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ABSTRACT: Anion-exchange membrane (AEM) fuel cells
(AEMFCs) and water electrolyzers (AEMWEs) have gained strong
attention of the scientific community as an alternative to expensive
mainstream fuel cell and electrolysis technologies. However, in the
high pH environment of the AEMFCs and AEMWEs, especially at low
hydration levels, the molecular structure of most anion-conducting
polymers breaks down because of the strong reactivity of the hydroxide
anions with the quaternary ammonium (QA) cation functional groups
that are commonly used in the AEMs and ionomers. Therefore, new
highly stable QAs are needed to withstand the strong alkaline
environment of these electrochemical devices. In this study, a series of
isoindolinium salts with different substituents is prepared and
investigated for their stability under dry alkaline conditions. We show that by modifying isoindolinium salts, steric effects could
be added to change the degradation kinetics and impart significant improvement in the alkaline stability, reaching an order of
magnitude improvement when all the aromatic positions are substituted. Density functional theory (DFT) calculations are provided
in support of the high kinetic stability found in these substituted isoindolinium salts. This is the first time that this class of QAs has
been investigated. We believe that these novel isoindolinium groups can be a good alternative in the chemical design of AEMs to
overcome material stability challenges in advanced electrochemical systems.
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Anion-exchange membranes (AEMs) are based on
polymers containing cationic groups that impart anion

conductivity in electrochemical devices, such as redox flow
batteries, AEM water electrolyzers (AEMWEs), and AEM fuel
cells (AEMFCs). AEMFCs and AEMWEs are high-efficiency
energy conversion devices with potential applications in the
automotive industry, the stationary backup power market, and
the storage energy market.1−6 A limiting issue for the
development of these devices is the lack, to date, of AEMs
that can withstand the high pH operating conditions, especially
at the required elevated temperatures (>80 °C), while
maintaining high hydroxide conductivity and good mechanical
properties.7,8 Hence, significant efforts have been made to
tackle this challenge by the judicious design of the chemical
functional group. Various functional groups have been
designed and tested in an effort to increase the alkaline
stability, and therefore, the lifetime of AEMs. Strategies include
the steric protection of degradation-prone sites9,10 as well as
the use of conformationally restricted structures.11,12 Early
studies from Marino and Kreuer on a broad spectrum of
quaternary ammonium (QA)-based cations showed that
aliphatic ammoniums generally exhibited greater stability
compared to aromatic QAs.11 In the same study it was

shown that N-spiro-cyclic QAs exhibited the largest stability in
6 M NaOH at 160 °C among the studied molecules, with the
best QA being 6-azonia-spiro[5.5]undecane (ASU).11 The
distribution of the positive charge in an aromatic system,13

such as in imidazolium salts,14−18 has strongly impacted the
QAs’ chemical stability toward hydroxide, and further
improvements in the membrane lifetime could be achieved
by manipulating the imidazolium substituents.14,19,20

Even though progress has been made in developing QAs
that can better withstand alkaline degradation for thousands of
hours at high pH and high temperatures, a few studies have
been performed under lower hydration or in dry alkaline
conditions,21 which have been shown to better represent
conditions occurring during the operation of some electro-
chemical devices.22,23 Surprisingly, one of the most studied
QAs in the literature, benzyl trimethylammonium (BTMA),
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which does not perform nearly as well in high temperature and
pH, exhibits one the longest half-lives under dry alkaline
conditions at room temperature.24 In our efforts to address the
challenge of designing QA, which is stable toward this harsh
dry alkaline condition, a series of carbazolium salts with
different substituents was prepared,25,26 and one having N-
substituted phenols performed better than BTMA with a half-
life of ca. 140 h under completely dry conditions.27

Under low hydration conditions, BTMA reacts with
hydroxide ions exclusively by nucleophilic attack at the
benzylic position.28 As seen in Scheme 1a, in an ortho-

substituted BTMA, the hydroxide can attack perpendicularly to
the aromatic ring, and therefore, the substituents cannot create
steric effects and further improve the BTMA kinetic stability.
However, in the similar isoindolinium salts (Scheme 1b), the
additional connection to the aromatic ring locks the nitrogen
in place, forcing the hydroxide to approach from the side, in
proximity to an ortho substituent. Therefore, in this family of
QAs, steric effects can be used to increase the lifetime of the
AEM, while maintaining the other good properties of BTMA.

■ RESULTS AND DISCUSSION
Chukhadzhyan et al. were the first to synthesize isoindolinium
salts by base-catalyzed intramolecular cyclization of ammo-
nium salts containing enyne fragments.29,30 Dimethyl sub-
stituted isoindolinium salts have also been synthesized by a
modified Menschutkin reaction.31,32 For our comparative
studies, seven different isoindolinium salts were synthesized
(Scheme 2).
The simplest 2,2-dimethylisoindolinium hexafluorophos-

phate (3a) was prepared by the simple reaction between 1,2-
bis(chloromethyl)benzene (1) and dimethylamine. For the
substituted isoindolinium salts, different 1,4-substituted-2,3-
dimethylbenzenes were brominated using N-bromosuccini-
mide (NBS) and benzoyl peroxide (BPO) in CCl4, providing
compounds that are brominated at the benzylic position, and
depending on the conditions, also on the phenyl ring (2b−2f).
Cyclization with dimethylamine in tetrahydrofuran (THF)

provided the final isoindolinium salts (3b−3f). The alkaline
stability of all the isoindolinium salts was tested using the ex-
situ protocol previously developed by our group, in which the
QAs are measured in dimethyl sulfoxide (DMSO)-d6 solutions
by nuclear magnetic resonance (NMR), and the extent of
hydroxide water microsolvation (λ) is controlled.28 In these
stability tests, the QA concentration was 0.058 M, in a 0.5 M
KOH DMSO solution (at a hydration level of ca. 0.1 water

molecules per hydroxide). In addition, the alkaline stability of
BTMA was also tested for comparison. The results of the
kinetics experiments are shown in Figure 1 and Table 1.

Because the hydroxide is in large excess (ca. 9 times)
compared to the QAs, pseudo-first-order kinetics can be
assumed.24 In this case, the rate constant (k) for each QA can
be calculated using the equation for first-order reaction kinetics

Scheme 1. Calculated Transition-State Structures (Density
Functional Theory at the B3LYP/631-G* Level of Theory)
for Hydroxide SN2 on (a) An Ortho-Substituted BTMA, in
Which the Hydroxide Comes from Under the Plane and (b)
An Isoindolinium Salt, in Which the Hydroxide Comes at
the Same Plane as the Aromatic Ring. Hydrogen Atoms are
Omitted for Clarity

Scheme 2. Synthetic Procedures Used for the Preparation of
Isoindolinium Salts 3a−3f

Figure 1. Remaining isoindolinium as a function of time during
reaction with 0.5 M OH− (λ = 0.1) in DMSO-d6 at room
temperature. The experimental data are fitted with linear trend
lines. For comparison, kinetics for the BTMA reaction in the same
conditions are also shown.

Table 1. Pseudo-First-Order Rate Constants and Calculated
Half-Lives from the Reaction between Different QAs and
Hydroxide

QA rate constant (h−1) calculated half-life t1/2 (h)

3a 0.63 1.10
3b 0.08 8.77
3c 0.08 8.06
3d 0.04 18.73
3e 1.30 × 10−2 53.32
3f 0.01 69.31
BTMA24 6.38 × 10−3 109
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ln[QA] = −kt + ln[QA]0, from the slope of the linear trend
lines shown in Figure 1. In the equation, [QA] refers to the
remaining QA fraction at time t, while [QA]0 refers to the
starting QA fraction (100%). The half-lives were calculated by
the equation t1/2 = ln(2) × k−1. The rate constants and the
calculated half-lives are summarized in Table 1.
As seen in Figure 1, the simple isoindolinium 3a

decomposes very rapidly, with a half-life of only 1 h. This is
a significant degradation rate as compared to that measured for
BTMA, probably as a consequence of doubling the number of
benzylic positions and locking their rotation, allowing for faster
attack by hydroxide. The introduction of ortho substituents
−Ph (3b) and −OMe (3c) lead to ca. 8-fold increase in half-
life, to around 8 h. Interestingly, −Ph is considered an
electron-withdrawing group, while −OMe is considered a
strong electron-donating group. While both these groups have
opposite electronic effects, they both made isoindolinium more
stable, suggesting that the source of the effect is steric and not
electronic.
On the other hand, −OMe groups have been previously

shown to stabilize phosphonium salts against attacks by
hydroxide through electronic effects.33 In order to verify this,
natural population analysis (NPA) charges (with summed
hydrogens) of the benzylic carbons were calculated and found
to be 0.224 for 3a and 3c (see the Supporting Information
(SI)), supporting the fact that the electronic effects of methoxy
substituents are negligible in this case, and the origin of
stabilization indeed comes from steric rather than electronic
effects. The insertion of bulkier groups like t-butoxy groups as
substituents (3d) further improved the stability of the
isoindolinium salts, with a further increase in the half-life to
18 h. Still, all these QAs demonstrated inferior stability
compared to BTMA. Given that t-butoxy groups are already
quite bulky, to further improve the steric effect of the
substituents in the isoindolinium salts, an additional sub-
stituent was added to the fifth position. O-methoxy groups are
typically considered to create weak to no steric effects. For
example, the pKa of benzoic acid is virtually unaffected by an
ortho-methoxy substituent in water or water/DMSO mix-
tures.34 The reason behind this is the preference for coplanar
conformations of methoxy groups to the aromatic rings,
stabilized by mesomeric effects.35 In our case, the methoxy is
coplanar to the aromatic ring and is rotated away from the five-
membered ring (also seen in the optimized geometry of 3c, see
DFT calculations below), therefore causing only a minimal
steric effect. Interestingly, the presence of an additional
substituent in the meta position was shown to lead to
conformations in which the methoxy is not coplanar to the
aromatic ring, creating stronger ortho steric effects.35−37

Coincidentally, the 5-bromo substituted 3e was obtained as a
byproduct in the synthesis of 2c. Upon reaction with dimethyl
amine, it provided 3e, which showed an improved half-life of
53 h. Changing the methoxy to a butoxy substituent (3f)
further improved the half-life (69 h). Contrary to BTMA,38,39

in isoindolinium salts, significant effects on stability can be
seen by having bulky substituents if their conformations are
tuned toward shielding the benzylic carbons.
To better understand and provide guiding concepts on how

to further improve the alkaline stability of isoindolinium
skeletons, we carried out DFT calculations to evaluate the
activation barriers of the hydroxide ion attack to each of the
differently substituted substrates (Table 2). Given the multiple
conformations possible for each isoindolinium salt and each

transition state, the structures were initially generated using the
CREST computer code developed by Grimme et al. based on
semiempirical GFNn-xTB methods (geometries, frequencies,
and noncovalent interactions − extended tight-binding).40

Then, each isomer underwent geometry optimizations (BP86-
D3bj/def2-SVP/DMSO) and single point energy calculations
(wB97X-D3/def2-TZVP/DMSO). The lowest conformations
were chosen, and the relative energies are summarized in Table
2.
The DFT-calculated trends of activation energies are in

agreement with our experimental observations. The non-
substituted 3a shows the smallest free energy barrier of 22.9
kcal/mol. Upon addition of the o-methoxy groups (3c), there
is a slight increase to 23.3 kcal/mol. Finally, by adding the
bromo substituent at the meta position, a nonsymmetric 3e is
obtained in which attack at the proximal benzylic carbon
required 29.5 kcal/mol (3ep), a quite significant increase.
However, the bromo substituent effects on the energy barrier
for the attack on the distal benzylic carbon are smaller,
reaching 23.7 kcal/mol (3ed).
These trends are very similar to the experimental

observations and suggest that a fully substituted aromatic
ring will make isoindolinium salts with significantly higher
stabilities toward hydroxide ion attack. To verify this finding,
tetramethoxy-substituted isoindolinium (3g) was synthesized,
as described in Scheme 3. 1,2,3,4-tetramethoxy-5-methylben-

zene (12) was reacted with paraformaldehyde in the presence
of HBr to provide the bromo monosubstituted precursor 13.
Isoindolinium 3g was tested under the same dry hydroxide
conditions, and the results are shown in Figure 2. The increase
in half-life of 3g is remarkable, achieving 385 h, which is three
times higher than that of BTMA24 and OH carbazolium,27 the
most stable QAs tested under these conditions, and more than

Table 2. Chemical Reaction Studied In Silico; Activation
Energies (E − Electronic, H − Enthalpy, G − Gibbs Free
Energy) Relative to Corresponding Reactants (kcal/mol)

QA 3a 3c 3ea 3eb 3g

R1 −H −OCH3 −OCH3 −OCH3 −OCH3

R2 −H −H −Br, −H −Br, −H −OCH3

ΔE‡ 14.6 14.6 19.2 14.6 15.7
ΔH‡ 14.0 14.3 18.9 14.3 15.0
ΔG‡ 22.9 23.3 29.5 23.7 24.2

aCorresponds to attack on benzylic carbon proximal to bromide.
bCorresponds to attack on benzylic carbon distal to bromide.

Scheme 3. Synthetic Procedure Used for the Preparation of
Isoindolinium Salts 3g and 4
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five times longer than 3f (Table 3). DFT-calculated activation
energies support this increased stability (Table 2). In addition,

3g was compared to additional QA salts such as 1,3-di-n-butyl-
2-(2,6-dimethylphenyl)-4,5-diphenylimidazolium (BPhIm),24

6-azonia-spiro[5.5]undecanium (ASU),24 and tetramethylam-
monium bromide (TMA),41 which have been shown to be
quite stable under aqueous alkaline conditions (Figure 2 and
Table 3).
However, when hydroxide is fully hydrated in its first

solvation sphere (Figure 2b, λ = 8), 3g showed outstanding

stability with no degradation up to 500 h. This result supports
the importance of creating efficient steric bulk around both
benzylic carbons, as indicated by the DFT calculations,
providing a significantly more stable QA.
Then, compound 13 was reacted with NBS and BPO in

CCl4, to provide the bromo di-substituted compound 2g,
which was finally cyclized with dimethylamine to form the
desired 3g. Given the outstanding stability of 3g, an AEM
containing 3g was prepared for testing in an AEMFC. High-
density polyethylene (HDPE) membranes (10 μm thick) that
were radiation-grafted with 3/4-vinylbenzyl chloride42,43 were
added to a toluene solution of 4 to obtain a tetramethoxy-
substituted isoindolinium HDPE (TMISO-HDPE) AEM. The
solution was heated to 65 °C for 3 days.
Samples of the obtained TMISO-HDPE AEMs were

analyzed by AgNO3 precipitation titration to measure their
ion-exchange capacity (1.28 meq/g). Then, their water uptake
(WU) was measured at 40 °C. The membrane showed 27.7%
mass increase at 90% relative humidity (RH) and 51.6% of
WU at 95% RH. In addition, their ion conductivity was studied
after the exchange of the chlorides by hydroxide counter
anions by soaking them in a 1 M KOH solution for 1 h (Figure
3).
During the conductivity test, remaining carbonates are

converted to hydroxide using the Ziv and Dekel procedure
reported elsewhere,45 upon which a stable ion-conductivity
value of 60 mS cm−1 was obtained at 70 °C. For a stability

Figure 2. Remaining isoindolinium as a function of time during
reaction with 0.5 M OH− (a) λ = 0.1 in DMSO-d6 at room
temperature. (b) λ = 8 in DMSO-d6 at room temperature. The
experimental data are fitted with linear trend lines. For comparison,
kinetics for BTMA,24 OH carbazolium,27 ASU,11 BPhIm10,14,44 and
TMA reactions under the same conditions are also shown.

Table 3. Pseudo-First-Order Rate Constants and Calculated
Half-Lives from the Reaction between Different QAs and
Hydroxide

QA
water molecule per

hydroxide (λ)

rate
constant
(h−1)

calculated half-
life t1/2 (h)

3f 0 0.01 69
3g 0 1.80 × 10−3 385

8 ∼0 >34,000
BTMA24 0 6.03 × 10−3 109

8 ∼0 >34,000
OH carbazolium27 0 5 × 10−3 139

8 4 × 10−4 1733
ASU24 0 7.65 × 10−1 0.9

8 3 × 10−5 23,000
BPhIm24 0 7.58 × 10−2 9.1

8 9 × 10−4 770
TMA 0 7.3 × 10−2 9.4

8 9.9 × 10−5 6931

Figure 3. (a) Ion conductivity of the TMISO-HDPE AEM measured
at 70 °C and 90% relative humidity. (b) Conductivity decay (%)
comparison of TMISO-HDPE AEM and commercial FAA-3-30 AEM
at 80 °C, 80% RH, under 0.1 mA current and 500 cm3/min N2 flow.
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comparison, the conductivity decay of TMISO-HDPE and a
commercial AEM (FAA-3-30) was measured over time at 80
°C and 80% RH. Both the membranes were immersed in 1 M
KOH before the test for 1 h. TMSIO-HDPE showed only 9%
decay, whereas FAA-3-30 presents a more significant 32%
decrease in the conductivity after 48 h under the test
conditions (Figure 3b).
Finally, larger TMISO-HDPE AEM samples were prepared

by the same procedure and tested in one of the potential
electrochemical devices that require AEM, an AEMFC. Gas
diffusion electrodes (5 cm2) were prepared according to the
method reported elsewhere.46,47 A H2−O2 AEMFC was tested
at cell temperatures of 40, 50 °C without added back-
pressurization and of 60 °C with 100 kPa back-pressurization
on both the anode and the cathode (Figure 4a). As hydroxide
conductivity increases with the temperature, the AEMFC
performance increases as well, reaching the best performance
at 60 °C, with a peak power density of 497 mW/cm2,

measured at 0.5 V, and a limiting current density of 1210 mA/
cm2. At 60 °C, the thin cathode catalyst layer reduced the
ability of the cell to retain and distribute back-diffused water,
causing the cell to abruptly enter the mass transport region
evidenced by the sharp voltage drop of 1000 mA/cm2.48

For comparison, an AEMFC made with commercial FAA-3-
30 AEM and tested at 60 °C under the same conditions
delivered a lower peak power density of 306 mW/cm2 and only
arrived at a limiting current density of 645 mA/cm2. The
average area-specific resistance (ASR) through the TMISO-
HDPE AEMFC decreased slightly from 0.20 measured at 40
°C to 0.16 Ω cm2 at 60 °C, indicating improved OH−

conductivity. By comparison, the FAA-3-30 AEMFC showed
a slightly improved average ASR of 0.1 Ω cm2 at 60 °C, partly
due to the reportedly higher true OH− conductivity at that
temperature.49,50 The AEMFCs were additionally subjected to
long-term durability testing at 60 °C, under a constant current
density of 300 mA/cm2. The TMISO-HDPE AEMFC resulted
in a voltage degradation rate of 4 mV/h after 56 h, while the
voltage of the FAA-3-30 AEMFC dropped to 0 after only 8 h
(Figure 4b). The oscillations of the voltage and ASR (Figure
4b) over the measured time in the TMISO-HDPE AEMFC are
suspected to be due to the nonideal temperature control of
gases with the available equipment.

■ CONCLUSIONS
Isoindolinium quaternary ammoniums were tested for their
alkaline stability under dry conditions. In isoindolinium, the
nitrogen substitution is similar to BTMA, but amine rotation is
locked, providing the opportunity to create steric effects,
leading to increased stability against nucleophilic attack. Seven
differently substituted isoindolinium molecules were synthe-
sized, and their stability was tested under harsh dry alkaline
conditions. Unsubstituted isoindolinium proved to be less
stable than BTMA, probably due to the presence of two
benzylic carbons and its cyclic structure locking the methylene
rotation. However, as substituents are added, steric effects start
to alter the reaction kinetics. When both ortho and meta
positions are substituted in the aromatic ring, the half-life is
improved drastically. The substitution of the four phenyl
positions with methoxy groups provided isoindolinium QA
(3g) with a half-life of 385 h under harsh testing conditions,
more than three times longer than that of the state-of-the-art
BTMA and OH carbazolium. Radiation-grafted HDPE AEMs
containing cationic groups based on 3g were prepared and
tested, showing good hydroxide ion conductivity and achieving
a promising performance in an AEMFC device (even before
any significant optimization), showing the great potential of
modified isoindolinium groups in electrochemical applications.
By studying decomposition reaction pathways and through
targeted molecular design, better and improved QA-containing
AEMs can be developed. Finally, the lifetime of 3g is the
longest reported in the literature up to date under dry alkaline
conditions.
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