estrogen signaling pathway. In this example, the
number of pathways found in the pathway network ranges from
71, when only the metabolic network is considered, to 196 when
only the protein-protein interaction network is considered. This
implies that, in the best case, the crosstalk between only 67% (196
out of 293) of the total pathways could be studied if only one
isolated network is analyzed.

Finally, our results indicate that the pathway network is highly
redundant and resistant to random perturbations at the node
level in the molecular network and even to targeted perturbations
at the edge level in the molecular network. However, the pathway
network is quite vulnerable to targeted perturbations at the
node level in the molecular network. These results suggest that
the best target candidate to break down the pathway network,
disconnecting specific pathways, would be the most connected
molecules. The minimum number of nodes that should be
removed to isolate a specific pathway can be obtained from
the pathway network built on this study. We firmly believe
that detailed knowledge of the full topological and functional
structure of the human metabolism network will improve our
understanding of the basis of resilience and short-term adaptive
processes to unprecedented levels, and will also open new,
systemic approaches to molecular therapeutics.

4. MATERIALS AND METHODS

4.1. Data Acquisition and Curation
Interaction and functional equivalence data was downloaded
from the KEGG database via the KEGG API. Only human
pathways were included in the analysis (N = 317, excluding
the pathway metabolic pathways). Molecules and interactions
were retrieved from the kgml files, no orthologs were included.
Molecules with functional redundancy were retrieved from the
conf files. All molecules were translated to NCBI Symbol and
ENSEMBL ID using the NCBI Gene database and ENSEMBL
Biomart for GRCh38.p12.

4.2. Reconstructing KEGG’s Human
Metabolism Interaction Network and the
Biological Relevant Networks
A kgml file describes all the interactions and reactions form
a particular pathway. It contains all enzymatic reactions
indicating the substrate, the product and the enzyme involved
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in each reaction, as well as several types of relations between
biomolecules: (1) relations between enzymes that catalyze
consecutive reactions, (2) protein-protein interactions, (3)
relations between a transcription factor and its target genes; (4)
protein-compound interactions and (5) protein complexes. All
these interactions were retrieved from each kgml file using a
custom-made Python script. Types and subtypes of interactions
were defined based on KEGG relation and object classification.
If two molecules were described to be functionally redundant
by the corresponding conf file, all the interactions associated
with the first molecule were duplicated and assigned to the
second molecule. In this way, an undirected network was created
with either metabolites or genes as nodes and protein-protein,
regulatory and metabolic interactions as edges. Each interaction
was labeled with the list of pathways in which it appears.

To create the biological relevant networks only specific types
of interactions were kept. TRN: only relations between
a transcription factor and its target genes; MN: only
enzymatic reactions and PPN: protein-protein interaction
and protein-complexes.

4.3. Topological and Statistical Analyses
Community analysis was performed using the map equation
algorithm optimizing a two-level partition of the network and
including self links. The modularity coefficient was calculated
using Newman’s Q defined by:

Q =

1

2m

∑

vw

[

Avw −

kvkw

2m

]

δ (cv, cw)

where m is the number of edges, Avw is the element of the A
adjacency matrix in row v and column w, kv is the degree of v,
kw is the degree of w, cv is the type (or component) of v, cw that of
w, and δ(cv, cw) is 1 if v = w and 0 otherwise. The null model
was created by permuting the community labels (N = 1,000).
Significantly enriched pathways per community were obtained by
using Fisher’s exact test.

The Cytoscape Network Analyzer package was used to
calculate the undirected degree and the closeness centrality per
node, the shortest path length between every pair of nodes and
the edge betweenness per edge from the metabolism network.

To assess if the degree distribution follows a power law.
We obtained the goodness of fit of our data to power-
law, exponential, lognormal and truncated power distributions
(Clauset et al., 2007; Alstott and Bullmore, 2014). We evaluated
the goodness of fit to the power law distribution by comparing it
to the fit to any other contending distribution.

4.4. Definition of Redundant Pathways and
Enrichment Test per Community
An enrichment test was performed to find the significantly
enriched pathways per module. The total number of elements
per module and per pathway was calculated. For each module,
all the pathways represented by at least one node were
obtained and a Fisher’s exact test was performed to test the
significance of the enrichment. Two pathways were labeled as
redundant if more than 70% of the molecules of the smallest

pathway were contained in the biggest one. This threshold
was chosen since it represents a good compromise between
diminishing pathway redundancy, but keeping biological insight
(Supplementary Figures 8–13). In the case of the redundant
pathways only the biggest one was kept for further analysis. A
Bonferroni correction was used to correct by multiple testing.

4.5. Analysis of Pathway Network
We built a pathway network from the molecular network. The
pathway network was built by connecting two pathways if any of
the following two conditions are fulfilled: (i) the two pathways
have one (or more) shared nodes (molecules), or (ii) the two
pathways have one (or more) shared edges. In order to perform
the percolation analysis, we considered the whole set of edges in
the network ordered by descending values of edge betweenness.
Percolation analysis is performed by:

1. Removing 100 top edge betweenness interactions from the
molecular interaction network

2. Recomputing network parameters: number of connected
pathways, number of interactions, number of network
components, mean degree, average shortest path length

3. Repeating.

The molecular network was perturbed by removing either (i) 100
edges ordered by descending values of edge betweenness, (ii) 20
nodes ordered by descending values of node degree, and (iii) 50
nodes chosen at random (30 realizations).

The networkx package in Python was used to build null
model networks (Hagberg et al., 2008). The double_edge_swap
function was used for edge swapping; the number of edges in
our KEGG network was taken as the number of swaps, and the
number of tries was taken as ten times the number of edges;
20 random networks were created. The gnm_random_graph
function was used to create a Erdös-Renyí network; the number
of nodes and edges were set to equal the number of nodes and
edges in our KEGG network; 10 random networks were created.
The barabasi_albert_graph function was used to create a scale-
free Barabási-Albert network. The number of nodes was set to
equal either 1.5 or 2.0 times the number of nodes in our KEGG
network. The number of edges to be created for each additional
node was set such that the number of edges in the final network
was either 1.5 times or 2 times the number of edges in our
network. 3 random networks of each type were created. For each
of these molecular networks, a pathway network was created and
a percolation analysis was performed as described previously.

4.6. Data Availability
Wehave uploaded the resulting network to our Github repository
https://github.com/CSB-IG/KEGG-IntegratedNetwork along
with the corresponding source code.

4.7. Glossary
We have included a glossary in the Supplementary Information.
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5. SCOPE AND LIMITATIONS

5.1. Annotations and Data Completeness
The present study is based on an exhaustive analysis of the
molecular interactions reported in the Kyoto Encyclopedia of
Genes and Genomes (KEGG) database, a highly curated and well
annotated data resource for pathway annotation. It is worth-
mentioning, however, that it does not mean complete. And
that all the results and conclusions derived from analyzing this
(or any other currently available) database it is contingent on
incomplete annotation. In other words, for many phenomena
(for instance, the fact that there are some small components
on our network of human metabolism that are not connected
to the main giant connected component of the network),
the absence of evidence does not imply necessarily evidence
of absence.

As previously discussed, an additional limitation of this
work is that KEGG is one of several database resources
for the annotation of metabolic and biomolecular cellular
processes. Other databases are broader (such as STRING),
larger (such as REACTOME) or focused (Recon3D). However,
the rationale for using KEGG is that its interactions are
more strictly curated than STRING or REACTOME (in fact,
STRING uses KEGG annotations as its gold standard for
validated interactions; Szklarczyk et al., 2019), and contains
interactions aside from the purely metabolic. In the case
of Recon3D, as we have mentioned, it makes a much
more detailed depiction of biological function than that of
pathways, as usually understood. Indeed, the level of detail
of the ReconMaps is beyond that of any pathway/bioprocess
databases in humans. For instance, Recon3D presents spatial
and contextual compartmentalization information that goes
beyond the scope of our present work here. By construction,
the KEGG database in which this work is founded, does
not inherently divide biomolecules into cellular compartments
or components.

This is, indeed, one of the biggest shortcomings of KEGG as
compared with the detailed, context-specific depictions used by
approaches such as Recon3D. In this sense, we can view it as if
it was a single compartment. However, interactions are mapped
according to the contexts, or instances, in which they happen.
For instance, metabolic processes located in the cell membrane,
as described in KEGG, map molecules such as ion channels,
ligands, receptors, and their interactions together, even though
no explicit mention of their actual location or structure is given,
in contrast with the detailed ReconMaps of Recon3D. Hence,
within the scope of this work, no explicit compartmentalization is
considered. As these other databases keep on developing, it may
become relevant to further include them in analysis such as the
one presented here.

We can observe that in general our results are robust and
not-present in the null models (see the Analysis of pathway
network section), although a size-effect can be noticed that, while
does not invalidate our results, highlight the point about how
progressive annotation of the databases in the future may affect
the conclusions of our study.

5.2. Integrating Different Network Types
Regarding our integration of different networks related to
metabolism, we have termed our approach a network of
human metabolism instead of a human metabolic network
to disambiguate between these two types of networks. Our
rationale is as follows: distinguishing between metabolic
pathways and other signaling, transcription and in general
molecular pathways is conceptually useful to study some
properties of metabolism such as biochemical kinetics and
metabolic fluxes. It results, however, a little bit misleading
if one seeks to understand the whole set of bioprocesses
within an organism. Metabolic pathways are often triggered
by signaling, both exogenous and endogenous and may
involve transcriptional processes either upstream, downstream
or within their metabolic activity course. A number of
interactions involving protein complexes and molecular
machines are needed to carry out metabolic (and signaling and
transcriptional) responses.

In view of these facts, separating the different molecular
networks by their type of elements, or by the directionality
(or its absence) of their interactions, offers a partial view. A
view that has been extremely useful and has been explored
in the past with great success, to be fair. We have decided
to start exploring ways to integrate these disparate sources of
knowledge. We are aware that this work still represents an
initial exploration of the issue. Proper mathematical methods to
integrate diverse network types are currently being developed
as well as frameworks to make sense of the biology of these
integrated models. Some of these have to do with the so-called
multi-omic approaches.
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