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Abstract

It is well documented that tumor cells undergo dramatic genetic and epigenetic changes during initial establishment as cell
lines and in subsequent serial passaging, and that the resultant cell lines may have evolved significantly from the primary
tumors from which they were derived. This has potential implications due to their widespread use in drug response
experiments and studies of genomic function. One approach to optimizing the design of such cell line studies is to identify
and use the cell lines that faithfully recapitulate critical features of primary tumors. To evaluate the epigenetic fidelity of
breast cancer cell lines in the context of primary tumors, we performed methylation profiling of 55 well-characterized breast
cancer cell lines on the Illumina HumanMethylation27 BeadChip platform, and compared them to publicly available
methylation profiles of primary breast tumors. We found that the DNA methylation profiles of breast cancer cell lines largely
retain the features that characterize primary tumors, although there are crucial differences as well. We describe these
similarities and differences between primary tumors and breast cancer cell lines in detail, and develop a quantitative
measure of similarity that is used to score each cell line with respect to how faithfully its methylation profile mirrors that of
primary tumors.
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Introduction

The statistician George Box might have been thinking of cell

line models of human cancer when he said, ‘‘All models are wrong;

some models are useful.’’ On the one hand, studies on drug

response and genomic function which are often performed using

cell lines are carried out with comparable ease and speed

compared to more complex, in vivo model systems. On the other

hand, tumor cells may undergo dramatic genetic and epigenetic

changes during establishment in culture as cell lines, and continue

to do so in serial passages, potentially resulting in cell lines that

show limited resemblance to the primary tumors from which they

were derived [1–3].

The success of recent studies using the COXEN approach [4] to

translate markers of drug response from cell lines to primary

tumors [5–8] highlights both the risks and the rewards of using cell

line models of cancer. These studies successfully stratified

responders and non-responders to several drugs in a variety of

tumor types using marker signatures derived from experiments on

cell lines. The success of this strategy could be attributed to the fact

that the candidate markers had been carefully selected to

determine which ones had expression concordant to that of

primary tumors [4]. Thus, understanding the ways in which cell

lines are similar to primary tumors is a prerequisite to the optimal

design of pre-clinical cell line studies. This knowledge makes it

possible to determine which genes faithfully recapitulate the most

important features of primary tumors, while avoiding cell lines that

appear to have evolved significantly and have diverged in some

critical features relevant to a particular study.

Several studies have documented similarities and differences

between breast cancer cell lines and primary tumors at the level of

gene expression [9,10], DNA copy number [9] and in response to

therapy [11]. This is the first comprehensive comparison of breast

cell lines and primary tumors using DNA methylation profiles.

Tumor suppressor gene expression is frequently transcription-

ally down-regulated by DNA hyper-methylation of the gene

promoter region [12,13]. DNA methylation changes are stable and

inheritable, but unlike mutations and copy number alterations in

the genetic code, they are potentially reversible [14,15]. Epigenetic

characterization of tumor cell lines could contribute to their use as
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models of in vivo processes such as drug response, and the

comparison of their methylation signatures with those of patient

tumors can provide guidance for their appropriate selection and

use. Since the tumors of origin are no longer available in most

cases, we have used publicly available data on breast cancer DNA

methylation profiles as reference for this study.

A number of publications recently reported methylation profiles

of primary breast tumors, including Dedeurwaerder et al. [16],

Fackler et al. [17], Fang et al. [18], and the collaborative effort

reported by the TCGA consortium [19]. In addition to DNA

methylation profiles, all four studies reported immunohistochem-

ical markers (ER, PR and HER2). Gene expression measurements

were also reported for all TCGA samples and for a subset of the

samples from the Dedeurwaerder study [16]. Although each of

these studies has a specific focus and reports unique results, there

was also a clear consensus on several key findings. All four of these

studies observed distinct methylation profiles associated with ER

status, and noted that ER+ tumors generally have higher overall

levels of promoter DNA methylation than ER- tumors. Addition-

ally, Fang and TCGA both reported distinct breast cancer CpG-

island hyper-methylator or B-CIMP phenotypes [18,19], and both

Dedeurwaerder and TCGA reported distinctive tumor subtypes

based on methylation profiles [16,19]. Moreover, Fang found that

among ER+ tumors, higher global levels of promoter DNA

methylation are associated with less aggressive disease [18].

In the present study, we have undertaken the first systematic,

genome-wide comparison of DNA methylation profiles of cancer

cell lines and primary tumors using a panel of 55 well-

characterized breast cancer cell lines [9–11], and publicly

available primary tumor datasets [16–19].

We describe similarities and differences between primary

tumors and breast cancer cell lines in detail, focusing on the

methylation-based subtypes, CpG island methylator phenotype

and correlations to ER status that have been reported in primary

tumor studies. We report the development of a quantitative

measure of similarity that we used to score each cell line with

respect to how faithfully its methylation profile mirrors that of

primary tumors.

Materials and Methods

Cell lines
The 55 breast cancer cell lines used in this study (Table S1) were

collected by Dr. Joe Gray from the ATCC or from collections

developed in the laboratories of Drs. Steve Ethier and Adi Gazdar

as previously described [9,10] and provided by the NCI (IBC45)

through a contract with ATCC to our laboratory.

Methylation array analysis and validation
DNA was extracted as previously described [9]. Sodium

bisulfite-conversion was performed using the EZ DNA methyla-

tion Kit (Zymo Research, D5002), column-purified using a

ZymoSpin IC column, and eluted in 12 ml of water. The eluted

DNA was quantified and hybridized to Illumina Infinium Human

Methylation27 BeadChip Kit (WG-311-1202) in the DNA

Microarray Core at the Sidney Kimmel Cancer Center at JHU.

To minimize technical artifacts, samples were arrayed as a single

batch.

Array Data analysis
Data were extracted using GenomeStudio Methylation Module

v1.0 software. The methylation value for each 50 bp CpG locus is

expressed as a b-value, representing a continuous measurement

from 0 (completely unmethylated) to 1 (completely methylated)

according to the following calculation: b value = (signal intensity

of M probe)/(signal intensity of M+U probes). Full methodological

details for performing the methylation array analysis are provided

in our earlier publication [17]. All cell line methylation data have

been deposited in the Gene Expression Omnibus (http://www.

ncbi.nlm.nih.gov/geo/), with the accession number GSE42944.

Quality Control of array findings
The methylation levels of several genes were evaluated in the

same cell lines using an independent assay, Quantitative Multiplex

Methylation Specific PCR (QM-MSP) [17,20]. In addition, the

published data on DNA methylation profiles of the TD47 and

MCF7 cell lines [21], independently verified using a sequence-

based method, Methyl-MAPS [22], was downloaded from the

Gene Expression Omnibus (GSE45337) to further establish the

quality and accuracy of our array results.

In addition to the methylation profiles prepared for this study,

copy number and gene expression profiles were obtained for 50 of

the breast cancer cell lines using the Affymetrix GeneChip Human

Genome U133A (hgU133A) array [9,10], and an extensive drug

response study by the Gray lab incorporated most of these cell

lines as well [11]. ER, PR and HER2 status for the cell lines were

characterized by immunohistochemistry (and by FISH in the case

of HER2), and for those included in the expression analyses, the

expression-based subtypes, designated luminal, basal A and basal
B, were assigned by clustering sample profiles using the most

variable expression probes as described previously [9,10]. We

combined the two sources of IHC and expression-based subtype

data, primarily following the characterization by Kao et al. [10],

but using data presented in the earlier study by Neve et al. [9] for

cell lines not described in Kao.

Several additional publicly available datasets were used in the

course of analysis, including DNA methylation profiles of primary

breast cancer tumors by Fackler et al. [17], Fang et al. [18],

Dedeurwaerder et al. [16], and the Cancer Genome Atlas Project

(http://cancergenome.nih.gov/). Additional publicly available

expression datasets used in this investigation included studies by

Farmer et al. [23], and Sotiriou et al. [24].

Analytic methods
All analyses were performed in R (cran.us.r-project.org/) using

both published packages and custom routines. Heatmaps were

generated using the pHeatmap package (http://cran.r-project.

org/web/packages/pheatmap/index.html). Unsupervised ag-

glomerative hierarchical clustering [25] was performed with

Ward’s minimum variance method [26], based on methylation

patterns in the most variable 2% of CpG sites. We developed a

global methylation score to summarize total promoter, DNA

methylation in each sample, across the highly variable sites used

for clustering. The data for each probe was first standardized to

have a mean of zero and standard deviation of one, and then

standardized values were averaged across probes, within sample,

to generate a sample specific score. A value above zero indicates

that a sample is more frequently methylated than average while a

value below zero indicates lower than average methylation.

ANOVA was performed in R, and summarized using F-tests with

Type I error controlled at a= 0.05.

Defining signatures of methylation phenotypes
Published methylation signatures derived on primary tumors

were used to compare cell lines to primary tumors, including the

200 probe signature of predicted ER status defined by Fackler et

al. [17] and the taxonomy of breast cancer methylation subtypes

described by Dedeurwaerder et al. [16]. For the definition of

Breast Cancer Cell Line Methylomes
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B-CIMP from Fang et al. [18], where 3297 probes were found to

be correlated with B-CIMP, we selected a subset of 1440 probes

that had a false discovery rate below 0.01.

Predicting phenotype by translating gene signatures
from primary tumors

A 3-step process was used to map phenotypes identified in one

of the primary tumor studies to cell lines and additional primary

tumor datasets: 1) The methylation levels at each locus were

standardized within the dataset by subtracting the mean and

dividing by the standard deviation. 2) The mean, within-group

methylation level for each probe was calculated in the training

dataset for each phenotypic group, to define a typical methylation

profile for the class. 3) Individual cell lines and samples from

independent test datasets were correlated to the class-specific

prototypes by Spearman correlation, and assigned to the best

correlated class.

Matching individual cell lines to individual primary
tumors by nearest neighbor analysis

Using all probes on each array, the Spearman Correlation

Distance was calculated between each pair of samples to identify

the best primary tumor match for each cell line using the

bioDist package (http://www.bioconductor.org/packages/

release/bioc/html/bioDist.html). The distance to the nearest

tumor was used to measure how closely each cell line resembled

primary tumors.

Results

Genome-wide methylation profiling of breast cancer cell
lines

In order to characterize the overall distribution of DNA

methylation in breast cancer cell lines, we performed an

unsupervised cluster analysis of DNA methylation levels on the

2% of CpG loci with the largest standard deviation across cell

lines. The resulting heatmap, shown in Figure 1A, reveals that

patterns of DNA methylation broadly segregate breast cancer cell

lines according to ER status, and more specifically into the

expression-based categories of Luminal, Basal A, and Basal B

previously described [9–11]. In fact, in these cell lines, methylation

levels at thousands of loci are significantly associated with the

expression-based subtypes. Interestingly, the sharpest distinction

can be drawn between Basal B cell lines and all others (Basal A

and Luminal samples combined). Full probe-by-probe results are

provided in Table S1.

The summary scores of overall DNA methylation levels in these

expression subtype-associated loci are shown in Figure 1B and 1C,

and differ dramatically (p-value = 0.0055) between ER+ and ER-

lines, with ER+ showing substantially higher levels of methylation.

HER2 overexpression is less strongly correlated with higher

methylation levels, an association that may be wholly driven by

associations between ER and HER2 status (p-value = 0.027).

These findings confirm results from recent studies of primary

breast tumors [16–18], all of which found that the well-known

breast cancer subtypes have distinctive methylation patterns

involving hundreds or even thousands of genes, and that luminal

tumors have overall higher levels of methylation. The initial

conclusion from these results is that tumor-specific DNA

methylation changes are likely to play key roles in the biological

processes that characterize breast tumors.

To verify our array data using an independent assay, we

determined the methylation levels of several genes previously

known to be methylated in primary tumors by QM-MSP [17]. In

all four cases, the assay results were highly concordant, with

correlation coefficients ranging between 0.85 and 0.98, as shown

in Figure S1. Additionally we downloaded sequence-based

Methyl-MAPS methylation profiles for two of the cell lines,

MCF7 and TD47, and compared results across the genome using

array probes within 100 base pairs of a Methyl-MAPS measure-

ment. Here, again, we observed good fidelity between platforms as

shown in Figure S2.

Cell line methylation profiles are similar, but not identical
to primary breast cancers

Next, we sought to determine if specific results on genome

wide methylation reported for primary breast cancer cohorts

are also reflected in the cell line models. While correlations

between methylation and outcome cannot be tested in cell

lines, other findings, identified in several primary tumor

studies and validated in independent samples, can be evalu-

ated. These include: 1) the presence of a CpG island

methylator phenotype (CIMP) identified in a subset of ER+
tumors [18]; 2) a taxonomy of 6 breast tumor subtypes defined

by characteristic methylation profiles [16]; and 3) a methyl-

ation signature strongly associated with ER status [17]. Using

the correlation based procedures detailed in Methods, each cell

line was matched to one of the 6 Dedeurwaerder subtypes,

characterized as to CIMP status, and assigned to a predictive

ER class, according to the its methylation pattern in the

respective signature. To provide an independent comparison

between cell lines and primary tumors, we identified two

additional publicly available sets of breast tumors analyzed on

the Illumina HM27 methylation platform, inferring pheno-

types for these samples as well. One of these, herein called

Dedeurwaerder Validation, was previously used as an inde-

pendent validation set for the Dedeurwaerder methylation

subtypes [16]. The other, from the Cancer Genome Atlas

Project (http://cancergenome.nih.gov/), and referred to here

as TCGA, was used by both Fackler and Fang for validation

[17,18], but neither were used for signature development.

The prototypical tumor-derived methylation phenotypes are

shown in the supplementary figures for B-CIMP (Figure S3A),

predicted ER status (Figure S4A), and Dedeurwaerder methyla-

tion subtypes (Figure S5A), respectively. Profiles for cell lines are

shown in Panels S3B, S4B, and S5B, while TCGA samples and

Dedeurwaerder validation samples are shown in Panels C and D

of Figures S3-S5. For each signature, the distribution of

methylation levels in TCGA and Dedeurwaerder validation

samples (Panels C and D) is similar to that of the respective

primary tumor discovery set shown in each respective Panel A,

while the cell lines (Panels B) exhibit significant departures from

the common primary tumor patterns. The resulting class

predictions are shown in Figure 2 and itemized in Table S2.

In Figure 2, values of ER and HER2 measured by immuno-

histochemistry (IHC) and fluorescent in-situ hybridization (FISH)

are shown alongside the 3 phenotypic variables (B-CIMP,

Methylation-Predicted ER, Methylation class) that were inferred

as described above. One immediately evident feature of the cell

line profiles is the absence of an ER+/CIMP- phenotype, a profile

that can be seen prominently in both primary tumor sets.

A second distinctive feature of the cell line profile is that nearly

20% of the cell lines are ER-, but show the B-CIMP methylation

pattern, a combination that is nearly absent in primary tumor

profiles.

Breast Cancer Cell Line Methylomes
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Methylation profiles of luminal-like triple-negative cell
lines show least resemblance to primary tumors

To this point, analysis has been focused on subtype analyses of

the tumors and cell lines. To focus on individual cell lines, we used

a nearest neighbor analysis, described in the Methods section, to

calculate pairwise distances between individual cell lines and

individual primary tumors. This enabled us to associate each cell

line to a nearest-matching primary tumor by both methylation and

Figure 1. Genome-wide methylation patterns in breast cancer cell lines. Panel A shows a heat map of DNA methylation resulting from an
unsupervised cluster analysis of highly variable loci (defined as standard deviation in top 1%). The methylation level for each 50 bp CpG locus is
expressed as a b-value ranging from 0 (blue) to 1 (yellow), calculated as described in the methods section. Gene expression-based categories of
Luminal, Basal A, and Basal B as defined by Neve et al. [9] are annotated in color along the top (Luminal in red, Basal A in light blue and Basal B in dark
blue), as are the immunohistochemically defined ER (ER+ in red, ER- in blue) and HER2 status (HER2+ in orange, HER2- in yellow) of each cell line. In
Panel B, our DNA hypermethylation score, summarizing methylation levels across the genome (see Methods for details), depicts standardized average
methylation levels for samples represented in same order as panel A. A value above zero indicates that a sample is more frequently methylated than
average, while a value below zero indicates lower than average methylation. ER status is indicated by the color of the bar (ER+ in red, ER- in blue). The
boxplots in Panel C summarize the distribution of hypermethylation scores according to ER status above (t = 2.93, p-value = 0.0055), and HER2 status
below (t = 2.31, p-value = 0.027), again using the standardized average methylation levels.
doi:10.1371/journal.pone.0105545.g001
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expression profiles, and thereby identify cell lines that are

particularly poor matches to any primary tumor.

For this purpose, we again used the TCGA (http://

cancergenome.nih.gov/) and Dedeurwaerder Validation [16]

DNA methylation studies, as well as two public primary tumor

expression datasets based on hgU133A arrays [23,24]. The results

are shown in Figure 3 for nearest neighbors calculated using all

probes on the methylation array. We considered several subsets of

probes as well, but outcomes were nearly identical (data not

shown). As the boxplots in Figure 3b show, ER+ cell lines tend to

have closer primary tumor neighbors than do ER- samples. The

anomalous B-CIMP+, ER- breast cancer cell lines are distinctive

as a group, being least likely to have a close neighbor among

primary tumors. This was true irrespective of HER2 status.

Analysis of Variance to compare distance to primary tumor by

group was statistically significant with p,0.0001.

Gene expression profiles of luminal-like triple negative
cell lines are least like primary tumors as well

Using expression data available on Affymetrix hgU133A

GeneChips for 50 of the cell lines in the publicly available Breast

Cancer expression data sets by Sotiriou and Farmer [24], we

calculated nearest-neighbor tumors for each cell line as well, with

very similar results (Figure 4). As was observed for methylation

profiles, cell lines that were ER+ by expression tended to be more

similar to primary tumors than ER- samples. The results mirrored

those seen in the methylation data with the B-CIMP+, ER- breast

cancer cell lines least likely to have a near neighbor in primary

tumors, although the ANOVA test did not achieve statistical

significance for the expression data.

Discussion

This is the first comprehensive comparison of the genome-wide

DNA methylation profiles of breast cancer cell lines with primary

tumors. It is unique not only for its size, including 55 cell lines,

which are compared to methylation profiles from 561 primary

tumors from 4 published studies, but also for the depth of the

comparison to primary tumors. We comprehensively evaluated

DNA methylation profiles of breast cancer cell lines in comparison

to primary tumors to assess the extent to which the cell line model

represents tumor DNA methylation patterns.

A careful analysis of this question is critical to the design and

interpretation of any study exploring drug response experiments

and studies of genomic function in cancer cell lines. Tumor cells

undergo significant genetic and epigenetic changes during

establishment, and in later serial passages that may span decades

in some instances, so that commonly used cell lines may bear little

resemblance to the primary tumors from which they were derived.

There is, nevertheless, no doubt that cell lines have provided

valuable screening tools for drug discovery as well as the study of

molecular mechanisms underlying breast cancer since the time

they were first established as tumor models. As described in this

paper, we find that, with some noteworthy exceptions, the DNA

methylation profiles of breast cancer cell lines largely retain the

features that characterize primary tumors. We have developed a

Figure 2. Some triple-negative cell lines have luminal-like methylation features. Composite color maps of phenotypic features of two
primary breast tumor sets that were not used to derived any of the predictive gene signatures, i.e., the Dedeurwaerder validation set (A), and the
TCGA tumor set (B), as well as our collection of breast cell lines (C) are shown. In each of the three phenotypic maps A-C, standard
immunohistochemical parameters (IH class) are shown in the ER and HER2 rows. The three additional rows show B-CIMP status as predicted by Fang
et al. (CIMP) [18], Methylation-based predicted ER status (Pred ER) [17], and Dedeurwaerder methylation subtype (Class) [16], all of which were
predicted on the basis of gene methylation signatures as described in Methods.
doi:10.1371/journal.pone.0105545.g002
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quantitative measure of similarity that we use to score each cell

line with respect to how faithfully its methylation profile mirrors

those of primary tumors. This process led to the identification of a

distinctive set of ER- breast cancer cell lines that share an unusual

set of luminal-like molecular features that are rarely, if ever, found

in primary tumors. This finding is, however, consistent with the

hypothesis that the B-CIMP phenotype overlaps an in vitro

adaptation signature. The same set of cells frequently fall into

Dedeurwaerder subtype 4, which is strongly associated with ER+
phenotype in primary tumors, and most of these cell lines are also

predicted to be ER+ using the Fackler methylation signature of ER

status, albeit not by IHC. These luminal-like, B-CIMP positive

ER- cell lines represent an intriguing class that appear over-

represented in cell line collections. More generally, in primary

tumors, a large proportion of ER- samples show no systematic

methylation in B-CIMP-associated loci, whereas every ER- cell

line shows moderate to high methylation at many of these probes,

although only about half were classified as B-CIMP-positive.

Significantly, in spite of its poor match to primary tumors, this

ER-/CIMP+ group contains some of the best known and widely

used breast cancer cell lines, including MDA-MB-468, BT20, and

MDA-MB-231. For some of these cell lines, it is possible that

extensive passaging has contributed to the distinctive methylation

profiles seen. In some cases, a cell line may be uniquely useful in

research because unusual molecular characteristics render it highly

responsive to perturbation, but in the absence of tumors showing

comparable characteristics, due diligence would require consider-

ation of additional tumor models to ensure that any conclusions

could apply clinically.

Similarly, an additional noteworthy finding of this analysis is the

complete lack of ER+/CIMP- cell lines, although this phenotype is

well represented in tumor samples; accompanied by a reciprocal

Figure 3. Methylation profiles of B-CIMP+, luminal-like triple-negative cell lines show least semblance to primary tumors. Panel A:
The x-axis of each plot indexes cell lines, which are arranged into the following four phenotypic groups, separated by vertical bars, from left to right:
1) ER-/HER2-/B-CIMP-; 2) ER-/HER2-/B-CIMP+; 3) ER-/HER2+/B-CIMP+; and 4) ER+. ER and Her2 status are defined by IHC, and B-CIMP status by
methylation profile. The y-axis shows the Spearman Correlation Distance (‘‘Distance to Primary’’) to the nearest primary tumor by methylation profile
(see methods for the details of the distance measure). In the top panel, the comparison is made to TCGA HM27 samples, while in the bottom panel,
the comparison is to the Dedeurwaerder validation dataset. The median distance for all 55 cell lines is shown as a horizontal line as a reference point,
and symbols of adjacent points alternate to aid in tracking results across the two plots. Panel B: The boxplots show the distribution of best-match
distances, broken down by the major phenotypic combinations indicated by vertical bars in Panel A. Abbreviations: ER: Estrogen receptor; H2: Her2
amplification; CP: B-CIMP status.
doi:10.1371/journal.pone.0105545.g003
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lack of a tumor phenotype corresponding to the above mentioned

ER-/CIMP+ cell line phenotype. Notably, in the primary tumor

datasets, the ER+/CIMP- phenotype is associated with Dedeur-

waerder classes 5 and 6, which largely correspond to luminal

expression subtypes, and which are both very rare in the large

collection of cell lines examined in this study. This observation,

seen in cell lines derived largely from metastatic tumors, is in sharp

contrast to Fang’s finding that the B-CIMP phenotype in ER+
tumors decreases the risk for metastasis. Our results suggest that

luminal type tumor cells, with generally less prominent cell

proliferation markers and higher overall methylation levels, may

adapt to life in vitro by expressing or re-expressing B-CIMP

markers. These findings support the view that the B-CIMP

phenotype may represent or overlap an in vitro adaptation

signature.

One would expect similar discrepancies between tumor tissue

and established cancer cell lines in additional genomic assessments,

such as non-transcribed RNA profiles or DNA copy number

analyses, underlining the importance of verifying the clinical

relevance of cell-line based investigative models against represen-

tative tissue data such as that provided by the TCGA.

In conclusion, the fact that methylation profiles of breast cancer

cell lines largely retain the features that characterize primary

tumors, a finding that is encouraging for cell-line based research

models. This is particularly notable for the methylome, since it is

subject to environmental and other influences than can modify

DNA methylation states and might be expected to be less stable

than structural evolution at the DNA sequence level.

Supporting Information

Figure S1 A–D: Validation of array measurements by
QM-MSP. Breast cancer cell line methylation levels of selected

genes measured by array (x-axis, with b-values ranging from 0–1)

and independently by QM-MSP (y-axis, 0–100% methylation).

Agreement between assay modalities is measured by Pearson

Figure 4. Gene expression profiles of luminal-like triple negative cell lines are least like primary tumors as well. Comparison of each
individual cell line expression profiles to their closest primary tumor match supports the finding from our analysis of methylation profiles that B-
CIMP+, triple-negative breast cancer cell lines are among the least likely to have a close match. Panel A: The x-axis of each plot indexes cell lines,
arranged by phenotypic status, and the y-axis shows the Spearman Correlation Distance to the nearest primary tumor by expression profile. In the
top half of the figure, the comparison is made to Sotiriou samples [23,24], while in the bottom half, the comparison is made to the Farmer validation
dataset [23,24]. The median distance for all 50 cell lines is shown as a horizontal line as a reference point, and the color of adjacent points alternates
to aid in tracking results across the two plots. Panel B: Boxplots in show the distribution of best-match distances, broken down by major phenotypic
combinations as in Figure 3.
doi:10.1371/journal.pone.0105545.g004
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correlation coefficient r. Results for the genes DAB2IP, EVI1,

GAS7 and FZD10 are shown in panels A–D, respectively.

(TIF)

Figure S2 A–B: Validation of array measurements by
Methyl-MAPS [22]. Methylation levels of the breast cancer cell

lines MCF7 (Panel A) and T47D (Panel B) measured by array (x-

axis, with b-values ranging from 0–1) and independently by

Methyl-MAPS (y-axis, with b-values ranging from 0–1). CpG sites

on the array were selected to be within 100 bp of the

corresponding Methyl-MAPS site. Agreement is measured by

Pearson correlation coefficient r.

(TIF)

Figure S3 A–D: B-CIMP patterns in primary tumors
and cell lines. Panel A shows DNA methylation levels for B-

CIMP markers in the Fang tumor samples used to define the B-

CIMP signature. ER status, (blue vs red) is indicated along the top

margin, along with B-CIMP status (black vs. white). For cell lines

(Panel B), the TCGA samples (Panel C), and the Dedeurwaerder

validation study (Panel D), CIMP status is inferred as described in

Methods and rows in all panels are arranged to match the Fang

study in Panel A rather than independently clustered. The

methylation level is expressed as a b-value ranging from 0 (no

methylation, blue) to 1 (complete methylation, yellow), calculated

as described in the Methods section.

(TIF)

Figure S4 A–D: ER Methylation-signature markers in
primary tumors and cell lines. Panel A shows DNA

methylation levels for ER markers in the Fackler tumor samples

used to define the ER methylation signature [17]. For each

tumor, ER status (blue vs red) and HER2 status (yellow vs

orange) as defined by immunohistochemistry are indicated

along the top margin, along with the ER status predicted by the

ER methylation signature as described in methods. For cell lines

(Panel B), the TCGA samples (Panel C), and the Dedeurwaerder

validation study (Panel D), IHC-defined ER and Her2 status as

well as predicted ER status are shown and rows are arranged to

match the Fackler study in Panel A rather than independently

clustered.

(TIF)

Figure S5 A–D: Markers of methylation-based subtypes
in primary tumors and cell lines. Panel A shows DNA

methylation levels for markers used to define the signature of the

methylation-based subtypes in the Dedeurwaerder tumor samples.

ER status as defined by IHC, as well as methylation class, are

annotated along the top margin for each tumor sample. For cell

lines (Panel B), the TCGA samples (Panel C), and the

Dedeurwaerder validation study (Panel D), Dedeurwaerder classes

are inferred from the markers as described in methods and rows

are arranged to match the Dedeurwaerder study in Panel A rather

than independently clustered.

(TIF)

Table S1 Molecular characteristics of cell lines. ER, PR

and HER2 status for each cell line, as measured by IHC and

FISH, expression and methylation subtypes, predicted B-CIMP

status and predicted ER status using the Fackler methylation

markers are recorded for each cell line.

(XLS)

Table S2 DNA methylation by expression subtype.
Results from ANOVA analysis evaluating probe-specific methyl-

ation by expression subtype are shown, including the F-statistic, p-

value and Benjamini-Hochberg adjusted p-value. The mean beta

value for each expression group is shown as well.

(XLS)
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